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Non-invasive blood pressure monitoring
with in-ear infrasonic hemodynography
for preventative cardiovascular care
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Infrasonic Hemodynography (IH) captures low-frequency vibrations detected by in-ear microphones,
offering a new approach to blood pressure monitoring. We report a strong correlation (r = 0.95)
between IH waveforms and aortic blood pressure measurements obtained through cardiac
catheterization (CC). Temporal analysis confirms the aortic origin of IH signals, with minimal
differences in aortic valveopening timingsbetween IHandCC (1.6 ± 12.1 ms), rejecting thehypothesis
of peripheral origins.We test an approach to predict systolic (SBP) and diastolic (DBP) blood pressure
from waveform morphology. The standard deviations of the differences between predicted and
referenceBP values averaged across 12 subjects is 4.1 mmHg (SBP) and 2.4 mmHg (DBP) for CC, and
5.8 mmHg (SBP) and 3.7 mmHg (DBP) for IH. These results demonstrate that BP information is
encoded in thewaveform shape dynamic. By capturing precise cardiovascular signals non-invasively,
IH could enable earlier interventions and more personalized treatments.

Bloodpressuremonitoring is essential formanaginghypertension, reducing
post-hospital readmissions, and evaluating the hemodynamic effects and
cardiac safety of drugs during clinical trials1–6. Although diagnosing
hypertension is relatively simple, and the condition can be effectively treated
with affordablemedications, there are substantial gaps in bothdiagnosis and
treatment. Approximately 580 million individuals with hypertension,
among them 41% of women and 51% of men population, remain unaware
of their condition due to a lack of diagnosis7. Digitally connected blood
pressure monitors provide a viable alternative to traditional office-based
monitoring. While several cuffless blood pressure monitors are currently
under development, they require additional validation before they can be
widely adopted for clinical use8–11. Several cuffless, continuous non-invasive
blood pressure (NIBP) monitoring technologies have emerged in recent
years, including photoplethysmography (PPG)-based approaches such as
theHilo (previously Aktiia) bracelet, pulse transit time (PTT)-based devices
like those developed by Biobeat, and continuous finger cuff technologies
such as the CNAP system. As the adoption of wearable devices continues to
rise, there is a growing need and opportunity to implement a multifaceted
approach to integrate these technologies into both clinical practice and
consumer routines. This approach is essential to effectively manage the
increasing global population with hypertension.

In this context, Infrasonic Hemodynography (IH) emerges as a pro-
mising path. IH is a novel, non-invasive technology that measures in-ear

acoustic pressure using microphones leveraging existing existing technol-
ogies, particularly those with noise cancellation features that already have
microphone facing ear canal built in. These earbuds can simultaneously be
used for biosignal recording. IH focuses on detecting low-frequency
vibrations (<20Hz) generated by vital organs, especially the cardiovascular
system, as acoustic waveforms. By capturing sound signals traveling within
arteries, fluids, bones, and muscles to the ear canal, IH enables the mea-
surement of an individual’s unique “audiome.”The low-frequencynature of
these biosignals, falling below the threshold of human hearing, allows bio-
signal monitoring without disrupting the primary function of the earbuds,
such as music playback or calls12.

Previous research on IHhas demonstrated a high correlation (r = 0.99)
between IH and electrocardiogram (ECG) measurements for interbeat
intervals and heart rate in stationary conditions, as well as IH’s capability to
monitor physiological changes induced by breathing without compromis-
ing accuracy, even duringmusic playback12. Furthermore, algorithms based
on IH data have been shown to distinguish between atrial fibrillation and
sinus rhythm with performance comparable to ECG12. IH technology also
measures interbeat intervals for various cardiac rhythms and heart rates
with the same accuracy as ECG while providing additional hemodynamic
insights not accessible through ECG13. In a first in-person study, IH
demonstrated high accuracy in capturing cardiovascular time intervals and
performancemeasures compared to echocardiography and invasive cardiac
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catheterization hemodynamic waveforms14. For instance, IH has been
shown to synchronize with the Wiggers diagram in severe aortic stenosis,
detectingmurmurs consistentwith the condition before transcatheter aortic
valve replacement (TAVR) and showing resolution of these murmurs after
TAVR15. IH’s ability to identify such changes non-invasively underscores its
potential as a novel method for early detection of aortic stenosis and other
cardiovascular conditions16.

Although previous studies have highlighted IH’s potential for cardiac
rhythm analysis and hemodynamic assessment, there has been limited
exploration of its application for NIBP estimation. The methodology pre-
sented in this work introduces a novel approach to continuous, cuffless
blood pressure monitoring based on waveform features extracted from IH
signals recorded in the ear canal. Unlike existing systems, our approach
leverages consumer-grade wireless earbuds, incorporates multimodal
alignment with invasive gold-standard data, and applies machine learning
models trained on pressure waveforms. This positions our work as the first
to validate IH-based NIBP estimation against catheterization data. By
offering non-invasive, and highly accurate cardiac signal measurements via
earbuds, IH represents a significant advancement in hemodynamic mon-
itoring. IH captures infrasonic waves that directly correlate with central
blood pressure waveforms, providing a promising pathway to deliver
accurate and user-friendly blood pressure monitoring.

Understanding the cardiac cycle is essential for interpreting the data
and building reliable predictive algorithms. The cardiac cycle consists of a
series of pressure changes that lead to the movement of blood through the
chambers of the heart, divided into two main phases: diastole and systole.

Diastole encompasses ventricular relaxation and filling, including
rapid inflow, diastasis, atrial systole, and isovolumetric relaxation. It begins
with the closing of the aortic and pulmonic valves and ends with the closing
of the mitral and tricuspid valves17,18. On the ECG, diastole is often timed
between theTwave and the subsequent Rwave19. Early diastolicfilling starts
with the opening of the mitral valve, allowing blood to flow from the atria
into the ventricles20. During the late filling phase, atrial contraction pushes
additional blood into the ventricles. Flow continues until there is equal-
ization of pressure across the atrioventricular valves, leading to their closure
and marking the end of diastole. Closure of the mitral and tricuspid valves
constitutes the first heart sound, denoted as S121.

Systole represents ventricular contraction, during which blood is
ejected across the aortic valve to the rest of the body. It begins with the
closure of themitral and tricuspid valves (S1) and concludeswith the closure
of the aortic and pulmonic valves (S2)22,23. Systole is subdivided into iso-
volumetric contraction and ventricular ejection. Isovolumetric contraction
marks the beginning of systole and is the period between the closure of the
mitral valve and the opening of the aortic valve. During this time, intra-
chamber pressure increaseswithout a change in volume.When the pressure
within the ventricle exceeds systemic pressure, the aortic valve opens,
leading to rapid ventricular ejection. As blood exits the ventricle, the pres-
sure within the chamber drops below systemic pressure, causing the aortic
valve to close. The simultaneous closure of the aortic and pulmonic valves
comprises the second heart sound, S224.

IH signals can be considered the output of the cardiovascular system—
amechanical system—where the input is the electrical activity initiating the
cardiac cycle, as traced by theECG.The IH signals provide a detailed picture
of valve function and hemodynamic responses, complementing ECG sig-
nals that contain the “trigger” information initiating heart contraction. By
providing an accurate and non-invasive depiction of the central cardio-
vascular system’s response, IH technology paves the way for future possi-
bilities to diagnose cardiovascular abnormalities.

In this study, we investigate the correlation between IHwaveforms and
gold-standard techniques such as ECG, echocardiograms, and invasive
aortic blood pressure measurements obtained via cardiac catheterization
(CC), using data collected at Scripps Health from 18 subjects who under-
went CC for evaluation of the coronary artery disease. The results are
illustrated in the form of Wiggers diagrams, providing a visual comparison
of cardiovascular waveforms. Moreover, using a subsample of 12 Scripps

subjectswith at least 1.5 min of simultaneousCCand IH signals, we develop
a machine learning model to predict systolic (SBP) and diastolic (DBP)
blood pressure from individual waveforms. Unlike many existing cuffless
blood pressure monitoring methods that rely on peripheral signals and
require frequent calibration due to physiological variations (e.g., vasocon-
striction, body position, hydration, or sympathetic tone)25–29, the approach
presented here is based on IH waveforms that closely correlate with central
aortic pressure. To improve robustness,wenormalize each cardiac cycle and
extract features based on waveform morphology rather than amplitude.
This enables our models to capture pressure-related dynamics while elim-
inating the impact of peripheral physiological changes, reducing theneed for
frequent recalibration, addressing a common limitation in existing non-
invasive blood pressure monitoring devices. Our results demonstrate that
waveform shape alone can provide sufficient accuracy for blood pressure
prediction.

