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Random matrices are fundamental in photonic computing because of their ability to model and
enhance complex light interactions and signal processing capabilities. In manipulating classical light,
random operations are utilized for random projections and dimensionality reduction, which are
important for analog signal processing, computing, and imaging. In quantum information processing,
random unitary operations are essential to boson sampling algorithms for multiphoton states in linear
photonic circuits. Random operations are typically realized in photonic circuits through fixed
disordered structures or through large meshes of interferometers with reconfigurable phase shifters,
requiring a large number of active components. In this article, we introduce a compact photonic circuit
for generating random matrices by utilizing programmable phase modulation layers interlaced with a
fixed mixing operator. We show that using only two random phase layers is sufficient for producing
output optical signals with a white-noise profile, even for highly sparse input optical signals. We
experimentally demonstrate these results using a silicon-based photonic circuit with tunable thermal
phase shifters andwaveguide lattices asmixing layers. The proposed circuit offers a practical method
for generating random matrices for photonic information processing and for applications in data
encryption.

The rapid advancements in photonics fabrication techniques and materials
science have enabled the deployment of photonic integrated circuits com-
patible with telecommunication wavelengths in compact on-chip form
factors1–3. This allows exploiting the properties of light to perform com-
putational tasks with reduced power consumption, increased bandwidth,
and improved reliability. The ability to manipulate light on chip-scale
platforms has sparked a plethora of applications across various fields,
including telecommunications4, optical neural networks5,6 and machine
learning7, sensing8, imaging9, and quantum computing10,11. Indeed, exten-
sive research has been developed to deploy programmable photonic inte-
grated circuits capable of real-time tuning. The idea of such devices was first
introduced by Reck et al.12 for free-space propagation using arrays of beam
splitters and phase shifters, which paved the way for compact on-chip
solutions based onmeshes ofMach-Zehnder interferometers (MZI)2,13–17, as
well as recirculating meshes18–20, and multi-plane light conversion and
multiport waveguide arrays21–26.

Recently, interlaced architectures that represent arbitrary unitary N ×
N matrices have been explored as alternative candidates to conventional
MZImeshes23–25, where arrays of phase shifters andpassivemixing layers are

intertwined one after the another. This approach involves the intertwining
of N+ 2 passive and N+ 1 active layers of optical elements, which has
demonstrated high flexibility. Specifically, the passive layer responsible for
mixing light propagation across all waveguides does not need to follow any
specific design as long as its corresponding transfermatrix satisfies a density
criterion25. The active elements lie in a layer separated from the passive one,
allowing for more flexibility in the phase elements, which can be imple-
mented through microheaters27,28, phase-change materials29, or other
technologies.

Along different lines, the implementation of random unitary matrices
by purely optical means has found exciting applications30, such as optical
encryption in free-space settings31,32 and through metasurfaces33,34. Har-
nessing the random transmission matrix of light in disordered waveguide
arrays allows for encoding high-dimensional images into their lower-
dimensional representations9,35. This property has been found resourceful in
random disordered fibers, where the inherent Anderson localization ren-
ders highly localized modes used for high-fidelity transport of intensity
patterns and images36–41. Furthermore, random photonic devices have been
shown to be an excellent resource for generating operations akin to Haar-
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random matrices, a fundamental task on boson sampling required in
quantum computing tasks42,43.

The present work introduces a programmable, compact, and
simple-to-fabricate photonic chip designed to randomize light signals
injected into its input. Such a process is achieved by exploiting
general interlaced architectures discussed in the literature24,25 and
reducing the corresponding number of elements to an effective
minimum without compromising its functionality. Indeed, numerical
experiments reveal that only two active layers are required to perform
the randomization process with high accuracy. Here, the output
randomness is inherited from the random distributions assigned to
the phase elements; the quality of the random output is evaluated by
comparing it with the typical profile of white noise signals. Although
the fabricated chip randomizes both the real and imaginary parts of
the input signal, we present a relatively simple scheme in which the
random patterns are still measurable with conventional power
measurements. The chip capabilities are extended by demultiplexing
large signals into smaller sizes without jeopardizing the quality of the
random output. Furthermore, a specific application is introduced,
where the chip can be used as an all-optical encryption device whose
decryption process can be assessed through an equivalent device, the
existence of which is guaranteed by the unitary nature of the ran-
domization device.

Results
Random architecture model
Photonic integrated circuits (PICs) are rapidly becoming an attractive
solution for optical computing applications. Their versatility enables the
design of both programmable units25 and integrated task-specific
operations44,45. Particularly, unitary architectures based on interlaced lay-
ers of passive and active optical components have become a commondesign
solution, for they allow for the representation of arbitrary unitary matrices
(universality) and have shown to be resilient to manufacturing errors24,46.
Experimental realizationhasbeen reported47, and further statisticalmethods
for phase retrieval based on intensity measurements are discussed in the
literature48.

