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Preventive circadian medicine: improving
health with sleep checkups

Check for updates

Yoichi Minami1, Akifumi Kishi1 & Hiroki R. Ueda1,2,3

Sleepplays a crucial role in health, and illnesses can impact sleep. In thisPerspective,we introduce the
concept of “sleep checkups,” which use wearable devices to objectively and continuously measure
sleep, providing feedback to enhance health and detect early signs of illness. Sleep checkups not only
benefit individuals but also advance scientific understanding of sleep’s role in health, offering
significant potential for participants and global public health.

Sleep has a significant impact on health1. Aspects of sleep, including sleep
duration, insomnia, regularity, and chronotypes (morningness and even-
ingness) are associatedwith increased risk of cardiovascular disease, obesity,
type 2 diabetes, and depression2–4. The American Heart Association counts
getting healthy sleep (adequate sleep duration) as one of “Life’s Essential 8,”
the key measures for improving cardiovascular health5. Sleep disorders are
common in neuropsychiatric disorders such as major depression and
bipolar disorder, post traumatic syndrome disorders (PTSD), schizo-
phrenia, and Parkinson’s disease6–8. Blackwelder et al. conducted cross-
sectional study using 2018 Behavioral Risk Factor Surveillance System
(BRFSS) including 273,695 US adults (18–64) and found 13% of partici-
pants experienced inadequate sleep (less than 6-hrs sleep) and these people
were about 2.5 times more likely to have frequent mental distress (self-
reporting14daysofmental health status as “not good”)9. Furthermore, sleep
duration has been reported to be associated with all-cause mortality10,11.
Both short and long sleep increase the risk ofmortality. Also, irregular sleep
increases the risk of mortality12,13. Our global society is supported by shift
workers, and shift work causes health problems, at least some of which arise
from circadian misalignment14. Wittmann et al. notes that the mental and
physical effects of the repetition of differences in activity time between
socially constrained weekdays and socially unconstrained free days (holi-
days) are like jet lag, which they call social jet lag15. The effects of sleep and
circadian rhythm misalignment on the body and mind are being under-
estimated, and countermeasures are needed16. Recently, in addition to sleep
medicine, the concept of sleep health, which takes a multi-dimensional
approach to sleep and health issues, has become widespread17. Ko et al.
pointed out that consumer sleep technologies are becoming popular among
the general public for purposes such as sleep improvement andmonitoring.
They illustrated this by noting that Fitbit and Jawbone are top-selling
consumer health products, and that the highest-funded health device on
Kickstarter was a sleep monitor18.

Not only those that record acceleration alone, but also those that can
simultaneously record other modalities (e.g., heart rate and body

temperature) are available and are rapidly becoming popular around the
world as a tool for accurate sleep measurement19. Accelerometer-derived
sleep data collected by wearables is considered a promising digital bio-
marker for mood disorders20,21. Many trials are underway to detect sleep
disorders withwearables to establish an objective and convenient system for
diagnosing sleep disorders22. We propose incorporating routine sleep
measurement into health checkups tomaintain and improve overall health,
monitor for early signs of diseases, and detect pre-symptomatic conditions
—what we term as “sleep checkups.” Sleep can be quantitatively evaluated,
and usingwearables allows for continuousmeasurement overmultiple days
in daily life, resulting in stable data that reflects normal living conditions.
Participants can achieve health improvements through objective data-based
sleep management and sleep hygiene.

In this article, we propose the concept of “sleep checkups” to promote
andmaintainhealth through regular sleepmeasurement. First,we introduce
the concept of “sleep health,” followed by a description of quantitative
analysis usingwearables.Next,weprovide adetailed explanationof the sleep
checkups (Fig. 1a).Weenvision sleep checkupsnot as clinical services, but as
a system integrated into social infrastructure. Technologically, sleep
checkups involve quantitative sleep measurements and analyses using
wearable devices, including sleep pattern classification, with the results used
to provide tailored feedback to users. These services are expected to be
delivered by qualified professional organizations, either for-profit or non-
profit. Sleep checkups aim to improve sleep and promote health, identifying
individuals who need advanced medical care (Fig. 1b). Finally, we discuss
the proof of concept using large-scale data and the scientific significance that
sleep checkups will offer.