Following the presentation of results, we discuss the broader implica-
tions of IH technology, highlighting its potential for continuous, non-
invasive, and contextual blood pressure monitoring. This innovation could
drive the future of predictive and proactive healthcare by combining
advancements in artificial intelligence with reliable real-time data from in-
ear devices. We also address the limitations of the current study, primarily
the sample size and the need for further validation in larger, more diverse
populations. In the Methods section, we provide a detailed overview of IH
technology, thedata sample andcollectionprocedures, and themethodused
to predict SBP and DBP. This article outlines the technical aspects sup-
porting our findings and sets the foundation for future studies aimed at
refining and scaling the application of IH technology in clinical and
everyday settings.

Results
Wiggers diagrams
In a clinical study conducted at Scripps Health (ClinicalTrials.gov ID:
NCT04636892), we analyzed data from 18 study subjects to assess the
capabilities of in-ear IH technology in non-invasively representing the
cardiac cycle. In-ear acoustic pressure was measured using IH signals
recorded simultaneously with data from standard cardiac monitoring
devices, including Doppler echocardiography (ECHO) imaging of flow
through the left ventricular outflow tract (LVOT) at rest, invasive cardiac
catheterization (CC) with a catheter in the aorta, and 12-lead ECG
recordings.

Figures 1 and 2 present Wiggers diagrams30,31 derived from data col-
lected from two exemplary study subjects who wore the IH earbuds during
CC for evaluation of coronary artery disease (CAD). Wiggers diagrams for
the remaining study subjects are shown in Supplementary Figs. 1 and 2, to
illustrate the diversity of measured waveform morphologies. The data,
sampled at 1000Hz, were aggregated into amultimodal time-series dataset.
Each plot in Figs. 1 and 2 displays, from top to bottom: (a) Doppler echo-
cardiography imaging of flow through the LVOT at rest, (b) aortic cathe-
terization waveforms, (c) IH waveforms corrected for instrumental effects
and converted to in-ear acoustic pressure units, (d) IHwaveforms filtered to
frequencies above 20Hz to indicate the presence of S1 and S2 heart sounds,
(e) 12-lead (ECG tracings. The distributions represent signals from 15
consecutive cardiac cycles stacked together to obtain average waveforms.

Figures 1 and 2 also include lines marking key cardiac functions and
additional details that demonstrate alignment and indicate the timing of
specific events and intervals during cardiac cycles. The presented Wiggers
diagrams illustrate key features of the cardiac cycle and demonstrate the
capabilities of in-ear IH technology to non-invasively capture and represent
hemodynamic events. The data show that features of the aortic CC wave-
forms are also present in the IH waveforms. In both aortic pressure and IH
waveforms, we observe distinct morphological features characteristic of the
aortic pulse pressure waveform. The systolic upstroke in the IH waveform
corresponds to the rapidpressure rise in the aorticwaveform, culminating in
the systolic peak—representing the maximal pressure during ventricular
ejection. During this phase, the anacrotic notch, a subtle inflection
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Fig. 1 |Wiggers diagram. ExemplaryWiggers diagram from a clinical study subject
CAD23 (82-year-old female; height: 168 cm, weight: 66 kg) with comorbidities
including obstructive coronary artery disease and hyperlipidemia. Key cardiac
events and intervals are annotated. From top to bottom: a Doppler echocardio-
graphic image showing flow through the left ventricular outflow tract (LVOT) at
rest; b Invasive pressure waveforms from the aorta (blue), brachial artery (purple),
and radial artery (dark cyan); c In-ear IH waveform corrected for instrumental

effects and converted to in-ear acoustic pressure units (yellow); d In-ear IH wave-
form filtered above 20 Hz, highlighting the presence of S1 and S2 heart sounds
(yellow); e 12-lead electrocardiogram (ECG) tracings (red). The x-axis represents
time in milliseconds, with a window covering two cardiac cycles. Full and open
circles in panels (b, c) indicate timings of the AVO and AVC, respectively, recon-
structed using algorithms described in the text.
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Fig. 2 |Wiggers diagram. ExemplaryWiggers diagram from a clinical study subject
CAD06 (64-year-old male; height: 170 cm, weight: 72 kg) with comorbidities
including obstructive coronary artery disease, hypertension, hyperlipidemia and
diabetes. Key cardiac events and intervals are annotated. From top to bottom:
a Doppler echocardiographic image showing flow through the left ventricular out-
flow tract (LVOT) at rest; b Invasive pressure waveforms from the aorta (blue), and
the femoral artery (green); c In-ear IH waveform corrected for instrumental effects

and converted to in-ear acoustic pressure units (yellow); d In-ear IH waveform
filtered above 20 Hz, highlighting the presence of S1 and S2 heart sounds (yellow);
e 12-lead electrocardiogram (ECG) tracings (red). The x-axis represents time in
milliseconds, with a window covering two cardiac cycles. Full and open circles in
panels (b, c) indicate timings of theAVOandAVC, respectively, reconstructed using
algorithms described in the text.
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associated with the peak rate of pressure increase, is visible in both signals.
Following the systolic peak, the dicrotic notch—marking the closure of the
aortic valve—is identifiable in the IH waveform as a small inflection, often
followed by the dicrotic wave or peak, which reflects diastolic pressure
oscillations. Thewaveform foot, denoting the onset of ventricular ejection, is
alsodetectable in IHrecordings and serves as an important timing reference,
marking the opening of the aortic valve. These fiducial points are con-
sistently observed across subjects and are annotated in Figs. 1 and 2 for
illustrative purposes.

The agreement between IH andCCwaveformmorphology, quantified
using cross-correlation, was 0.997 for the subject in Fig. 1 and 0.976 for the
subject in Fig. 2.A similar cross-correlation value of 0.95was observedwhen
averaging over waveforms in the entire sample of 2,171 cardiac cycles from
18 subjects (see Supplementary Figs. 1 and 2 for complete set of Wiggers
Diagrams). These high correlation values indicate a strong consistency
between the IH in-ear signals and invasive aortic pressure measurements,
underscoring the potential of IH technology to reliably capture and reflect
key hemodynamic events in a non-invasive manner.

Timing of the aortic valve opening and closing
The data indicate good agreement in the timing of aortic valve opening
(AVO) and aortic valve closure (AVC) between IH and CC measurements.
The time betweenAVOandAVC, known as the left ventricular ejection time
(LVET), is a critical parameter in cardiac function assessment.We developed
algorithms to detectAVOandAVC to calculate LVET. Timings ofAVOand
AVC were reconstructed from positions of the maxima of the second deri-
vative of pressure waveforms, convoluted with a Gaussian filter of a width of
13ms to reduce signalfluctuations.AVO(AVC)was selected as the timing of
themost significantmaximum of the derivative before (after) the peak of the
original waveform, with a significance score calculated taking into account
amplitudes of the original signal and its second derivative and the distance
from the peak of the original waveform. LVET was then calculated as a
difference in time betweenAVCandAVO.When applied to IH andCCdata
from 14 study subjects with available left earbud signals, these algorithms

showed a high correlation (r = 0.92, p < 0.0001) between LVET measured
fromIHandCC(Fig. 3a–c). The standarddeviationof thedifferencebetween
IH and CCmeasurements was 11.1ms, with a bias of –5.9ms (mean ± SEM
of335.1 ± 2.2ms forCCand329.2 ± 2.0ms for IH).A similar correlationwas
observed for LVET measured simultaneously using IH signals from the left
and right earbuds in 7 subjects, with a standard deviation of the difference of
11.6ms and a bias of 4.5ms (Fig. 3d–f).

The heart’s valves play a crucial role in directing blood flow in a syn-
chronized, one-way pattern between chambers. Proper valvular function
produces the characteristic heart sounds S1 and S2, associated with valve
closures that mark key moments in the cardiac cycle. Valvular defects can
disrupt this flow: regurgitant valves fail to prevent backward flow, while
stenotic valves obstruct blood movement into the next chamber. Such
defects can create murmurs—audible sounds of turbulent blood flow—that
aid in diagnosing cardiac pathology. Typically, systolic murmurs indicate
issues with blood exiting the ventricle (e.g., mitral regurgitation, aortic ste-
nosis, hypertrophic obstructive cardiomyopathy), while diastolic murmurs
are associated with blood entering the ventricles (e.g., mitral stenosis, aortic
regurgitation). Intriguingly, IH signals analyzed at frequencies above 20 Hz
reveal acoustic signatures that correspond to the timing of S1 and S2 heart
sounds. This alignment underscores IH technology’s potential to monitor
valve function, providing a non-invasivemethod to assess heart sounds and
detect valvular abnormalities15,16.