The fundamental operational principle lies in the propagation of gui-
ded modes through waveguides EðrÞ ¼ Eðr?Þeiðwt�βrkÞê?, with Eðr?Þ the
normalized guided-mode amplitude, r∥ and r⊥ position vectors in the
direction parallel and perpendicular to the propagation, respectively, ê? the
unit vector in the perpendicular direction, and β the corresponding mode
propagation constant49 (see Supplementary Material S1 for more details).
The electric field of a N-port device composed of single-mode waveguides,
such as the one illustrated in Fig. 1a, writes as the complex-valued vector
x ¼ ðx1; . . . ; xN ÞEðr?Þ, with xi 2 CN carrying information about the
intensity and phase of the propagating light. Henceforth, to reduce the
notation, the electric field propagating through the device is simply written
as x≡ (x1…, xN).

In general, universal interlaced architectures are composedofM1 layers
of passive mixing components and M2 layers of active elements24,25. Parti-
cularly, a universal N-port unitary device requiresM1 =N+ 2 passive and
M2 =N+ 1active layers to render any arbitraryunitaryoptical operation. In
turn, for randomization tasks,we require that the output vectors show traces
of randomness regardless of the nature of the injected input signal, and thus,
not all layers might be needed. That is, we seek the minimum number of
layersM1 andM2 so that the output resembles a white noise signal. Indeed,
as pointed out in25, the intermediate passive layers donot necessarily require
to take any specific form, and layers describedby transmissionmatriceswith
dense properties render the desired functionality.

In the present design, the M-layer (M1 =M2 =M) unitary interlaced
structure U 2 UðNÞ is built based on dense passive layers FðαmÞ ¼ eiαmH ,
which rule the wave evolution of light and are described by coupled-mode
theory approach50,51. Here,H is a tri-diagonal matrix with componentsHn,n

+1 = κn for n∈ {1,…,N− 1} and κn the corresponding coupling parameter
between neighbor waveguides. The device is operated by preparing an

arbitrary input state x 2 CN , the input signal, which is subsequently ran-
domized through the unitary transformation

xout ¼ Ux; U ¼ PðMÞFðαMÞ . . . Pð1ÞFðα1Þ; M 2 f1; 2; 3; 4g; ð1Þ

where PðjÞ ¼ diagðeiϕðjÞ1 ; . . . ; eiϕðjÞN Þ are unitary diagonal matrices character-
izing the programmable phase-mask layers, whereas αj are the coupling
lengths for each waveguide array, for j∈ {1,…,M}.

The randomization process can be achieved with high accuracy by
incorporating only two active layers of phase shifters, M = 2, and no sub-
stantial improvement is observed when more layers are included (see dis-
cussion below). This effectively reduces the overall size of the final
architecture, rendering a low-footprint solution that requires a minimum
number of control elements and, thus, is less prone to operational errors.
The coupling coefficients defining the waveguide array can be chosen as
those of the DFrFT operation using the Jx lattice24,52, homogeneous lattice53,
or any random lattice that fulfills the density criterion posed by the
Goldilocks principle discussed in25 (see Supplementary Materials S2 for
examples of dense matrices).

Experimental setup and measurements
The PIC performing the randomization operation is fabricated on a silicon-
on-silica (SOI) platform (see Methods for details). The design relies on
coupled waveguides to perform the mixing layer operation and a layer of
metal heaters producing the desired phase shift using conventional thermo-
optic effects28. TE grating couplers are used to externally couple the PIC to
the light input source and at the output for the data collection stage. Fur-
thermore, a mechanical polarization controller (PC) is attached to the
injectionfiber,which is tuned so thatmaximumpower is coupled to thePIC.
The device under test (DUT) is the randomization PIC depicted in Fig. 1a,
fed by a N × 1 network switch that splits the quasi-TE0 mode into the
desired inputs that encode the optical signal. The heaters producing the
phase shift are electronically controlled by a multichannel source measure
unit, providing independent control currents of up to 10mA to each metal
heater. Lastly, the output modes are gathered from the output grating
couplers and collected at a multiport power meter.

The proposed PIC design is flexible enough to be manufactured in
commercial foundries. For the current experimental run, the PIC was
designed as a 5 × 5 unitary device (5-port device) in the form of a fully
electrically and optically packaged chip (see Fig. 1b–d). The packaging
allows for easy and minimum-error light coupling and light-detection
processes. Figure 1e summarizes the current experimental setup.

Manufacturing highly dense photonic chips presents challenges due to
thermal and optical crosstalk, which become significant design problems
when scaling up photonic units. To address this, we reduce the required
number of ports of the proposedPICbydemultiplexing the input signal into
lower-dimensional vectors, which are then sequentially fed at the input
ports. Each input sequence is randomized using phases that are randomly
distributed from either a normal or uniform distribution. This results in
independent random outputs. Finally, the sequentially randomized outputs
aremultiplexed back into a higher-dimensional signal. This design choice is
two-fold: it helps mitigate errors and reduces the device footprint.

Thus, any input signal x 2 R100 shall be demuxed into sequences of
5-dimensional vectors, x 2 R20× 5. Particularly, we consider highly sparse
100-dimensional vectors, x 2 R100, whose components are either zero or
one so that at least a componentwitha value of one exists for every demuxed
sequence. The zero and one values denote in our experiment the cases when
no light is injected and when light is coupled to the corresponding grating
coupler, respectively. The distribution of zeros and ones is randomly
selected for each sequence in the demuxed signal. The choice of such sparse
signals is twofold: they can be implemented straightforwardly with the
current setup, and theyhavepoor qualitieswhen it comes to randomsignals.
The latter implies that if random footprints are found at the output of the
PIC, it is not due to the random nature of the input signal (see analysis
below). Since the PIC output is gathered through a power meter, any phase
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information is washed out during power measurements. Thus, real and
imaginary parts of the complex-valued randomized output are not acces-
sible through power detection schemes. Still, traces of randomness can be
detected since the power measurements of complex-valued white noise
(normally distributed signals) render a Rayleigh distribution instead54.