Approaches to sleep issues: sleep medicine and
sleep health
Sleep medicine focuses on sleep disorders
Sleep medicine focuses on sleep disorders, confirms symptoms, and
advances treatment. The International Classification of Diseases 11th
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Revision (ICD-11) was adopted by theWorld Health Assembly in 2019
and became officially in effect from 202223,24. The ICD-11 includes a
chapter on sleep-wake disorders, like insomnia disorders, hypersom-
nolence disorders, sleep-related breathing disorders, circadian rhythm
sleep-wake disorders, sleep-related movement disorders, and para-
somnia disorders25. Insomnia is themost common sleep disorder in the
adult populations. Although prevalence rates vary from 5% to 50%,
likely due to differences in definitions (symptoms, disorders, dis-
satisfaction), population-based data generally indicate that about one-
third of adults (30–36%) experience at least one nocturnal insomnia
symptom26. Morin et al. conducted a 5-year follow-up study of 3,703
individuals (aged 18–95) and reported that 13.9% of subjects who had
relatively good sleep at the baseline period developed insomnia
symptoms27. The prevalence of narcolepsy in the general population is
approximately 44.3 per 100,000 persons, and delayed sleep phase
syndrome (delayed sleep-wake phase disorder), common in adoles-
cents, is 3.3%28,29. Older adults tend to have sleep problems and have a
high incidence (20–40%) of sleep-disordered breathing (SDB)30.

Sleep health explores various issues related to sleep frommul-
tiple perspectives
Sleep health goes beyond diagnosing and addressing sleep disorders to
examine a wide range of issues related to sleep and the relationship
between sleep and physical and mental health from biological, public

health to sociological perspectives. Dr. Buysse defines sleep health as
follows:

“Sleep health is a multidimensional pattern of sleep-wakefulness,
adapted to individual, social, and environmental demands, that promotes
physical and mental well-being. Good sleep health is characterized by sub-
jective satisfaction, appropriate timing, adequate duration, high efficiency,
and sustained alertness during waking hours”17.

He emphasized the importance of developing multidimensional
measures for sleep health and proposed the SATED scale (Satisfaction,
Alertness, Timing, Efficiency, Duration), or Ru-SATED scale, which
includes Regularity17. A multidimensional assessment derived from Ru-
SATED is being discussed in pediatric medicine, andMeltzer has proposed
B-SATED, which adds Behaviour in place of Regularity31. Although the
original Ru-SATED is a questionnaire, Wallace et al. showed that this
concept can be applied to objective actigraphy data32. Factorial analysis
revealed that the 28 sleep-related indices (such as sleep-wake rhythm
amplitude, sleep duration, and wake/sleep times) can be grouped into five
factors. Based on their content, these factors are believed to represent
Timing, Efficiency, Duration, Alertness, and Regularity32. The National
Sleep Foundation (NSF) developed multidimensional sleep health analysis
indices named SleepHealth Index (SHI) and Sleep Satisfaction Tools (SST),
which assess the general population’s sleep satisfaction33,34. The NSF and
other authorized organizations reported consensus papers for not only sleep
duration, but also sleep quality and sleep regularity35–38.

Sleep measurement 

with wearable devices
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or online data retrieval
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Fig. 1 | Sleep checkups represent a preventive medical approach aimed at pro-
moting participants’ health and well-being. a Sleep checkups bridge the gap
between voluntary self-monitoring using commercial products and the diagnostic
and therapeutic processes in sleep clinics. b Flow of sleep checkups. Participants
wear devices (wearables) to measure their daily acceleration for at least a week. (Top
left) The devices are returned to the analysis center for data collection, or