The origin of IH signals
A pivotal question in interpreting IH data is identifying the spatial origin of
the detected acoustic signals. whether these sounds originate from the aorta
—propagating through the body to the ear canal—or if they emanate from
arteries in close proximity to the ear canal.

To address this question, we designed and constructed a proprietary
hardware system capable of synchronizing raw data acrossmultiple streams
—including IH, CC, and ECG—with millisecond resolution. Time syn-
chronization was achieved by aligning the positions of the QRS peaks from
the same ECG signal recorded across all devices.

Fig. 3 | LVET comparison. a LVET measured from IH waveforms vs catheter
waveforms averaged over 10 consecutive cardiac cycles for 14 study subjects with
signals simultaneously detected in the left IH earbud, b the relationship of agreement
(Bland-Altman plot), and c the histogram of the difference between LVETmeasured

from both sources; d LVET extracted from IHwaveforms using signals from the Left
vs Right earbud averaged over 10 consecutive cardiac cycles for 7 subjectswith signals
detected in both earbuds, e the relationship of agreement (Bland-Altman plot), and
f the histogram of the difference between LVET measured from both sources.
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In evaluating the delay between waveforms, we focused on the timing
of theAVO relative to the ECGRpeak.We deliberately chose not to use the
systolic peak as a reference point because it is primarily influenced by lower-
frequency components, which can be disproportionately affected by
instrumental effects such as acoustic leakage. These effects could mimic a
delay, making the systolic peak less reliable for precise timing comparisons.

In our data, the average measured AVO appears 96.7 ± 11.4ms and
98.3 ± 16.9ms (mean ± SD) after the R wave of the ECG for CC and IH
waveforms, respectively. An unpaired t-test indicated no statistically sig-
nificant difference between the twomeasurements, (t(34) =−0.34, p = 0.74).

The absence of a visible delay in the IH signal relative to the CC
signal suggests that IH detects sound waves originating directly from
the heart and aorta. These sound waves propagate through the human
body at a speed of ~150 cm/ms31. The average distance between the
heart and the ear in a typical adult is ~30 cm, assuming a straight-line
path from the left ventricle of the heart to the ear canal32,33. Therefore
the sound waves can cover the average distance in merely 0.2 ms. In
contrast, if the IH signal originated from the carotid arteries near the
ear canal, given an average pulse wave velocity of 0.35 cm/ms34 and a
propagation length of about 30 cm between the heart and the ear, we
would expect a delay of ~86 ms relative to the catheter signal, which is
not observed. In evaluating the expected delay, we also considered age-
matched aortic pulse wave velocity (AoPWV) values representative of
individuals aged 60–75 years, with the mean AoPWV of
0.87 ± 0.23 cm/ms in individuals without hypertension or diabetes, and
1.02 ± 0.25 cm/ms in those with either condition35. Assuming a heart-
to-ear path length of 30 cm, this corresponds to an expected pulse
transit delay of ~29–34 ms, which is also not observed. The difference
between AVO timings from IH and CC was 1.6 ± 12.1 ms. This mini-
mal difference allows us to reject the hypothesis that the IH signal
originates from the carotid arteries near the ear with a significance
greater than 7 and 3 standard deviations assuming the PWV reported
in ref. 34 and ref. 35, respectively.

The interval between the R wave on the ECG and the AVO represents
the isovolumetric contraction time (IVCT). The peak of the R wave on the
ECG marks the onset of ventricular systole and corresponds to the initial
myocardial contraction that contributes to the first heart sound and mitral
valve closure36. This early systolic phase can also be assessed via echo-
cardiography as the interval between mitral valve closure and aortic valve
opening. In the general population, IVCT typically ranges from 30 to
50ms37–40.However, IVCT is known toprolong in subjectswith elevatedrisk
of heart failure (HF) as an example. For instance, ref. 41 reported a 24%
increase in HF risk for every 10ms increase in IVCT. Additionally, ref. 42
observed that IVCTwas prolonged to 90ms in subjects with aortic stenosis
and up to 120ms in those with pulmonary arterial hypertension. Our
measurements are consistent with prolonged IVCT, expected for our study
subject population.

To further test the origin of the IH signal, we compared the expected
pulse transit time (PTT) from the heart to the ear with values reported in
ref. 43, where photophletysmography (PPG) sensors were used to measure
the onset of waveforms corresponding to AVO at multiple peripheral sites,
including the ear. In that study, the pulse arrival time at the ear was mea-
sured to be ~140ms after the R peak of the ECG (Fig. 4, ref. 43). In contrast,
in our study population, the mean onset of the waveform indicating AVO
was 96.7 ± 11.4ms for catheter-based (CC) waveforms and 98.3 ± 16.9ms
for IH waveforms—representing a substantial deviation from the PPG-
based measurements in healthy subjects. An unpaired t-test between PPG-
based (mean = 140ms, SD = 10ms, n = 116) and our measurement
(mean = 98.3ms, SD = 16.9ms, n = 18) confirms a highly significant dif-
ference between the distributions; t(132) = 16.75, p < 0.0001.

Finally, Fig. 1 clearly demonstrates a delay of ~65ms in the radial and
brachial waveforms relative to the timing of the aortic waveform. This delay
is absent in the IH waveform, contrary to what would be expected if the
infrasonic signal was caused by the pulse wave in the carotid artery.

Blood pressure prediction
The preceding sections established the central origin of the IH signal and
demonstrated the high correlation between aortic pressure gradients and
timings obtained from IH and CC measurements. While CC directly
measures aortic blood pressure, IH captures dissipated acoustic signals in
the ear canal, recorded as in-ear acoustic pressure. As illustrated in the
Wiggers diagrams, the acoustic pressure during the systolic peak measured
by IH typically ranges from 3 to 15 Pa, corresponding to 0.022 to 0.112mm
Hg. This amplitude is ~1000–5400 times smaller than the typical arterial
systolic pressure of 120mmHg. Despite the high correlation in waveform
shape, the amplitudes and baseline of IH signals is inherently variable due to
several factors, including instrumental effects such as acoustic leakage
caused by ear tip fit, variations in impedance related to respiratory rate,
differences in earbud fit, physiological asymmetries between the left and
right ears, and other subject-specific anatomical variations. Relying on
amplitude for BP predictions would necessitate frequent calibrations to
account for these sources of variability, complicating practical
implementation.

However, the high fidelity of the IH waveforms and the breadth of
extractable cardiac features motivated the hypothesis that BP could be
accurately predicted by leveraging amplitude-invariant features derived
from waveform shape dynamics and timings of cardiac functions. These
dynamics reflect hemodynamic changes associated with BP and influence
themorphology of the pressurewaveform, including acoustic imprints from
valve activity. To test this hypothesis, we removed amplitude information
entirely and engineered features that focus solely on waveformmorphology
to predict SBP and DBP. This approach has the potential to provide
medically and commercially valuable metrics while normalizing IH wave-
forms for further applications in non-invasive aortic pressure monitoring.

To validate this hypothesis, we performed an analysis predicting SBP
andDBPusingwaveform shape features frombothCC and IH signals. Data
from 12 subjects were included, with each subject contributing at least
1.5min (≥90 cardiac cycles) of data to ensure a sufficient number of
observations. Reference BP values were obtained from CC measurements,
offering precision (~1mmHg) superior to traditional BP cuff devices. The
reference SBP was defined as the maximum of the CC waveform, while the
reference DBP was taken as its minimum.

Approximately 30 featureswere extracted fromnormalizedCCand IH
waveforms (amplitudes scaled to [0,1]) for each subject. These features
included key timings within the cardiac cycle, such as AVO and AVC, first
and second derivatives of the waveform, and other shape-based metrics.
Models were trained and validated using 5-fold cross-validation, withMean
Absolute Error (MAE) as the evaluation metric. Results for IH-predicted
versusCC-measuredBP values are summarized in Figs. 4 and 5, for SBP and
DBP predictions. The standard deviations of the differences between pre-
dicted and reference BP values averaged across all 12 subjects were
4.1mmHg (SBP) and 2.4 mmHg (DBP) for CC data, and 5.8mmHg (SBP)
and 3.7mmHg (DBP) for IH data.

To further evaluate the model’s ability to capture rapid physiological
changes, we illustrate BP time series for two representative study subjects, as
shown inFig. 6.A study subject in Fig. 6a displayedperiodic variations inBP
due to respiratory sinus arrhythmia, with predicted systolic and diastolic BP
closely replicating these patterns. The study subject in Fig. 6b exhibited rapid
changes in systolic BP, fluctuating from 140mmHg to 115mmHg over
several dozen seconds. In both cases, the models accurately captured these
dynamic changes, demonstrating the robustness of the approach.