The set of 20 input sparse signals used in the present experiment, the
demuxed lower-dimensional signals, and the corresponding measure-
ments at the PIC output are illustrated in Fig. 2a–b. The phase change
produced by thermo-optic phase shifters is proportional to the tem-
perature change, which is, in turn, proportional to the current squared or
electrical power28s. Thus, three experimental runs are performed, where

the currents in the SMU are programmed in such a way that the cor-
responding current-squared (phases) follow normal, uniform, and Ray-
leigh distributions (Fig. 2c). The current-squared values are randomly
picked from the interval (0, 64)mA2 according to each distribution. The
upper current limit of 8 mA has been fixed to avoid overheating on the
chip, and it also corresponds to the approximate value at which a full 2π
phase rotation is achieved. The pre-established set of sparse inputs x(n) is
fed into the PIC and optically processed according to the current-squared
distributions under consideration, rendering the randomized optical
signal that is ultimately detected and recorded by the multimode power
detector. Since the signal was initially demultiplexed, the optical output is

Fig. 1 | Experimental setup and PIC design. a PIC interlaced structure for M = 2
layers. The input optical signal x is fed into the PIC, and the randomization phases
are programmed by the SMU controller. The processed optical output signal is z. For
completeness, the fully packaged fabricated chip (b), a microscope image of the
photonic circuit area (c), and a SEM capture of the waveguide array section (d) are
illustrated. e Experimental setup and operation of the randomization device. Here,

the programmable photonic integrated circuit performing the randomization is set
as the device under test (DUT). In contrast, the phase shifters are the programmable
elements of the device, which are externally and individually controlled by a mul-
tichannel source measure unit (SMU). The processed light at the output grating
couplers is collected through a multiport power meter.

https://doi.org/10.1038/s44310-025-00054-9 Article

npj Nanophotonics | (2025)2:6 3

www.nature.com/npjnanophoton


sequentially gathered in packages of five, the total number of ports, and
normalized with respect to the total power in each measurement

sequence. The final signal xðnÞout is then produced by multiplexing all the
collected sequences and normalized once again with respect to the

maximum so that xðnÞout;p 2 0; 1ð �. The resulting randomized optical signals
are shown in Fig. 2d for all the different current distributions.

The randomness quality of xðnÞout is assessed by analyzing the statistical
properties of the intensity distribution. Ideally, white-noise signals are dis-
tributed according to normal distributions. Sincewe are limited to intensity-
based measurements, the statistical analysis is restricted to positive-valued
signals.We thus focus on the Rayleigh distribution for our analysis, which is
equivalent to the squared of normal distributions, a characteristicmore akin
to the optical signals under consideration. In turn, uniformly distributed

Fig. 2 | Experimental run and data processing. a Sequences of testing random
pulsed trains xðpÞ 2 R100, for p ∈ {1, …, 20}. b The latter are demultiplexed
into signals x̂ðpÞ :¼ R20× 5, which are programmed in the N × 1 switch and
injected into the PIC. This produces the randomized demultiplexed signals
ẑðpÞ . c In this process, two ensembles of random phases are loaded into the
phase shifters through the SMU, which correspondingly powers the metal
heaters. Such ensembles are shown as histograms and scatter plots, high-
lighting the normal (left), uniform (right), and Rayleigh (center) distribution

profiles. d The output processed signals from the PIC are multiplexed back to
the vectors zðpÞ 2 R100. e–g These outputs are then post-processed to extract
the statistical information for normally and uniformly randomized phase
distributions using the entropy S[∣x∣] and autocorrelation difference ΔℓX[∣x∣]
criteria. For reference purposes, the typical entropy values for normal and
uniform distributions are highlighted in yellow and blue, respectively. Like-
wise, the typical autocorrelation values for the previous distributions are
highlighted in red.
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signals are known tomaximize the Shannon entropy55 and thus are a handy
resource for encryption tasks. Consequently, both theRayleigh and uniform
distributions serve as benchmarks against which the randomness of the
randomized optical signals can be assessed.

Autocorrelation andShannon entropy are twocomplementarymetrics
that enable the quantification of signal randomness. Autocorrelation is
particularly useful for identifying patternswithin signals. Typically, random
signals exhibit a flat autocorrelation function, while the derivative of the
autocorrelation tends to flatten out when examining positive-definite sig-
nals. Conversely, Shannon entropy estimates theuncertainty in a signal; that
is, lower uncertainty translates to poor prediction of the signal features (see
Section 2d for a comprehensive analysis of these criteria). The statistical
analysis of the randomized optical signals is shown in Fig. 2e, f for all the
current distributions under consideration. In the latter figure, the blue-
shaded and yellow-shaded areas highlight the regions where normally and
uniformly distributed signals are typically found (refer to Section 2d).