alternatively, an online data collection system is utilized. (Top middle, right) The
analysis center analyses participant data and selects subjects for attention. (Bottom)
Data is returned to participants and used to improve their lifestyle. If necessary,
participants are advised to undergo specialized examinations at advanced medical
institutions, supporting the early detection and treatment of diseases. These pro-
cesses are repeated periodically (e.g., annually) as health checkups.
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Quantitative analysis and detection of sleep-wake
abnormalities
Wearables are suitable for long-term quantitative sleep mon-
itoring and large-scale measurements
Common methods of sleep measurement include sleep diary methods,
polysomnography (PSG) tests, and wearable-based measurements. Sleep
diaries are advantageous as they are easy to use and provide a subjective
assessment, but accuracy and the effort required can be an issue. PSG is a
technique that assesses sleep status and detects sleep disorders bymeasuring
various physiological signals throughout the night, such as the electro-
encephalogram (EEG), electromyogram (EMG), electrooculogram (EOG),
electrocardiogram (ECG), respiratory parameters, and pulse oximetry39.
PSG is the gold standard formeasuringhuman sleep, but it is not suitable for
large-scale continuous day-to-day measurement analysis. Wearables auto-
matically and objectively record sleep-wake activity. The devices are suitable
for mass production and relatively inexpensive compared to specialized
medical devices such as PSG. Wrist-worn actigraphy is the most common,
but other types of wearables are also available, such as ring-shaped devices
and simplified EEG headbands. In the white paper summarizing the 2018
World SleepWorkshop, Depner et al. extended the concept of “wearables”
to “nearables” that collect data close to the user’s environment, as well as
sensors that are detected inside the user’s body, such as ingestible deep body
temperature measurement devices (“ingestible”)19,40.

The low specificity of wearable devices has been pointed out
The effectiveness of sleep-wake classification is algorithm-dependent and in
many cases, has high sensitivity (detecting true sleep) and high accuracy
(detecting true sleep and wake periods), but not high enough specificity for
distinguishing true wake periods40. Epoch-base comparison of classifica-
tions by PSGas ground truth, specificity from the report byKosmadopoulos
et al. was 26.9% (Actiwatch-64), Markwald et al. was 37.0% (Actiwatch64),
Walch et al. was 54.1% (Apple Watch), and de Zambotti et al. were 42.4%
(Fitbit) and 48% (Oura Ring)41–45. Chinoy et al. compared seven commer-
cially available sleep trackers and found that, although thereweredifferences
among devices, in general, the sensitivity of sleep detection was comparable
to the PSG (93%). However, it was not effective in detecting wake, with
specificity ranging from low tomoderate (18–54%)46. Lujan et al. noted that
this is because both the devices and algorithms are optimized to measure
sleep at night. They also noted that while these devices are sensitive and
relatively accurate, their low specificity requires caution in interpreting sleep
duration47.

We have developed a sleep-wake classification algorithm called
ACceleration-based Classification and Estimation of Long-term sleep-wake
cycles (ACCEL)48 (Fig. 2a). ACCEL is an algorithm developed to enhance
the accuracy, sensitivity, and specificity of sleep-wake classification using
machine learning (XGBoost) (Fig. 2a). It utilizes the derivative of triaxial
acceleration (jerk) to reduce individual variabilitywithout relying ondevice-
specific functions (Fig. 2b–d). We reported that ACCEL achieved high
accuracy (91.7%), high sensitivity (96.2%), and high specificity (80.1%) for
datameasuredwithouroriginal device (SONY)48.Katori et al. demonstrated
that theACCELalgorithmcanbe applied to real-world datameasuredusing
different devices (AX3, Axivity). In this study, theACCELmethod achieved
high accuracy (93.2%), high sensitivity (97.2%), and high specificity
(82.2%)49. Wake during night-time sleep affects satisfaction with sleep, and
high specificity in sleep-wake classification by wearables will contribute to
the evaluation of sleep efficiency and sleep quality.

Periodic sleep checkups for health maintenance and
improvement
Sleep checkups: Between personal sleep monitoring and sleep
medicine
De Zambotti et al. summarized the current state of wearable sleep tech-
nology, highlighting the use of traditional actigraphy, consumer-grade
multi-sensor devices, and clinical-grade trackers across self-monitoring,
research, and clinical applications. They noted the increasingly blurred lines

between consumer and clinical devices, as well as between wellness and
medical tools50.