Figures 4–6 collectively highlight that waveform shape alone, inde-
pendent of demographic variables, is sufficient for accurate BP prediction
within individual subjects. The average prediction error was within
5mmHg, aligning with clinical standards for BP measurement accuracy.
However, the limited sample size of 18 study subjects—evenwhen including
those with fewer waveforms—is insufficient to develop a generalized pre-
dictive model capable of accounting for inter-individual physiological
variability.
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To explore the feasibility of a generalized “onemodel for all,”we trained
a model using data from all 18 study subjects, including demographic vari-
ables. As expected, the model’s performance was suboptimal, with standard
deviations of prediction errors reaching 16.2mmHg (SBP) and 8.3mmHg
(DBP) forCCdata, and15.3mmHg(SBP) and8.0mmHg(DBP) for IHdata.
This reinforces the need for larger, more diverse datasets to generalize BP
predictions effectively.

Interestingly, when we seeded the training set with five data points
from the test subject, the model demonstrated substantial improvement in
prediction accuracy.Under this approach, standard deviations of prediction
errors were reduced to 8.6mmHg (SBP) and 4.8mmHg (DBP) for CCdata,
and 9.8 mmHg (SBP) and 5.7mmHg (DBP) for IH data. These results
suggest that integrating even a minimal amount of data with familiar
physiology could enhance the model’s ability to generalize across diverse
populations.

In conclusion, the results demonstrate that BP information is
encoded in pressure waveform shape dynamics, and the current feature
set is sufficient for accurate BP prediction within individual subjects.
The strong agreement between IH-predicted and CC-measured BP,
positions the IH technology as a promising tool for non-invasive aortic
pressure monitoring and dynamic BP assessment. With larger and
more diverse datasets, this approach could support the development of
robust, generalizable BP prediction models for widespread clinical and
consumer applications.

Discussion
This studydemonstrates thepotential of IHas anon-invasive technology for
capturing and interpreting detailed cardiovascular hemodynamics. The
strong alignment between IH waveforms and invasive aortic pressure
measurements, as depicted in the Wiggers diagrams, indicates that IH can

Fig. 4 | BP correlations. Predicted vs measured values of SBP and DBP for the cardiac catheterization (a, b) and IH (c, d) data from 12 CAD study subjects. Dashed lines
bracket regions corresponding to ±5 mmHg around the identity line (solid line).
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represent key hemodynamic events of the cardiac cycle. The high cross-
correlation values (mean r = 0.95) between normalized IH and CC wave-
forms underscore this capability.

A key finding of this research is the confirmation that the primary
component of the IH signal in a study subject at rest originates from
central cardiac activity. By synchronizing IH, CC, and ECG data with
millisecond precision and analyzing the timing of the AVO, we
established that the major component of the IH signals originate
directly from the heart and aorta rather than from peripheral arteries
near the ear canal. The minimal difference in AVO timings between IH
and CC measurements 1.6 ± 12.1 ms effectively rejects the hypothesis
of a peripheral arterial origin. This insight not only validates the
physiological basis of IH technology but also enhances its feasibility for
clinical applications.

The study further explores the feasibility of predicting systolic (SBP)
and diastolic (DBP) blood pressure using waveform morphology inde-
pendent of amplitude. The infrasonic nature of the technology brings novel
challenges to using the amplitude directly that can be influenced by varia-
bility due to factors like acoustic leakage, earbud fit, and study subject-
specific anatomical differences. By engineering amplitude-invariant features
derived from the waveform morphology and cardiac timing events, we
demonstrate blood pressure predictions with the standard deviations of the
differences between predicted and reference BP values averaged across
12 subjects to be 4.1mmHg (SBP) and 2.4 mmHg (DBP) for CC data, and
5.8mmHg (SBP) and 3.7mmHg (DBP) for IH data.

The ability of IH technology to detect acoustic signatures corre-
sponding to heart sounds S1 and S2 adds another dimension to its diag-
nostic potential. In concept, IH could also detect S3, and exhibits a possible

Fig. 5 | Bland–Altman plots. The relationship of agreement for predicted and
measured values of SBP and DBP for the cardiac catheterization (a, b) and IH (b–d)
data from 12 CAD study subjects. Solid and dashed black lines correspond to the

mean value and the standard deviation of the difference between predicted and
measured BP values. Dashed red lines represent the region of ±5 mmHg around
the mean.
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S4 component in CAD02 (see Supplementary Fig. 1) a sign of elevated left
ventricular filling pressures in study subjects with decompensated heart
failure, and it has alreadybeen shown that IHcandetect systolicmurmurs in
a study subject with severe aortic stenosis15. This feature enables the non-
invasive monitoring of valve function and the detection of valvular
abnormalities, such as murmurs resulting from regurgitant or stenotic
valves. Such capabilities could significantly enhance early detection and
management of cardiac pathologies.

Despite these promising results, the study has limitations that
warrant consideration. The sample size was 18 study subjects with
limited degrees of cardiac and non-cardiac pathology, which can not
represent the diversity of physiological variations in the broader
population. While individual models showed high accuracy, attempts
to develop a generalized “one model for all” support the need for larger
and more diverse datasets. Future studies should aim to include a
broader demographic to improve model generalizability.

Another limitation is the focus on study subjects undergoing CC for
coronary artery disease evaluation. On the positive side, it demonstrates the
feasibility of the technology in a population that stands to benefitmost from

accurate blood pressure monitoring—individuals with severe symptoms or
pre-existing heart conditions, rather than in a typical, healthy cohort.
However, the drawback lies in the limited generalizability of the findings to
broader patient populations or alternative clinical settings. Longitudinal
studies evaluating the performance of IH technology across a range of
clinical conditions andover extendedperiodswill be invaluable for assessing
its robustness, reliability, and broader applicability.

In conclusion, this study establishes IH technology as a promising tool
for non-invasive cardiovascularmonitoring. By accurately capturing central
hemodynamic events and enabling blood pressure prediction based on
waveformmorphology, IHhas the potential to transformpatient care.With
further research and larger datasets, IH technology could support the
development of robust, generalizablemodels suitable forwidespread clinical
and consumer applications, ultimately contributing to improved cardio-
vascular health management.

The physiological origin of in-ear cardiac acoustic signals has been the
focus of several recent studies, with differing interpretations. Some have
suggested that these signals result from compressive waves conducted from
the heart to the ear canal44–46, while others propose local arterial expansion

Fig. 6 | Time dependence of BP predictions. Predicted values of SBP (solid green)
andDBP (solid red) usingGradient BoostingModel (GBM)model and IHdata from
two exemplary study subjects: a CAD03 and b CAD10, shown as a function of

measurement time and compared to reference SBP and DBP values (open black)
extracted from simultaneously recorded catheter waveforms.
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near the ear as the source47–49. Reference 50 contributed to this discussion by
showing that bothmechanismsmay play a role, based onmultimodal signal
analysis.

Our study enables us to further clarify thephysiological source of in-ear
acoustic signals by incorporating gold standard medical devices including
CC and ECG as a timing reference. By synchronizing CC waveforms with
ECG, and IH, we were able to align signals against precise cardiac events—
specifically, AVO. This approach was especially important in our popula-
tion, which includes individuals with prolonged IVCT, where delays of
30–60ms could confound interpretations based solely on non-invasive
timing. Our results support the view that, in resting study subjects, the IH
signal is predominantly of aortic origin, as evidenced by its strong temporal
and morphological correlation with aortic pressure waveforms. However,
multiple physiological mechanisms may contribute to in-ear cardiac
acoustics, with the ear functioning as an integrative biosensor.

The ear serves not only as a sensory organ for hearing but also as a
sophisticated transducer, capable of capturing and transmitting low-
frequency vibrations originating from various organs and bodily move-
ments. These vibrations, generated by physiological processes such as car-
diac activity, blood flow, respiration, and musculoskeletal movements,
propagate through the body’s tissues, bones, and arteries, ultimately being
detected by the ear. This transduction capability provides a unique oppor-
tunity to acquire valuable insights into the body’s internal physiological
processes.

Unlike a stethoscope, which requires precise placement on specific
areas of the body to capture localized sounds, the ear functions as a natural
biosignal integrator. It is capable of picking up vibrations from multiple
sources simultaneously without the need for exact placement. The stetho-
scope is constrained by the necessity of skilled technicians positioning the
instrument correctly to obtain accurate readings, a limitation that is not
present with the ear. The ear, being consistently positioned on the head,
maintains a relatively constant distance to key sources of vibrations,making
it an ideal sensor for continuous, non-invasive monitoring.