The Shannon entropy values of processedoptical signals accumulate in
the region between the normal and uniform distributions, with a tendency
toward the uniform distribution region. The assessment of randomness is
further evaluated through the analysis of the autocorrelation differences,
revealing the expected flat profile characteristic of random positive-definite
distributions regardless of the current distribution used during the rando-
mization process. Additionally, a quartile-quartile comparison between the
optical signals and theoretical distributions is shown in Section S3 of Sup-
plementary Information. The latter is analyzed for a larger dataset of
400 signals, which further reinforces the random distribution character of
the processed optical signals, with a tendency toward uniformdistributions.

Randomness estimation
To assess the randomness of the device outputs, some criteria must be
established to classify any given signal as randomwhite noise. Although this
may be accomplished through several statisticalmeasures.Herewe focus on
the correlation and entropy properties. The use of two different statistical
properties allows for ruling out false positives inherent in either auto-
correlation or entropy analysis, as discussed below.White noise signals x are
known to be uncorrelated to shifted copies of themselves, henceforth called
lags and denoted by ℓ. For continuous or infinitely sampled signals, the

autocorrelation ofwhite noise signals (X[x]) becomes a single impulse at the
lag ℓ = 0, Xℓ[x] = δℓ,0 with δp,q the Kronecker-delta distribution. In turn, for
finite discrete signals, the autocorrelation is approximately flat for ℓ ≠ 0 and
peaks to the unity for ℓ = 0. Indeed, Fig. 3a depicts some typical profiles of
X[x], for signals x 2 RN normally distributed.

For x 2 RN , the autocorrelation renders a vector X½x� 2 R2N�1,
which is symmetric around the lag ℓ = 0; i.e., X−ℓ[x]=Xℓ[x]. For ℓ = 0, the
autocorrelation reduces to the Euclidean norm of x, Xℓ=0[x] = (x, x) = ∥x∥2.
For normalized signals, the autocorrelation peaks at ℓ = 0 to the unity. Thus,
throughout the manuscript, all signals analyzed by the autocorrelation are
normalized beforehand. Following the autocorrelation symmetric, we focus
exclusively on the positive lags ℓ > 0 and thus define the truncated auto-
correlation

eX½x� :¼ X1; . . . ;XN�1

� �
; ð2Þ

which contains the minimum relevant statistical information to be
processed.

Further insight into the autocorrelation and entropy estimation can be
achieved by considering two specific sets of signals, i.e., signals generated
from the normal and uniform distribution. The normal distribution is the
desired behavior for the randomization process, which provides a bench-
mark to compare the outputs of the encryption device. The uniform dis-
tribution is used as a reference for the entropy analysis, as it provides the
maximum bound for the Shannon entropy. To test the behavior of random
signals following these distributions, we consider the ensembles SðnÞ;N ¼
fxðnÞ;k;Ng1000k¼1 and SðuÞ;N ¼ fxðuÞ;k;NÞg1000k¼1 composed of 1000 normal and
uniform randomly generated signals, respectively, for different dimensions,
N = {5, 10,…, 1000}.

The truncated autocorrelation in (2) shall approximate a flat function
for white noise signals, which, forN finite dimension signals, is represented
by a vector with an approximate null mean (μ eX½x�� �

) and a standard
deviation (σ eX½x�� �

) approaching zero asN→∞. To illustrate the latter, we
compute the mean and standard deviation of the truncated autocorrelation
of every element in the ensemble as SðnÞ;N

X;μ :¼ fμðeX½xðnÞ;k;N �Þg1000k¼1 and
SðnÞ;N
X;σ :¼ fσðeX½xðnÞ;k;N �Þg1000k¼1 , respectively. In this form, the behavior of the

ensemble for each N is revealed by computing the average of the mean of

Fig. 3 | White-noise criteria. a Typical autocorrelation profile for white noise
signals. (b) Truncated autocorrelation criterion eX½�� and (c) Shannon entropy (S) for
ensembles of normal (blue-shaded) and uniform (purple-shaded) distributions as a
function of the distribution size N. d Typical autocorrelation profile (upper panel)
and the corresponding finite difference Δℓ of themodulus of white noise signals. The

corresponding truncated autocorrelation criterion (e) and Shannon entropy (f) as a
function of the distribution size N. In (b-c) and (e-f), 1000 random distributions
were generated for eachN, fromwhich the mean (solid or dashed line) and standard
deviations (shaded area) are computed.
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SðnÞ;N
X;μ to get themain trend and themeanofSðnÞ;N

X;σ for thedeviations around
themain trend. The latter is shown in the blue-dashed area in Fig. 3b, where
the expected tendency of the normal distribution is evident. For com-
pleteness, the same analysiswas carriedout for uniformly distributed signals
(green-shaded).

In turn, the Shannon entropy S(x) of a vector x provides a notion of
uncertainty for probability distributions (see Methods section). Indeed,
although a higher entropy does not necessarily imply higher randomness,
one can still define a threshold for the entropy to identify a white-noise
signal. For instance, the uniform distribution possesses the higher uncer-
tainty, and thus maximum entropy, among all distributions with compact
support55. On the other hand, for Kronecker-delta-like distributions, the
entropy isminimum (null) as certainty is absolute. Thus, the corresponding
entropy shall be lower for a given white noise signal than that of uniform
distributions.