From both research and clinical perspectives, actigraphy serves as a
valuable tool for investigating sleep, neurodegenerative disorders (e.g.,
Alzheimer’s and Parkinson’s diseases), and mental health conditions,
including insomnia and depression. The UK Biobank is a large prospective
study involving 500,000 people aged 40–69, recruited between 2006 and
2010. Seven sleep-related data fields (category 100057), covering sleep
duration, dozing, napping, insomnia, sleepiness, snoring, and chronotype,
as well as an activity monitor data set (category 1008 and its subcategories)
capturing physical activity using wearables (AX3, Axivity) over seven days
for approximately 100,000 participants, which can be used to quantify
sleep51. Retrospective analyses using UK Biobank actigraphy data have
shown that higher circadian rhythm amplitude is associated with reduced
risks of various health outcomes, including cardiovascular, metabolic,
respiratory, infectious diseases, cancer, and all-cause mortality52. Lyall et al.
reported that reduced circadian amplitude was linked to increased risk of
psychiatric disorders such as major depressive disorder and bipolar dis-
order, along with poorer subjective well-being (e.g., increased loneliness,
lower happiness and health satisfaction, slower reaction times)53. Similarly,
Bian et al. identified a U-shaped relationship between sleep duration and
dementia incidence, with short sleep (<7 h) significantly increasing risk.
Notably, the benefits of regular sleep patterns were observed only among
those with short or long sleep durations54. Gubin et al. further advocate for
theuse ofwearables froma “CircadianHealth”perspective, emphasizing24-
hour behavioral rhythms beyond sleep alone55.

Previous studieshave sought tobridge the gapbetween self-monitoring
and clinical sleep assessment. For example, Pinilla et al. provided a com-
prehensive review of obstructive sleep apnea (OSA) screening methods,
including full and simplified PSG, various wearable devices (wrist-, finger-,
and body-worn), and nearables56. STOP/STOP-Bang questionnaire was
developed as an easy-to-use screening tool for OSA57. Both the Epworth
Sleepiness Scale (ESS) and the Pittsburgh Sleep Quality Index (PSQI) are
widely used questionnaires that measure different aspects of sleepiness and
sleep quality58,59. Recent efforts also include the development of machine
learning-based screening tools for disorders like insomnia and OSA60.
Positioned as an extension of these approaches, sleep checkups aim not at
diagnosing specific diseases, but rather at providing systematic, objective
feedback using wearable devices. As a form of primary prevention, they
return evidence-based sleep-related information to participants, with the
goal of promoting health awareness and behavioral change.

Sleep coaching encompasses sleep hygiene education and cognitive-
behavioral techniques aimed at improving sleep quality61. Holzinger and
Kloesch have introduced a holistic, non-pharmacological model based on
Gestalt therapy for addressing non-restorative sleep62. Sleep coaching
represents a gentle, individualized intervention that supports behavior
change through daily sleep monitoring and personalized feedback via apps
or sleep counselors. Our proposed “sleep checkups” shares conceptual
similaritieswith “sleepcoaching”but differs in its structure andpurpose. It is
designed as a community-based health maintenance framework, imple-
mented by non-profit institutions or authorized for-profit organizations
such as clinical laboratories.Whereas sleep coaching emphasizes behavioral
intervention, sleep checkups focus more on raising awareness through
regular assessment of sleep status, thereby inducing behavioral change. Like
routine health checkups aimed at detecting latent health risks, sleep
checkups enable individuals to recognize potential sleep-related risks and
encourage improvements in sleep hygiene (Fig. 1a).