In this study, we focused on pressure waveforms obtained while study
subjects were at rest, minimizing the contribution of biosignal originating
from body motion. As a result, the biosignal was dominated by the origin
from the central cardiovascular system, as indicated by their strong corre-
lation with aortic waveform tracings. However, the ear canal integrates
signals frommultiple sources, and contributions from the carotid arteries or
intracranial pressure are plausible. These signals likely have significantly
lower amplitudes, asmoreprominent delayed componentswouldotherwise
be evident. Enhancing microphone sensitivity, reducing their noise floor,
and developing more advanced algorithms will be essential to disentangle
these signals from other biosignals originating from different parts of the
cardiovascular system or even other organs, such as the brain or digestive
system. This approach could pave the way for comprehensive, multimodal
non-invasive monitoring.

In-ear blood pressure monitoring offers significant advantages due to
its ease of use and integration with existing habits. For cardiac care, mea-
suring blood pressure just twice daily could provide valuable data to
healthcare professionals, enabling better management of medication
dosages and treatment plans. Additionally, giving patients direct access to
their blood pressure data reinforces lifestyle changes by helping themsee the
immediate impact of their choices on their cardiovascular health. This real-
time feedback can promote healthier habits and make the consequences of
negative behaviors more evident.

The combinationof IH technologywithwellness systems, suchas those
offering stress reduction protocols or breathwork exercises, could be par-
ticularly powerful. By givingpatients tools to explorehow their actions affect
blood pressure, they can learn to manage their health more effectively,
gaining insights into which behaviors raise or lower their blood pressure.

Bloodpressure level is often affected bydiurnal variation, suchas stress,
physical movement, or emotional state. These factors can temporarily raise
blood pressure, which may be a healthy physiological response but could
lead to misdiagnosis if the readings are not contextualized. IH technology,

integrated into earbuds that frequently contain motion sensors (Inertial
Measurement Units, IMUs), can address this issue by providing context to
each measurement. The IMUs can detect motion levels before and during
blood pressure readings, helping determine whether the patient was active
or at rest.

Additionally, IH canmeasure heart rate (HR) and heart rate variability
(HRV), offering further insights into whether the patient was relaxed or
stressed at the time of the measurement. This contextual data could allow
healthcare providers to distinguish between normal physiological responses
and genuine hypertension, improving diagnostic accuracy and reducing
unnecessarymedication.Moreover, the ability tomeasure blood pressure in
a relaxed, home environment can mitigate the effects of “white coat syn-
drome”, wherepatients experience elevatedreadings in clinical settings.This
approach offers higher accuracy by eliminating patient-dependent factors
such as technique, cuff size, and other technical limitations associated with
standard cuff-based measurements.

In addition to its applications in blood pressure monitoring, IH tech-
nology holds significant promise for a variety of clinical and consumer uses.
One notable area is arrhythmia detection. Building on recent advancements
in wearable technology, IH can enhance this capability by reducing false
positives and enabling detection in asymptomatic populations. Further-
more, exploring the impact of irregular heart rhythms on hemodynamics
could lead to new biomarkers for assessing the severity of atrial fibrillation.
This has the potential to improve stroke risk assessments, support the study
of anticoagulant treatments, and enhance patient adherence and
compliance.

These advancements are especially valuable for continuous, at-home
monitoring, reducing the need for invasive procedures such as Holter
monitoring. Additionally, IH’s ability to monitor heart function opens new
avenues for detecting andmanaging valvular heart disease and heart failure,
enabling ongoing, remote assessment of these conditions. As IH technology
evolves, its integration into fitness and wellness applications will also grow,
offering a more comprehensive approach to cardiovascular health.

These developments position IH as a versatile tool for both preventive
and therapeutic cardiac care.

The future of preventive cardiac carewill be driven byAI and real-time
data from wearable devices like in-ear sensors. IH technology, combined
with AI, enables continuous cardiovascular monitoring, allowing for early
detection of hypertension, arrhythmias, and other conditions. This shifts
healthcare from reactive to preventive, empowering clinicians to intervene
before critical events occur. AI algorithms, trained on high fidelity datasets,
will enhance precision by identifying subtle patterns missed by traditional
methods, enabling personalized treatment plans tailored to each patient’s
unique cardiovascular profile and combining it with lifestyle and wellbeing
solutions.

The success of this approach relies heavily on robust, secure cloud
infrastructures. Real-time, closed-loop systems—where wearable devices
continuously collect data, transmit it to the cloud for analysis, and provide
feedback—require high levels of data security. Ensuring that data is
encrypted, securely stored, and processed in compliance with privacy reg-
ulations (e.g., HIPAA, GDPR) is essential to maintaining trust and safe-
guarding sensitive health information. These systems can enable immediate
adjustments to care, such as medication changes or lifestyle recommenda-
tions, basedonAI-drivenanalysis of real-timedata, transformingpreventive
cardiac care by delivering timely interventions, reducing hospitalizations,
and improving outcomes.

As a feasibility study, our primary aim was to evaluate the potential of
IH for non-invasive cardiovascular monitoring under controlled clinical
conditions.While the results are encouraging, several limitations inherent to
the studydesign andpopulation should be consideredwhen interpreting the
findings and planning subsequent validation efforts. The results presented
in this study were obtained using a prototype device in which the earbuds
were connected to a controller board via cables. Additional connections
linked the controller board to an ECG device, a GE system, and a data
acquisition computer. This setup introduced sensitivity to external
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vibrations, as movements or environmental factors could propagate
through the cables to the earbuds. Inmany instances, non-stationary signals
—often generated by study subjectmotion or background noise—exhibited
amplitudes significantly higher than the cardiac signals, occasionally even
saturating the system.

Data collection in a cardiac catheterization lab (cath lab) posed addi-
tional challenges due to the inherently dynamic environment. Frequent
adjustments to the patient bed, imaging equipment, and other tools
necessary for optimizing catheter placement introduced furthermotion and
vibration. These factors complicated the collection of clean, and high-
quality data.

The analysis focused on demonstrating the potential of IH technology
for bloodpressure prediction, specifically targeting periodic heartbeats from
study subjects lying on cath beds. To minimize motion-related noise, study
subjects were sedated tomaintain a state of rest. However, a comprehensive
analysis of motion-related signals—such as those generated by walking,
eating, or other activities—was not feasible given the constraints of the cath
lab setting and is beyond the scope of this paper.

Several limitations should be considered when interpreting these
results:
1. Small sample size: The study involved only data from 18 subjects,

which may lead to an overestimation of the accuracy of systolic (SBP)
and diastolic (DBP) predictions, as well as the observed correlation
between IH and cardiac catheterization (CC) measurements. The
limited number of study subjects restricts the statistical power of the
study and may not capture the full range of physiological variability
present in the general population.

2. Narrow blood pressure range: Measurements were primarily taken
while study subjects were at rest and under sedation, resulting in a
narrow range of bloodpressure values. Changes in bloodpressurewere
mainlydrivenby study subject physiology at rest,whichmaynot reflect
the fluctuations that occur during daily activities or stress conditions.

3. Study subject population focus: The study concentrated on patients
undergoing CC for coronary artery disease evaluation. This focus has
both advantages and disadvantages. On one hand, it demonstrates the
feasibility of the technology in a population that stands to benefit most
from accurate blood pressure monitoring—individuals with severe
symptoms or pre-existing heart conditions. On the other hand, this
specificity limits the generalizability of the findings to broader study
subject populations or alternative clinical settings. The physiological
characteristics of study subjectswith coronary artery diseasemay differ
from those of the general population.

4. Data collection constraints: The cath lab environment imposed sig-
nificant constraints. Short recording durations for aortic blood pres-
sure—necessitated by patient safety considerations and the primary
clinical objectives of the procedure—resulted in variable amounts of
data collected per study subject. This limitation affected our ability to
generate individualized blood pressure predictions for many study
subjects, as there was insufficient data for model training in
several cases.

5. Variability in data quality and quantity: The variability in the number
of data points between study subjects, combinedwith the small sample
size, made it difficult to create a statistically robust model applicable to
all. Large inter-individual physiological differences, such as variations
in ear canal anatomy, tissue composition, and cardiovascular health
status, further restricted our ability to build a generalizedmodel. Blood
pressure changes were often outweighed by study subject physiological
differences, complicating efforts to accurately reflect diverse study
subject populations.

6. Prototype device limitations: The reliance on a prototype device
introduces several limitations: a) Earbud Fit and Seal: Proper earbud fit
and seal are important for accurate IH signal detection. Variations in
ear canal anatomy and differences in earbud placement can affect
signal quality, introducing additional variability. b) Technical Limita-
tions: The prototype may not fully represent the performance of a

finalized commercial product. c) Ambient Noise and Interference:
Ambient noise and electromagnetic interference within the cath lab
may have impacted signal quality. While efforts were made to mini-
mize these factors, complete elimination was not possible.