By using the previously introduced random ensembles of normal
(SðnÞ;N ) and uniform (SðuÞ;N ) distributions, we can perform a statis-
tical analysis based on the mean and standard deviation of the
entropy for each ensemble across different signal sizes N. These
results are depicted in Fig. 3c, where the solid and dashed curves
denote the mean for normal and uniform ensembles, respectively.
The shaded areas represent the corresponding standard deviations
from the mean value for each distribution. The mean entropy is
higher for uniform distributions, which is expected, as elements
uniformly distributed are all equally likely and possess larger
uncertainty.

Thus, a given signalx is said tobewhitenoise if themean (μ eX½x�� �
) and

standard deviation (σ eX½x�� �
) of the truncated autocorrelation, and entropy

S(x) all lie in the normal distribution regions depicted in Fig. 3b, c for the
corresponding size N. Note that if x = (0, …, 1, …0), it follows that
μðeX½x�Þ ¼ σðeX½x�Þ ¼ 0, which lies in the white-noise region but is clearly
not a random signal. For these reasons and to rule out false positives, both
conditions are enforced to conclude about the randomness of the signal in
question. Remark that, forN⪅ 15, the entropy regions for both normal and
uniform distributions are indistinguishable when analyzed using the
entropy and autocorrelation criterion; thus, white noise is challenging to
assess for relatively small-size signals.

Since the PIC produces optical complex-valued outputs, the white
noise criteria shall be applied to the real and imaginary parts. In the current
experimental setup, power measurements are gathered at the output, cor-
responding to themodulus square of the complex electric field, and we thus
shall apply an equivalent criterion to the power. For simplicity and without
loss of generality, we focus on themodulus ∣x∣. It is known that if the real and
imaginary parts of x are normally distributed with mean zero and standard
deviation one, the elements of ∣x∣ ≔ (∣x1∣,…, ∣xN∣) are distributed according
to the Rayleigh distribution with scale parameter one54. See upper-panel in
Fig. 3d. From this, the autocorrelation of the ∣x∣ becomes linear with respect
to the lag ℓ and anti-symmetric around ℓ = 0. Thus, the finite difference of
the truncated autocorrelation, Δ‘

eX½jxj� :¼ ðX2 � X1; . . . ;XN�2 � XN�1Þ,
also renders a flat distribution for ℓ > 0. See lower-panel in Fig. 3d. In this
form, an equivalent criterion canbe introduced for ∣x∣basedonΔ‘

eX½jxj� and
the entropy S(∣x∣), which are respectively depicted in Fig. 3e–f. The analysis
for themodulus of uniformdistributionswas excluded in the latterfigure, as
elements of such a distribution are already positive numbers.

Device randomness and encryption capabilities
The randomization capabilities of the proposed PIC are tested by first
generating a set of input samples fexng50n¼1,where each samplexn 2 R100, the
components of which render a sparse signal generated from a sequence of
random randomly placed unit pulses δk,p, with δk,p the Kronecker delta
function and k, p∈ {1,…,N = 100}. See Fig. 4a. Despite the randomness in
the generation of input sparse signals, they do not show any trace of white-
noise behavior. This is done by testing the entropy and truncated auto-
correlation criteria, as shown in Fig. 4b, where the regionswherewhite noise
is expected (shaded areas) are highlighted. The entropy of every input

sample lies below the expected values for white noise, whereas themean and
standard deviations deviate from the expected flat distribution for white
noise in most cases.

Therefore, a signal is deemedwhite noise if both entropy and truncated
autocorrelation lie around the shaded corresponding regions. The
requirement of both simultaneous criteria is better illustrated in sample No.
21,whichhas a low entropybut a perfectflat autocorrelation. This is because
sample No. 21 is a single-unit pulse, the autocorrelation of which is easily
proved to be flat, and thus the signal is not white noise, likewise, for other
samples with a similar pattern. Thus, given that none of the samples fulfill
the randomness criterion, we rule out the possibility that any trace of ran-
domness eventually found at the PIC output is produced due to intrinsic
randomness in the generation of input samples.

For the numerical tests performed in this section, the phase elements in
each layer of the architecture are independently generated from either a
normal or uniform distribution bounded to the interval (− π, π). The
corresponding histograms of the random phases used in the encryption
process are illustrated in Fig. 4c–d for up to four different layers. The latter
allows analyzing the encryption capabilities of the output processed signals
ezn ¼ Uexn by inspecting the white noise behavior. To this end, the entropy
and truncated autocorrelation are calculated for each sample output ezn
using both normal and uniform phases distributions as encryption keys, as
illustrated in Fig. 4e–f. Here, the numerical simulations are run considering
M = 1, 2, 3, 4 encryption layers to showcase the effects of such added layers.
Indeed, the entropy analysis shows that one encryption layer is insufficient
to randomize all the input samples, even though the autocorrelation shows
an almost flat distribution in each sample. We thus rule out the device with
only one phase layer as a potential randomization device.