Health checkups contribute to the early detection and treatment
of diseases and maintain and promote good health
Health checkups are a system designed to assess one’s health status, identify
early signs of disease, and manage health risks. Standard health checkups
examine health status through several tests, such as blood tests, urinalysis,
and vital sign evaluation for health management. Although its significance
and improvements are being tested for the next generation, proper health
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checkups can lead to early detection of illness among participants and allow
healthcare providers to devote more specialized resources to patients in
need63. In Japan, regular health checkups are the norm and have been a
cornerstone of public health policy, serving as a key opportunity for early
detection of diseases and health promotion. Ikeda et al. point to the health
consciousness among Japanese as one of the reasons “what made the
Japanese healthy,” and highlight the existence of regular health checkup
systems and a systematic checkup of the whole body commonly referred to
as “human dry dock”64.

Sleep checkups aim to improve sleep, promote health, and
contribute to preventive circadian medicine through sleep
measurement
Honaker first used “the Sleep Checkup” as a service delivered by behavioral
healthproviders in twourbanprimary care clinics65. This “SleepCheckup” is
a practical tool to support pediatric care—a brief assessment of sleep pat-
terns and concerns, followed by tailored advice, educational materials, and,

when necessary, referral to a sleep specialist, considering the diverse sleep
needs and family contexts66. On the other hand, our concept of “sleep
checkups” is modeled after general health checkups (see “Health checkups
contribute to the early detection and treatment of diseases andmaintain and
promote good health”). It is positioned as a primary prevention strategy
aimed at promoting personal health and enabling early detection of
potential disorders through periodic population-based assessments (e.g.,
annually) (Fig. 1a).

The proposed framework for sleep checkups consists of four key steps:
(1) Participants wear a device for a designated period (e.g., at least oneweek,
see below) to measure sleep during daily life; (2) Data are returned to the
provider, either via device return or remoteupload; (3) Sleepphenotypes are
analyzed using multidimensional metrics; and (4) Participants receive
personalized feedback. Through regular participation (e.g., annually),
individuals canmonitor changes in sleep andoverall health, gain insight into
their sleep patterns, and improve sleep hygiene and lifestyle behaviors
(Fig. 1b).
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Fig. 2 | The sleep–wake detection algorithm (ACCEL) determines sleep and wake
states by utilizing the derivative values of acceleration. a ACCEL, like other
algorithms, classifies wakefulness and sleep based on triaxial acceleration data.
Uniquely, the algorithm uses the jerk calculated from acceleration. The sensitivity,
accuracy, and specificity of the sleep-wake classification algorithm are increased by

using machine learning with PSG data as the ground truth (purple). It is possible to
determine non-wear by considering continuous immobility time (green). Repre-
sentative examples of tri-axial acceleration data (b), its time derivative jerk data (c),
and classified sleep-wake data (d). High activity is classified as wake, and low activity
as sleep. Short awakenings during sleep are also detected (d).
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This model is already being implemented in practice, particularly
within employee wellness programs, where employers subsidize the cost. In
these cases, sleep tech companies provide research-grade wearable devices
(e.g., AX3), pre-configured and ready-to-use. Participants wear the devices
during daily life for one week, return them afterward, and the data are
processed and analyzed by the provider. Daily sleep diaries and short health
surveys are also completed by participants and incorporated into the ana-
lysis. Personalized reports include visualizations of sleep patterns during the
measurement period, and key metrics such as total sleep time, number of
nocturnal awakenings, and sleep regularity. These are compared with
reference values to help participants understand their current sleep status.
As in regular health checkups, reports provide tailored feedback: partici-
pants with potentially concerning patterns are advised to seek further eva-
luation fromclinical specialists,while thosewithout significant issues receive
recommendations for optimizing sleep hygiene and maintaining healthy
sleep habits.

Participation involves certain burdens: individuals must wear devices
continuously for several days, complete daily logs, and manage device
receipt and return. The American Medical Association CPT® code 95803
requires a minimum of 72 hours for billing actigraphy as a stand-alone
service. However, clinically, 7–14 days of recording is recommended to
capture both weekday and weekend sleep patterns, with 14 days preferred
for individuals with irregular schedules67. At present, a 7-day protocol is
adopted, balancing device turnaround efficiency, the ability to include both
weekdays andweekends, andprior success in estimating sleep patterns from
7-day actigraphy in large-scale studies49,51–53. Providers, in turn, must invest
in sufficient numbers of validated devices, as well as research and devel-
opment for data analysis and interpretation. Operational costs include
personnel for device setup, data retrieval, analysis, and logistics. To ensure
quality, supervision by sleep specialists and/or sleep scientists is required. As
this system operates outside the domain of routine clinical care, it does not
increase the burden on existing healthcare services. For non-working
populations such as children or older adults, financial barriers remain; thus,
we propose a publicly funded sleep checkup program modeled on existing
national health screening systems.