7. Short-term study duration: The study captured data over short periods
during medical procedures. Long-term reliability and consistency of
IH technology for continuousmonitoring remainunverified. Extended
studies are needed to assess device performance over time, including
potential drifts in sensor accuracy and the impact of prolonged use on
signal quality.

To address these limitations, future studies should expand the sample
size to include a larger and more diverse population, enhancing statistical
power and generalizability. Incorporating varied study subject populations,
such as healthy individuals and those with different cardiovascular condi-
tions, will help assess the technology’s applicability across broader groups.
Real-world testing under daily activities involving motion and varying
environmental conditions is necessary to simulate practical use. Long-
itudinal studies are needed to evaluate the consistency of IH technology over
time, identifying potential issues like sensor drift or user compliance.
Advancing device design toward wireless, miniaturized versions would
reduce susceptibility to external vibrations and enhance user-friendliness.
Addressing these areaswill further validate IH technology as a non-invasive,
accurate tool for continuous blood pressure monitoring and cardiovascular
health assessment.

Methods
In-ear IH, occlusion and acoustic leak
In-ear IH technology captures biosignals as fluctuations in pressure inside
the ear canal, measured against a reference like ambient atmospheric
pressure. These biosignals are primarily in the infrasonic range (0–20Hz),
frequencies below the audible spectrum (20–20,000 Hz). This low-
frequency range, often less susceptible to ambient noise, contains valuable
physiological information.

The IH earbud, with an in-ear placement design, not only plays audio
but also detects biosignals in the infrasonic range. Each IH earbud includes a
microphone for detecting pressure changes, as shown in Fig. 7. After
applying proprietary algorithms to correct for instrumental effects and
frequency response associatedwith the earbud placement in the ear canals51,
the device response function is flat in frequency down to fractions of Hz,
with the manufactured microphone sensitivity of −37 ± 1 dB and device
tolerances within 6 dB at 1 Hz. Accurate detection relies on a seal between
the ear tip and the ear canal wall, which introduces the occlusion effect: by
blocking the ear canal, it creates a closed acoustic cavity that significantly
amplifies internal sound pressure, particularly at low frequencies9.

This amplification effect can be explained using Boyle’s ideal gas law,
where pressure and volume are inversely related. By sealing the ear canal
even partly, the effective acoustic volume decreases sharply, resulting in a
corresponding increase in dynamic acoustic pressure. This amplification
can reach up to 40 dB, equating to a 1000-fold increase in amplitude, when
the ear canal’s volume is reduced fromanopen 200 cc to a tightly sealed 2 cc.
If the volume shrinks by half, it can boost biosignal strength by ~6 dB. This
amplification is highly dependent on the level of the seal. Any acoustic leak
—a small gap between the ear tip and the canal wall—compromises the seal,
reducing the impedance and allowing low-frequency energy to escape. This
leak decreases the dynamic pressure, lowering the occlusion effect and,
therefore, the sensitivity of biosignal detection. Variations in earbud seals
change the sensitivity of IH technology to detect biosignals across different
frequencies, causing significant changes in both the amplitude and wave-
form shape, due to the frequency-dependent nature of impedance changes,
which require proper instrumental corrections51.

Data collection protocol
The data sample used in this work was recorded in a clinical study at
ScrippsHealth (ClinicalTrials.gov Identifier: NCT04636892; start date:
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Jan 5, 2021, end date: June 13, 2023, approved by Scripps Health
Institutional Review Board) from 24 study subjects undergoing in-vivo
CC for evaluation of the coronary artery disease (CAD). Among 5
groups of cardiovascular diseases enrolled in the study, the CAD study
subjects exhibit aortic waveforms consistent with those of healthy
individuals, providing good representation of the target population.
The data collection protocol involved recording of simultaneous sig-
nals from MindMics earbuds and gold-standard cardiac monitoring
devices: electrocardiogram (ECG), pulsed wave Doppler echocardio-
gram, and cardiac catheter. The goal of the study was to determine the
accuracy and validate the IH technology for hemodynamic and cardiac
measurements using gold-standard signals. Locally, the project was
coordinated by 3 cardiologists and 2 clinical trial coordinators (CTC)
at Anderson Medical Pavilion, Scripps Health, La Jolla, CA. Three
areas were used for protocol activities, as depicted in Fig. 8. Upon
arrival at the research center, study subjects were moved to a pre-op
holding area where they were fitted with proper-size earbuds by a CTC
on duty, the earbuds’ signal quality was checked and a written consent
was signed by study subjects prior to the procedure. Study subjects also
wore IH earbuds for 3–5 min while at rest to gather baseline data. A
dedicated room was used for a limited transthoracic echocardiogram
(TTE) procedure performed by a designated sonographer. The left
heart catheterization (LHC) procedure was performed in a surgery
suite, with authorized personnel access only. The MindMics team
participated in and operated the data collection remotely, bymeans of a
teleconferencing system for connecting to a local computer at Scripps.
While the order of the execution of the TTE and LHC procedures

depended on departmental workflow for that day, the study protocol
ensured that both the TTE and LHC were completed within a 2.5-h
window. Throughout both procedures, study subjects continued to
wear the MindMics earbuds to collect continuous data.

In the TTE part of the protocol, ~25–45 Echo images per study subject
were collected simultaneously with the IH waveforms, with the Echo views
corresponding to: AP 5C-CW Doppler AoV; AP 5C-PW Doppler LVOT;
AP 3C-CW Doppler AoV; AP 3C-PW Doppler LVOT; and PW Doppler
MVinflow.Eachviewwas captured2–5 timeswhile the subjectwas at rest or
performed the resonant breathing exercise and the Valsalva maneuver.

During the LHC procedure study subjects were at rest in a supine
position. For each study subject, ~10–40min of joint IH, ECG, andCC data
were recorded, corresponding to ~500–2400 cardiac cycles. The data col-
lection protocol included data with the tip of the catheter positioned in the
aorta, but data from the left ventricle, radial/brachial or femoral arteries, and
optionally left and right coronary arteries were recorded as well, depending
on the type of the CC procedure. To increase variations in cardiac events, a
minute of data from the aorta was recorded while the study subject per-
formedbreathing exercises. All datawere recordedwith the sampling rate of
1 kHz. In the analysis, the ECG, CC, and echocardiogram data are used to
validate cardiac features in the IH waveforms, while the CC data from the
aorta provide reference BP values for BP modeling.

The clinical equipment necessary for echocardiography and catheter-
izationmeasurementswas provided by ScrippsHealth.Medtronic, Terumo,
and Boston Scientific coronary catheters were used to invasively measure
blood pressure during the catheterization procedure. The catheterization
room was equipped with a GE TRAM system, which is a multi-parameter

Fig. 8 | Clinical setup. Clinical setup for data col-
lection using TTE, LHC, ECG, and IH.

Fig. 7 | IH earbud positioned in the ear canal and
with an exploded view of internal earbud com-
ponents.The seal between a the ear tip and the canal
wall is critical for achieving occlusion and mini-
mizing acoustic leakage of infrasonic biosignals. The
earbud consists of b a flexible silicone boot for
comfort, mounted on c a front cap that houses d a
MEMS microphone with sufficient sensitivity to
detect infrasound. The rear section comprises e a
speaker ring supporting f a speaker enclosed in g a
back cap. Together, these components enable full-
range audio playback. The system interfaces via h a
cable connected to i a PCB board integrated with the
clinical data acquisition setup. j Audio playback can
occur in k the ear canal simultaneously with
l biosignal monitoring, as infrasonic biosignals
(<20 Hz) occupy a frequency range below that of
audible sound (>20 Hz), allowing both functions to
operate concurrently without interference. All
components are off-the-shelf. Earbud design by
MindMics, Inc.
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module that simultaneously records multi-lead ECG signals and up to 4
channels with invasive blood pressure. The analogue output of the GE
TRAM system and the MindMics IH earbuds were synchronized and
recorded using a Data Acquisition System (DAQ) and sent to the computer
over a wired USB connection and further to a MindMics cloud infra-
structure using secured communication protocol MQTT, where the data
was stored for future analysis.Overall therewere4 setupsof devices available
for this clinical study, each including a laptop computer to run the DAQ
system, a set of MindMics IH earbuds, a hardware board hosting DAQ
system and necessary cabling. The WiFi router was used to send the data
from a laptop to the MindMics cloud. The echocardiogram data were
recorded separately to a local Nucleus database in a form of high-resolution
images, from where they were copied to a MindMics storage repository in
the cloud; the time synchronization with MindMics signals was performed
offline.