In turn, when two phase layers are considered, the output of each
sample signal produces higher entropy values, with only a few lying outside
the region of white noise. Interestingly, the autocorrelation shows a higher
standard deviation for normally distributed phases than those outputs
encryptedwith uniformkeys. Formore layers (M > 2), both the entropy and
autocorrelation criteria show no significant improvement as compared to
M = 2 layers. This numerical evidence allows for reducing the PIC size to
M = 2 layerswithout impacting randomperformance in any significantway.
For completeness, the real part of the transfer matrices U is depicted in Fig.
4g when sweeping the number of layers M and using the Jx and homo-
geneous lattices as the passive mixing layers F. In analogy to the previous
analysis, normally (upper panels) and uniformly (lower panels) distributed
phases are also used here. It is clear that M = 1 layers produce a transfer
matrix resembling the original missing layer F (see SupplementaryMaterial
S1), whereas M = 2 layers wash out any such pattern. In both cases, the
transfermatrices associatedwith uniformly distributed phases show abetter
random pattern than the normally distributed case. Thus, when operated
withuniformlydistributedphases, thePICoutput producesa better random
process.

The randomization PIC can be further exploited to operate as an
encryption device. This is done by treating the input signal as the
vector to be encrypted, the phase distribution as a set of encryption
keys, and the randomized output as the encrypted vector. In this
procedure, the phase distribution has to be recorded and stored for
subsequent decryption tasks. Indeed, the decryption process can be
inverted, as the transformation operator U is unitary. Thus, the
encrypted signal xout can be cast back to its original form by injecting
it into either the inverse operator Uy or by reverting the device ports
and using the conjugated phases. This inversion process can be done
only if the original sets of phases ϕðmÞ

n used to randomize the input
signal are known. For more details on the inversion process, see
Supplementary Materials S2.

The real and imaginaryparts of thefirst 25normally encrypted samples
are shown in Fig. 4g for one and two encryption layers. Here, one can
corroborate that one-layer encryption produces signals whose real and
imaginary parts tend to pile up around the middle signal component 50
(dashed-rectangle inFig. 4g), as predicted fromthe entropy analysis. Indeed,
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such a tendency vanishes when the second encryption layer is added, pro-
ducing signals spread across all the components. It is worth remarking that,
for powermeasurements, the second phase layer in the architecture in Fig. 1
does not modify the readout at the power detectors. Thus, we can disregard

the latter when performing power measurements. Nevertheless, the pro-
posed PIC is flexible and compatible with phase measurement if the input
and data collection stages of the present experimental run are changed by an
optical vector analyzer.

Fig. 4 | Numerical simulations of the device randomness capabilities. a Set of 50
randomized pulsed sample signals xn. b The corresponding values for the Shannon
entropy (upper panel) and autocorrelation bars (lower panel). The shaded area
denotes the region where white noise is expected. c-d Histograms of randomly
generated phase shifters (encryption keys) taken from the normal (c) and uniform
(d) distributions in the interval �π; πð �. e-f Entropy and truncated autocorrelation
criteria for the samples randomized using normally (e) and uniformly (f) distributed

keys. The random process usesM = 1, 2, 3, 4 random-phase layers. g Real part of the
transmission matrix U in Eq. (1) for M = 1, 2, 3 layers and considering normally
(upper panel) and uniformly (lower panel) distributed phases. For illustration, the Jx
and homogeneous lattice were used as the mixing layers F. h Real and imaginary
parts of the first 25 encrypted sample signals using normal keys combined with one
(left) and two (right) encryption layers.
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Random passive layers
Although the previous constructionhas showna compact encryptiondevice
that can be scaled down to two phase layers without jeopardizing the
encryption capabilities, it is always desirable to design a circuit with fewer
elements. So far, the encryption is stored in the phase element, whereas the
waveguide is fixed as a well-patterned unitary matrix. Thus, the device
randomness can be enhanced by adding disorder into thewaveguide arrays.
The waveguides cannot be tuned once manufactured, but their pattern
highly affects the output. It has been shown in25 that random matrices
generated from theHaarmeasure serve as passive layers in universal unitary
interlaced architectures. The latter means that such matrices are dense
enough to shuffle the elements of an input vector and render it into an
arbitrary new one, provided that enough layers are available. For the
encryption tasks, the encryption two-layered architecture should work
when operated with random Haar matrices instead of a predefined lattice
model, provided that the former matrices are dense.

The additional random element, namely the passive unitary layer F, is
expected to increase the potential randomness at the encryption device
output. To analyze the latter, we add the random symmetric deformation R
to the Jx Hamiltonian H so that the perturbed encryption device UðδÞ and
the evolution through the perturbedwaveguide arrayF(δ) read, respectively,
as

UðδÞ ¼ Pð2ÞFðδÞPð1ÞFðδÞ; FðδÞ ¼ eizðHþδRÞ; ð3Þ

where δ the perturbation strength parameter, and R 2 CN ×N a random
matrix with elements taken from the normal distribution with mean μ = 0
and standard deviation σ = 1; i.e., N ðμ ¼ 0; σ ¼ 1Þ. Without loss of gen-
erality, the perturbation strength is considered as δ > 0. If the strength
parameter δ≪max(κn), the deformation can be considered as a pertur-
bation of the original Jx lattice. For larger δ, the overall effect of R will
overcome that of Jx, rendering a random matrix. This is handy as we can
study the effects of small perturbation on the waveguide array, and also
analyze the encryption capabilities of the device when the passive element is
random in nature.