General concerns about health checkups and sleep checkups
It is important to note that there are opinions suggesting the need for
evaluations of the effectiveness of health checkups. Liss et al. reported that
general health checks (health checkups) did not demonstrate a reduction in
mortality or cardiovascular events; but, they were associated with increased
recognition and treatment of chronic diseases, improved control of risk
factors, and some other outcomes68. The Organization for Economic Co-
operation and Development (OECD) recommends that, in addition to
evidence on the effectiveness of health checkups, economic evaluation
should also be promoted69. The specific health checkups (Tokutei Kenshin)
in Japan aim to prevent and detect lifestyle-related diseases early and pro-
mote health maintenance and improvement through specific health gui-
dance before costly treatments become necessary69. Similarly, sleep
checkups hold the potential to prevent risingmedical costs by enabling early
treatment of sleep disorders. Concerns associated with traditional health
checkups, such as radiation exposure and increased medical expenses69, are
less applicable to sleep checkups using wearables. Wearables are non-
invasive and pose no risk of side effects after measurement. While they are
relatively inexpensive compared to specialized clinical tools such as PSG,
they are still costly. For sleep assessments aimed at primary prevention, a
“BringYourOwnDevice” (BYOD) strategyusing consumer-gradewearable
devices that meet predefined validation criteria may be effective70. By
exchanging data via the cloud, operational costs could be further reduced.
While practical issues must be considered, the overall outlook remains
optimistic. Capturing changes and assessing whether stable sleep is being
achieved can also be beneficial. In that sense, establishing a system for daily
measurements and receiving feedback in near real-time would be ideal.
However, considering costs and operational methods, this might be
excessive for a primary prevention framework. Instead, it would be more

meaningful to create a system that allows for regular assessments, enabling
individuals to make temporal comparisons and fostering stability in their
sleep patterns.

Missing data is an inherent challenge in collecting data via wearable
devices. Chapter 4 of the Society of Behavioral Sleep Medicine (SBSM)
Guide to Actigraphy Monitoring addresses this issue and provides the fol-
lowing recommendations: (1) exclude periods at the beginning and end of
recordings when the device was not worn, (2) identify and flag segments
with missing data, and (3) document any abnormal or atypical movement
patterns observed during monitoring67. Several methods have been pro-
posed for addressing missing data. Multiple imputation assumes an
underlying distribution for the missing values and generates multiple ran-
dom draws to reflect imputation uncertainty. More recently, advances in
artificial intelligence and machine learning have led to the development of
deep learning–based approaches for imputation. Jang et al. proposed a deep
learning model to impute missing actigraphy data and demonstrated its
high performance71. Lee et al. introduced a neural network model called
SOMNI, which can impute missing sleep data using either individual-level
or group-level inputs72. These provide insights into potential solutions to
enhance data reliability and accuracy.

Sleep phenotyping and clustering: considerations for
implementing sleep checkups
Biobanks are important resources for experimentally testing
laboratory findings with real-world data
In sleep checkups, it is essential to identify high-risk groups based on sleep
phenotypes. To demonstrate the feasibility of this approach, we present two
“sleep landscape” analyses that utilize large scale data for the multi-
dimensional evaluation and grouping of sleep patterns. Katori et al. suc-
cessfully identified16distinct sleeppattern clusters using accelerometer data
from approximately 100,000 participants in the UK Biobank (Fig. 3). Sleep-
wake classificationwas performed usingACCEL, fromwhichwe derived 21
indices—including 17 conventional sleep indices and 4 rhythm-related
indices. For clustering, we applied uniform manifold approximation and
projection (UMAP) for dimensionality reduction, followed by density-
based spatial clustering of applications with noise (DBSCAN). Each
resulting cluster represented a unique sleep pattern, including chronotypes
such as “night owl” and “early bird” (Fig. 3a–d). Notably, some clusters
exhibited insomnia-like phenotypes (Fig. 3e). One such cluster, character-
ized by fragmented sleep without prolonged rest periods, was labeled “short
and fragmented sleep.” These findings highlight the potential of sleep
measurement and phenotypic analysis to identify individuals who may
benefit from targeted sleep health interventions49.