Consenting subjects participated in the study for about 3–5 h,
including breaks between the procedures. This study involved only one visit
to the Scripps clinic. There were no known risks to study subjects associated
with wearing the MindMics earbuds during the procedure. The simulta-
neous data collection of signals fromearbuds and catheter during a regularly
scheduled catheterization procedure had a negligible effect on the outcome
of the latter. Verbal communication between the study subject and the
clinical coordinator was possible during the entire procedure, including
times when the study subject wore earbuds. The protection of the privacy of
study subjectswas ensured by anonymizing the data by the ScrippsCTC.All
the study subjects’ confidential information was removed from study
reports before they were handed over to the MindMics team. The only
available information included study subjects’ sex, age, race, height, weight,
classification of cardiovascular disease and comorbidities.

Study population
Table 1 shows an overall demographics for the CAD subjects in the study
(n = 24), together with comorbidities. From the recruited subjects, 6 were
discarded from the current analysis, because of issues with recording
reference signals from the GE Tram unit (1 subject), an insufficient quality
of ECG signals (2 subjects), or an insufficient earbud fit in study subjects’
ears (3 subjects) that could not be resolved at the time of data collection

when the catheter head was in the aorta, due to limited access to the pro-
cedure area. The characteristics of the subjects selected for the analysis
(n = 18) is as follows (also listed in Table 1): the age in the range between 49
and 85 (average 67) years, height between 155 and 188 (average of 173) cm,
weight between 60 and 133 (average of 89) kg, 28% females. The fraction of
females is comparable to the number observed in all cath procedures at
Scripps (34%), which is similar for all Scripps hospitals. 10 subjects had
obstructive CAD confirmed during the procedure.

Data preparation for analysis
Figure 9 shows a typical structure of the data collected during the CC
procedure for one of the study subjects as an example. The top two plots
present IH data collected with the left and the right earbuds, while the
bottom plot displays blood pressure waveforms recorded with the catheter
at different arterial and heart locations: the radial (yellow) and brachial
(gold) arteries, the aorta (blue), the heart’s left ventricle (red), and the
coronary arteries (green area). Thedark blue region corresponds to aminute
of breathing exercises performed by the subject while the catheter head was
in the aorta. Regions with very low pressure values correspond to the
catheter’s transitioning zones. The ECG signals are not shown in the figure.
Only data with the catheter head in the aorta are selected for the blood
pressure analysis, as described below.

ForWiggers diagrams shown inFigs. 1, 2, andSupplementaryFigs. 1, 2,
sets of 15 consecutive ECG, IH, and CCwaveformswere arbitrarily selected
from regions when the catheter head was in the aorta. For BP modeling a
data processing pipeline was introduced to create the so-called databanks
with simultaneous IHandCCwaveformsof individual cardiac cycles. In this
pipeline: (i) the IH data were corrected for instrumental effects using pro-
prietary algorithms, (ii) the IH and CC signals were merged into events
corresponding to individual cardiac cycles, with a cardiac cycle defined as
the time between two consecutive QRS peaks of the ECG, (iii) a data quality
assessment of the catheter and IHsignalswasperformedby requiring a good
cross-correlation score between individual waveforms and good-signal
templates, to remove waveforms with motions artifacts or instrumental
noise (Fig. 10 for a 30-secperiod in anexemplary study subject) (iv) accepted
cardiac cycles were written into csv files (databanks) for further analysis.
Figure 11 shows the number of cardiac cycles with simultaneous IH and
catheterwaveforms for eachof theCADstudy subjects after all selections. In
total, there are 2171 cardiac cycles (data points) for BPmodeling and timing
analysis. In this sample, 14 (11) subjects have good signals recorded in the
left (right) earbud, while 7 subjects have good signals simultaneously
recorded in both earbuds.

Comprehensive Wiggers diagrams and signal alignment
To evaluate the temporal relationships between cardiac events across
multiplemodalities, we generated a comprehensive set ofWiggers diagrams
for study participants who underwent CC and had complete multimodal
datasets comprising IH, 12-lead electrocardiography (ECG), echocardio-
graphy, and invasive aortic pressure recordings.

IH, aortic pressure, and ECG Lead II were recorded concurrently
during CC at a sampling rate of 1 kHz.When available, peripheral pressure
waveforms from the brachial, radial, and femoral arterieswere also collected
as the catheter advanced from thewrist or groin to the aorta. Although these
peripheral traceswerenot acquired simultaneouslywith central signals, they
serve to illustrate the progression of waveform morphology along the
arterial tree. Doppler echocardiography of LVOT was typically obtained
prior to catheterization and served as a reference for cycle timing.

To enable consistent temporal comparisons across modalities, cardiac
cycles in both catheterization and IH signals were rescaled to match the
inter-beat intervals (IBIs) extracted from the echocardiographic ECG trace.
The signals were then aligned in time so that the QRS complexes in both
echocardiogram and catheterization/IH ECGs were synchronized. Each
Wiggers diagram panel includes, from top to bottom: LVOTDoppler flow,
aortic pressure, IH waveform (corrected for instrument response), high-
frequency IH (>20Hz) revealing S1 and S2 sounds, and ECG Lead II. For

Table 1 | Overall study demographic

CAD sample CADsample for
analysis

Number of study
subjects:

24 18

Age range (average): 39–85 (67) 49–85 (67)

Height range
(average):

155–188 (173) 155–188 (173)

Weight range
(average):

57–133 (89) 60–133 (89)

Gender (F/M): 6/18 5/13

Cardiovascular
disease:

Obstructive CAD on
procedure date

15 10

Comorbidities: Hyperlipidemia 22 18

Hypertension 16 11

Diabetes 11 9

Atrial fibrillation 4 3

Heart failure 4 2

Cerebrovascular accident 2 1

Chronic kidney disease 1 1

Valvular disease on echo 1 1

General clinical characteristics of subjects in the study. Numbers next to cardiovascular conditions
correspond to the total number of study subjects diagnosed with those conditions.
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Fig. 9 | Exemplary data structure during the LHC procedure. Time series of the MindMics data from the a Left and b Right earbud, together with c the simultaneous
catheter data for an exemplary study subject. Colors in the bottom plot indicate various catheter head locations (see text).

Fig. 10 | Data quality assessment. Data quality assessment of a simultaneous
catheter and MindMics IH time series for b left and c right earbuds data shown for
each cardiac cycle in an exemplary 30-s study subject’s data. Cardiac cycles are
defined by times between two consecutive QRS peaks of the ECG tracing (vertical

lines). The distribution of signal quality, assessed using cross-correlation scores, is
shown for d catheter waveforms, e IH signals from the left earbud, and f IH signals
from the right earbud. Shaded regions indicate waveforms that passed the quality
threshold.
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each subject, 15 consecutive cardiac cycleswere typically stacked to compute
averagewaveforms. In cases where fewer high-quality consecutive segments
were available across all modalities—such as in CAD11 and CAD17—nine
and eleven cycles, respectively, were used. Across all panels, variability
around the averaged waveforms was primarily due to respiratory modula-
tion of cardiac signals.

Figure 11 summarizes the number of analyzable cardiac cycles per
study subject and serves as a guide to the grouping strategy.Group I includes
subjects with more than 90 cycles, enabling the development of indivi-
dualized blood pressure models (CAD 02, 03, 04, 08, 10, 11, 14, 16, 17, 18,
and 23). Subjects CAD 06 and CAD 23 are presented in Figs. 1 and 2,
respectively.Group II includes thosewith 15–89 analyzable cycles,whowere
included in one model for all analyses but not used for individual modeling
(CAD 01, 06, 07, 09, 13, 20, and 24). Subjects CAD 05, 12, 15, and 19 were
excluded due to incomplete IH or aortic pressure data; CAD21 and 22were
excludeddue tomissingECG.Wiggers diagrams for all included subjects are
annotatedwith aortic valve opening (AVO) and closing (AVC) timings and
shown in Supplementary Figs. 1 and 2.

Features for BP prediction
Many studies have explored feature extraction from hemodynamic wave-
forms for BP modeling using machine learning25–27,52–59, particularly with
peripheral PPG signals and reference SBP andDBPmeasurements fromBP
cuffs. Typically, a large set of potential features is generated based on various
characteristic points of the waveform and their combinations. However,
there is limited prior understanding of how these features correlate with BP
dynamics. The challenge in determining feature-BP correlations arises
because the BP signal from the cuff only provides the maximum and
minimumvalues of the blood pressurewaveform,which are also temporally
separated.