Tomeasure the overall effect of the perturbationparameterδ, it ismore
convenient to compute the percentage error introduced to F(δ) with respect
to the ideal Jx lattice; i.e., EFðδÞ ¼ k FðδÞ � F k = k F k� �

× 100%. By
considering 100 randomperturbations for each δ, onefinds that, on average,
theperturbations δ = 0.05, 0.1, 0.2 induce errors onF aroundEF = 15%, 32%,
67%, respectively. The overall effect of such perturbations on the real and
imaginary parts of F(δ) are shown in Fig. 5 (left panel). To test the effects of
such perturbation on the encryption and decryption scheme, we consider a
multi-stage setup. First, take a 10 × 10 pixel image and reshape it into a 100-
dimensional one-dimensional vector, which is encrypted using (3) for
δ = 0.05, 0.1, 0.2, withN = 100. The encrypted vector is thendecrypted using
the same keys through the unperturbed decryption device Uy

enc. Indeed, the
original source image is recovered when encrypted using δ = 0, whereas
deviations are expected for δ ≠ 0. For δ ≠ 0, the decrypted images show an
error due to the defects on the F(δ) layers. For instance, for δ = 0.05

Fig. 5 | Random defects and encryption capabilities. (left panel) Real and ima-
ginary parts of the perturbed DFrFT matrix F(δ) for δ = 0.05, 0.1, 0.2. (Top panel)
Testing imageW used for encryption with perturbed DFrFT F(δ). (right panel) The

corresponding encrypted images. (Bottom panel) Decrypted images using an ideal
decryption device Uyðδ ¼ 0Þ.
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(EF ≈ 15%), the error indecrypting the image is approximatelyEeWΨ

� 20%.
Figure 5 (lower panel) shows the real and imaginary parts of the decrypted
images, where it is clear that, for δ = 0.05, the real part still resembles the
source image and the large error is due to the imaginary part components. In
turn, for δ ≤ 0.1, the real part of the decrypted images is indistinguishable.

Discussion
The randomization PIC has been tested under the proposed
demultiplexing scheme, showing the expected performance. Among
the potential issues present in the experimental run, the thermal
heaters might induce undesired effects due to thermal cross-talk and
thermal stabilization. The first effect is not relevant, as the phase
shifters are randomly assigned from distributions, and thermal cross-
talk will also contribute to the overall random pattern. Despite the
latter, a set of pre-programmed phases will induce the same behavior
in the PIC. This holds as long as thermal stabilization time is reached,
which is the most critical factor in reaching reproducibility. Thus, the
experimental data was gathered after allowing a long enough time
window τ between measurements after powering up all the metal
heaters. The proposed PIC is flexible enough to be scaled up to a
larger number of channels if so required, the design of which would
only require that the transfer matrix of the passive mixing layer F
fulfills the required density criterion25.

While a single layer ofMZIs can be used to independentlymodulate the
amplitude and phase of optical signals in each channel, this approach
inevitably leads to power losses through the leakage channel of the MZI, a
requirement to produce amplitude modulation. The proposed PIC design
overcomes this issue due to the unitarynature of thewaveguide arrays used as
the passive mixing layers, which produce the required interference that
ultimately steers the amplitude modulation without resorting to lossy solu-
tions. This renders a lossless and relatively compact design that depends only
on two layers of active elements regardless of the size N of the optical signal.

The proposed PIC successfully demonstrated the capability to
generate the necessary random pattern and encryption features using
a two-layer design. Despite adding a third layer not significantly
improving the white noise of the encrypted signals, the extra key
combinations used in the encryption process make the output more
difficult to reverse-engineer without prior knowledge of the keys. In
this regard, the proposed design can be adjusted whenever com-
pactness or security is the final goal. There are reports in the lit-
erature for all-optical encryption devices in free-space configurations
using random phase masks31,56. The latter includes a two-lens con-
figuration combined with two statistically independent white noise
phase planes, creating an encrypted image. The device introduced in
the present work provides an equivalently compact and on-chip
solution, which can be further exploited as an optical image
encryption technique by following a similar demultiplexing proce-
dure as the one discussed above.

The measurements presented in this work mainly focus on
power detection, but this is due to limitations in the experimental
setup rather than the performance of the PIC itself. In fact, the
proposed PIC is versatile supports phase measurement if an optical
vector analyzer is implemented or further interferometry is per-
formed to extract the output phases. Furthermore, the proposed
device can work as a versatile and controllable platform for investi-
gating equivalent random and disordered wave systems36,37, where the
disorder can be tuned on real-time to induce the desired effects.
Recent studies have demonstrated that random photonic devices can
serve as an effective tool for producing operations equivalent to
Haar-random matrices. This is a crucial requirement for boson
sampling in quantum computing tasks42,43. The latter is achieved by
changing to other material platforms, such as silicon nitride (Si3N4),
which are more suitable for single photon transport. In this regard,
the intrinsic nonlinearity of the waveguide core can induce photon
entanglement across a waveguide array57.