Viswanath et al. conducted a similar analysis using the smart-ring
wearable device (Oura Ring), examining 4,682,978 (91.89%) out of
5,095,798 potential nights of data (33,152 individuals, age = 44.4 ± 12 years
(mean ± std.)). This study emphasizes longitudinal changes in intra-
individual variation over time, an aspect that has been missing in previous
models. They investigated whether an individual’s sleep phenotype changes
over time and if such changes offer new insights into participants’ health
state (e.g., insomnia, influenza, fever, COVID-19). They identified 13 sleep
phenotypes related to sleep quality, with individuals transitioning between
these phenotypes over time. Importantly, patterns of these transitions
providedmore information about chronic and acute health conditions than
static phenotypicmembership alone.Although further research is needed to
validate these findings across different conditions and populations, the
results suggest that incorporating temporal sleep dynamics could enhance
health screening tools73.

What sleep checkups bring
From sleep checkups to mental and brain health
Sleepcheckups,whichaim to assess health status through sleep, represent an
attempt to utilize sleep as a digital biomarker for internal physiological
conditions. One area where this approach could contribute is mental/brain
health. There is a strong association between sleep andpsychiatric disorders,
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and alterations detected through accelerometry have been linked to various
mental health conditions, suggesting the potential for detecting psychiatric
disorders through sleep monitoring53,74. Just as standard health checkups
include vital sign assessments such as blood and urine tests, sleep checkups
could also incorporate additional components—such as questionnaires on
mental health status—to serve as a tool for mental health screening. Lim
et al. reported that prospective observational cohort studies have demon-
strated that combining sleep–wake data with individuals’ history of mood

episodes enables effective prediction of future mood episodes and may
enhance the management of mood disorders75. Furthermore, if sleep
screening were to evolve into a system capable of real-time monitoring and
feedback, it might be possible to detect arousal levels and drowsiness and
provide interventions to help people spend the day in a healthy brain state.
Two studies employing mathematical models of sleepiness and alertness
demonstrate that personalized sleep interventions—based on sleep–wake
patterns obtained from wearable devices and computational modeling of
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identified include long sleepers (uppermiddle left), fragmented short sleepers (upper
middle right), irregular sleep patterns (upper right), and clusters containing various
types of insomnia.
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sleep pressure and circadian rhythms—can be highly effective. By gaining
insight into individual patterns of sleepiness and alertness and adjusting
sleep schedules in alignment with one’s circadian rhythm, even individuals
with irregular routines, such as shift workers, can enhance alertness and
reduce daytime sleepiness76,77.

Contribute to sleep health through the accumulation of large-
scale objective data
On behalf of the World Sleep Society Global Sleep Health Taskforce, Lim
et al. pointed out that the importance of “sleep health” is underestimated in
public health agendas and educational institutions in most countries
worldwide. They recommendpromoting sleephealth through education (to
enhance sleep and circadian health education and awareness), research (by
collecting and centralizing standard sleep and circadian data in every
country), and public health implementations (including sleep health in
public health policies)78.

Other than public health implementations, the most significant con-
tribution of sleep checkups to sleep health and public health will be the
accumulation of large-scale, objective sleep data across diverse populations.
Traditional large-scale public health surveys predominantly rely on ques-
tionnaires, which are globally insufficient78. With appropriate ethical con-
siderations, handling sleep checkups data will enable the analysis of large-
scale, quantitative data that has previously been lacking. Further analysis in
combination with other health indicators of the individual can not only
provide deeper insights into the relationship between health and sleep but
also deepen the significance of the sleep checkups itself. This is expected to
contribute to the future incorporation of sleep as a digital biomarker for
disease diagnosis. Interest in sleep is high, and providing people with
feedback on scientific findings could also contribute to improving sleep
literacy.