The dataset used in this study includes full blood pressure waveforms
recorded via a catheter positioned in the aorta, enabling a comparison of
waveforms at different BP values to gain insights into how BP variations
affect waveform shape. Figure 12 presents a comparison of normalized low-
and high-BP waveforms, along with their first and second derivatives, from
4 exemplary study subjects. For each subject, the low- and high-BP wave-
forms were selected by minimizing and maximizing the product of
SBP*DBP, respectively, as shown in the scatter plot.

Notable changes in thewaveforms include the following: asBP increases,
thewaveformsbecome slightlynarrower,with theirmaximumvaluesdelayed
in time and the systolic portion shifted toward AVC. In the first derivative of
the waveforms, the maximum at AVO remains largely unchanged with BP
variations. However, the minimum at AVC becomes deeper, reflecting a
more rapid decrease in pressure as the time approaches AVC at higher BP. It
is also delayed. Similarly, changes in the secondderivative occurmainly in the
AVC region, with little variation observed in the AVO region.

Changes in heart rate (HR) appear to be a confounding factor when
analyzing BP-induced changes in the waveform shape. However, HR var-
iations primarily affect the diastolic phase of the cardiac cycle, causing its
steeper exponential decline (Fig. 12a2, a4), while the duration of systole
remains relatively unchanged.

The variations in waveform shape increase with BP changes. For
examples shown in Fig. 12, the shape similarity expressed in terms of a cross
correlation score decreases from 0.99 to 0.97 as the difference in SBP
increases from9 to 33mmHg, respectively.When averaged over all subjects
the score is 0.98 for the average SBP increase of 22mmHg. We also calcu-
lated the cross correlation score for the difference in the waveform shape
between the subjects at a fixed SBP. When averaged over all subjects pairs
constructed from 9 (8) subjects that had measurement at SBP = 120
(130) ± 1mmHg, the score is 0.95 (0.94). We conclude that in our sample,
variations in the waveform shape due to BP changes are smaller than var-
iations between subjects. This observation suggests that individualized BP
prediction models, tailored to each subject, are likely to yield better per-
formance than a single model applied across all subjects.

The waveform dynamics described above is used to create a list of
features for BP prediction. These features, among others, include ratios of
timings and normalized areas under the curve for selected parts of the
cardiac cycle, the four leading moments of the systolic part, as well as
amplitude ratios calculated at AVO and AVC times in the first and second
derivatives of the waveforms. Other features in the list include waveform
durations (interbeat intervals, IBIs) and the instantaneous heart rate,
derived from these intervals. Finally, demographic variables such as sex, age,
height, weight, body mass index (BMI), and body surface area (BSA) are
incorporated when training a model for all subjects.

Machine learning model for BP prediction
Two approaches were used to predict SBP and DBP in the CC and IH data,
based on features described in the previous section, extracted from indivi-
dual cardiac-cycle waveforms after normalizing their amplitudes to the
range of [0,1]: (i) we trained individualmodels for each of the study subjects,
as well as (ii) one model for all the subjects. Features corresponding to
demographic variables were used only in the latter case. Individual cardiac
cycles were treated as a tabular rather than timeseries data, i.e. their time
sequence was not used when training models. Reference SBP and DBP
values were obtained fromCCmeasurements, providing precision superior
to that of traditional BP cuff devices (approx. 1 vs 5mmHg, respectively).

For individual models, 12 subjects were used who had at least 1.5min
(≥ 90 cardiac cycles) of recorded data, to ensure a sufficient number of
observations. Commonly used machine learning models from the scikit-
learn library, such as SVM, KNN, LASSO and ElasticNet Regression,
RandomForest and GradientBoosing ensemble-based models were trained
to predict SBP and DBP. The results showed similar performance for the
out-of-the-box models, slightly favoring the Gradient Boosting model
(GBM) and LASSO Regression (LASSO) algorithms. In training and eval-
uatingmodels for independent subjects, a 5-fold cross validation technique,
with a 80/20% split for training/testing samples, was used. Table 2 shows
model performance in terms of standard deviation between predicted and
reference values of SBP and DBP for GBM and LASSO models, separately
for CC and IH data, and for training and testing set. The numbers are
evaluated after combining predictions from all 12 subjects. Given a limited
sample size in this study, no full-scale hyperparameter tuning was per-
formed for the GBM model, while the results for the LASSO model are
shown with the regularization strength parameter changed from its default

Fig. 11 | Number of cardiac cycles per CAD subject. Number of data points
(cardiac cycles) for 18 study subjects who underwent cardiac catheterisation (CC)
procedure for the evaluation of Coronary Artery Disease (CAD). Data points con-
tain simultaneous in-ear IH and CC aortic pressure waveforms from individual
heartbeats, defined by two consecutive QRS peaks of the ECG tracing. IH, CC, and
ECG signals were recorded at a sampling rate of 1 kHz, and correspond to 30 s–6 min
of data with the catheter head located in the aorta.
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value α = 1 to 0.1, as it gave a better performance in a quick parameter scan.
The IH-predicted vs CC-measured BP values from the Gradient Boosting
model for individual subjects are compiled on a common plot in Fig. 4,
separately for theCC (top) and IH (bottom) data and for SBP (left) andDBP
(right). The Bland-Altman plots with the relationship of agreement for
predicted and reference values of SBP and DBP are shown in Fig. 5, using
similar figure layout.

When averaged over all 12 subjects, the standard deviation of the dif-
ference between predicted and reference BP values were 4.1 and 2.4mmHg
for CC and 5.8 and 3.7mmHg for MindMics data, for SBP and DBP,
respectively. A very good agreement with the reference for the CC sample
demonstrates that BP information is encoded in the waveform shape.

For completeness, we also trained one model for all subjects, although
the dataset comprising 18 subjects is too small for the model to sufficiently
capture physiological differences in the general population. In this
approach, the so-called Leave-One-Out technique was used to separate

18 subjects into training and testing samples. Namely, 18 trainings were
performed, with each subject contributing 17 times to the training set and
one time to the testing set. As mentioned earlier, subjects’ demographic
variables were included in the list of input features. After aggregating the
results of the GBM algorithm over all subjects, the standard deviation of the
difference between predicted and reference values of SBP andDBPwas 16.2
and 8.3mmHg for CC data and 15.3 and 8.0mmHg for IH data, respec-
tively. Interestingly, when five data points from the test subjects were seeded
to the training set, the model performance improved significantly, with the
standard deviation of SBP and DBP prediction uncertainties reduced to 8.6
and4.8 mmHg forCCdata, and9.8 and5.7mmHg for IHdata, respectively.
A discussion of these results is presented in the main text.

A preliminary feature importance analysis of the GBM and LASSO
models revealed that although individual models differ in their set of most
significant features, there is a common subgroup of features present in all
subjects. These most frequent features include: the duration of the cardiac

Fig. 12 | Comparison of CC waveforms at low/high BP. Shape comparison of
a normalized cardiac catheterization (CC) waveforms and their b first and c second
derivatives corresponding to a high (red) and low (blue) BP in 4 exemplary subjects
(rows 1–4). For each subject, waveforms are selected byminimizing andmaximizing
the product of SBP*DBP, as depicted by colored dots in the scatter plots (d).

Differences in SBP, DBP, and PP = SBP-DBP between the two selected waveforms
are indicated in the scatter plots aswell. The duration of the cardiac cycle, also known
as an interbeat interval (IBI), is inversely proportional to the subject’s heart rate, i.e. a
shorter (longer) IBI corresponds to a higher (lower) HR.

https://doi.org/10.1038/s44325-025-00076-4 Article

npj Cardiovascular Health |            (2025) 2:39 16

www.nature.com/npjcardiohealth


cycle (IBI) and its systole part (LVET), the area under the curve for the
systole and the rapid ejectionphase (fromAVOto thewaveformmaximum)
parts, moments of the systolic part of the waveform, the value of the nor-
malized waveform at AVO and AVC, ratios of amplitudes of the first and
second derivative at AVO andAVC, and the band power around AVO and
AVC in various frequency bands from 0 to 50Hz. For DBP, also the area
under and diastolic part of the cardiac cycle and the slope of its exponential
dependence are important for model prediction. A similar set of features
appears to be important when training the multi-subject model, where, in
addition, subjects’ age, height, and BMI are frequently used. A larger set of
cardiac cycles for training individual models and a larger set of subjects for
the multi-subject model are needed to conclude this analysis.

Data availability
Datasets used for the analyses in this study are available from the corre-
sponding author upon request.

Code availability
Models and code generated or used during the study are proprietary or
confidential in nature and may only be provided with restriction.
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