Methods
Material platform
The randomization operation in the photonic integrated circuit (PIC) is
carried out using a silicon-on-silica platform. A passive layer, denoted as
F(α), is implemented using waveguide arrays that, based on the coupled-
mode theory, facilitate the unitary wave evolution responsible for mixing a
single excitation channel across all the waveguides. The waveguides are
constructed with a silicon core (Si) surrounded by a silica cladding (SiO2)
with refractive indices of nSi = 3.47 and nSiO2 = 1.4711 at room temperature
(293 K). In terms of geometry, we have a waveguide with a transverse
rectangular shape featuring 500 nm width and 220 nm thickness. This
configuration enables the waveguide to support a fundamental quasi-TE0
mode and a quasi-TM mode when operated at 1550 nm wavelengths. The
PIC is specifically designed to operate on the quasi-TE0mode, and 8-degree
TE grating couplers are employed to effectively couple the right mode from
the injection fiber into the PIC.

For the 5-channel PIC, the waveguide array is designed to exhibit
symmetry around the middle waveguide. The spacing between the outer-
most and middle waveguides is 233 nm and 210 nm, respectively, whereas
the coupling length is set to 62 μm. The phase shifters are implemented
using Ti/W alloy as heaters and are connected to the probing pads using bi-
layer TiW/Al electrical traces. The probing pads are wire-bonded to a PCB
for electrical access to the phase shifters.

Entropy and autocorrelation estimation
While the current experimental setup is designed exclusively for capturing
power measurements, the suggested PIC can acquire phase information by
adjusting the data collection stage. This would allow for the collection of
complex-valued signals, requiring the application of the white-noise cri-
terion to both the real and imaginary parts, as well as the modulus of the
signal, such as the case presented in the main text.

Particularly, the autocorrelation ℓ component (lag) of the X[x] is
defined as Xℓ[x]≔ (Tℓx, x), with Tℓ the translation operator, (x, y) the
Euclidean innerproduct inRN , and ℓ∈ {−N−1,…,N−1} theposition of
the lagged signal. In turn, to compute the Shannon entropy of either
component of the signal, x 2 RN , it is first required to extract and nor-
malize the related histograms fpjgMj¼1

using M ¼ b ffiffiffiffi
N

p c bins. This allows
producing the corresponding probability distribution to compute the
Shannon entropy

S ¼ �
XM
j¼1

pjlog2pj:

Noise levels
The thermal noise (Johnson-Nyquist noise) generated in resistors repre-
sents an unavoidable noise source that could impact the operation of the
metal heaters used for phase control. Toobtain some insight on the effects of
such noise, we consider RMS thermal power noise for DC
signals58Pn,RMS = 4kBTΔf, whereKb stands for theBoltzmannconstant,T the
absolute resistor temperature, and Δf a bandwidth over which the noise is
sampled. In turn, the phase-change Δϕ produced in the waveguides is
proportional to the power absorbed by the heater Pheater; that is,
Δϕ = αPheater with α ≈ 0.12 rad/mW estimated from experimental mea-
surements. From the latter, the phase error produced by thermal noise can
be estimated Δϕthermal = 1.92 × 10−9 rad, where a 1 GHz sampling band-
width was used. Thus, these thermal fluctuations ultimately produce neg-
ligible effects on the accuracy of the phase control produced through the
metal heaters.

In turn, the source is a tunable semiconductor laser (Santec
TSL-570) operating at a wavelength of 1550 nm with an output
power of 20 mW. This laser has a fairly narrow linewidth of
Δf = 200 kHz (equivalent to Δλ ≈ 1.6 pm at λ = 1550 nm), which
corresponds to a phase noise of Sf(0) = 400 kHz. Nevertheless, this is
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significantly lower than the device bandwidth that is governed
mainly by the bandwidth of the waveguide arrays involved which
itself has to do with the frequency dependency of the coupling
coefficients. This is shown in Fig. S1d in Supplementary Informa-
tion S1, illustrating the coupling parameters used in the proposed
design over the C-band. In the latter, the inset shows the behavior
in the interval 1550 nm+/− 1 nm, highlighting the flat dependence
over the laser source wavelength, which renders a uniform response
over the generated CW output with such a narrow linewidth.

The nominal relative intensity noise (RIN) of this laser is
RIN = 〈(ΔP)2〉/P2 = -145 dB/Hz, which corresponds to intensity fluc-
tuations ratios of less than ΔP/P ≈ 5 × 10−5. This is equivalent to ΔP ≈
1μW at the input of the device which translates to a negligible
amount of intensity fluctuation at the output of the device which will
not impact the measured stable values of the power at the output of
our device. The input power (20 mW) is dropped down by the
grating couplers in the input and output, the coupling efficiency of
which is -7.5 dB per coupler, bringing the optical power down to
levels around 600 μW. On the other hand, according to the power
meter specifications provided by the manufacturer, the detection
resolution is -80 dB (10 nW). The generated optical signal in the
output is thus several orders of magnitudes more significant than the
power detector resolution. The noise level from the optical source
(SNR) is also several orders of magnitude below the output optical
signal level. Thus, the magnitude of the randomized optical output is
not affected by the noise levels in any significant form.

Data availability
The data that supports the findings of this study are available from the
corresponding author upon reasonable request.
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