In the future, as genomic information becomes utilized for precision
medicine in health risk management, linking sleep information with
genomic data is expected to advance the genetic understanding of sleep. At
present, some biobanks store sleep-related data and whole-genome
sequence data from the same participants. Examples are the Million
Veteran Program (MVP), the Japan Multi-Institutional Collaborative
Cohort (J-MICC), theNational FINRISK study, theTrøndelagHealthStudy
(The HUNT study), and the UK Biobank79–82. These datasets have made a
significant contribution to the genetics of human sleep through genome-
wide association studies (GWAS). following are UK Biobank examples: Li
and Zhao conducted a GWAS and identified 53 loci associated with sleep,
obesity, psychiatric, and neurological disorders83. Fei et al. identified 68
genes associated with sleep-related traits at exome-wide significance using
data, including VPS8, CNNM2 (insomnia symptoms), RGS16 (Chron-
otype), HCRTR2 (Ease of getting up in the morning), PATJ1 (Daytime
sleepiness),CRHR1 (Daytime napping),MSRB3 (Snoring), andCGN (sleep
apnea)84. This amount of GWAS results will not only pave the way for
elucidating the genetic background of sleep disorders but also provide clues
for enhancing precision sleep health tailored to each individual.

Understanding the diversity and generality of sleep from large-
scale objective data
Sleep patterns vary widely depending on social and living environments.
Sleep phenotypes also differ between individuals, even in the same envir-
onment and,moreover, evenwithin the sameperson fromday today. Large-
scale studies contribute to understanding the diversity and generality of
human sleep. As examples, Ong et al. analyzed the sleep of 553,559 nights
from23,680users aged 15–80 years inOceania andEastAsia, as capturedby
Fitbit devices, and found that East Asians had later bedtimes and they
reported that the sleep duration was shorter85. Jonasdottir et al. used Sony’s
SmartBand to analyze the sleep of 69,650 adult non-shift workers aged
19–67 in 47 countries. The study confirmed an age-related decrease in sleep
duration and earlier onset and offset of sleep and revealed differences
betweenweekdays andweekends86. Using a similar smart band,Minor et al.
analyzed the sleep of 47,628 participants from around the world, showing

how rising temperatures lead to shorter sleep times87. Kuula et al. analyzed
the sleep and sleep duration of 17,355 Polar wrist-worn sleep tracker users
aged 16–30 years in 107 countries, primarily in Europe (86.7%). Their
analysis showed that sleep patterns changed significantly as they progressed
from adolescence to adulthood88. These studies showed that women tended
to sleep longer85,86,88. Willoughby et al. examined the sleep of 226,187 Oura
Ring users (54, 769, 523 nights), focusing on regional differences, and
reported analyses of sleep duration, time of falling asleep, sleep quality,
differences between weekdays and holidays, and studies of social jetlag89. A
large-scale dataset collected nationwide (or globally) would facilitate a
deeper understanding of the diversity and commonalities in sleep patterns,
considering various factors such as seasonality, regional differences, age,
educational background, and work environment. This approach could help
identify optimal sleep (healthy sleep) for many individuals, thereby con-
tributing to enhancements in sleep health.

Conclusion
This perspective covered the concept of “sleep health,” which addresses
sleep-related health comprehensively, and discussed the multidimensional
evaluation of sleep. It then described wearable devices that allow for
quantitative and large-scale measurement of sleep over multiple days. Fol-
lowing this, the concept of “sleep checkups” was explained, which involves
measuring sleepwithwearable devices under expert guidance andproviding
feedbackon the results. Examples ofmultidimensional classification of sleep
data were presented. Finally, this article addressed the potential outcomes of
sleep checkups, including the accumulation of large-scale sleep data, the
elucidation of sleep-health relationships through correlations with other
biomarkers, and the understanding of sleep diversity.
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