
npj | biosensing Article

https://doi.org/10.1038/s44328-024-00002-1

Optimal signal quality index for remote
photoplethysmogram sensing
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Remote photoplethysmography (rPPG) enables non-invasive monitoring of circulatory signals using
mobile devices, a crucial advancement in biosensing. Despite its potential, ensuring signal quality
amidst noise and artifacts remains a significant challenge, particularly in healthcare applications.
Addressing this, our study focuses on a singular signal quality index (SQI) for rPPG, aimed at
simplifying high-quality video capture for heart rate detection and cardiac assessment.We introduce a
practical threshold for this SQI, specifically the signal-to-noise ratio index (NSQI), optimized for
straightforward implementation on portable devices for real-time video analysis. Employing
(NSQI < 0.293) as our threshold, our methodology successfully identifies high-quality cardiac
information in video frames, effectively mitigating the influence of noise and artifacts. Validated on
publicly available datasets with advanced machine learning algorithms and leave-one-out cross-
validation, our approach significantly reduces computational complexity. This innovation not only
enhances efficiency in health monitoring applications but also offers a pragmatic solution for remote
biosensing. Our findings constitute a notable advancement in rPPG signal quality assessment,
marking a critical step forward in the development of remote cardiac monitoring technologies with
extensive healthcare implications.

Remote photoplethysmography (rPPG) represents a significant leap for-
ward in the realm of biosensing technologies, offering a non-invasive and
cost-effective means to monitor vital signs such as heart rate (HR) and HR
variability (HRV)1. This innovative approach uses ubiquitous RGB cameras
found in everyday devices, making vital sign monitoring more accessible
than ever before.

The potential of rPPG in enabling remote health monitoring has
garnered significant interest, especially in telemedicine and personal
health tracking domains2. Its applications span from clinical patient
monitoring to consumer health, showcasing its versatility. Recent
research in rPPG has explored the evaluation of red, green, and blue
channels for heart rate detection3, the development of less complex
methods for improved heart rate measurement via rPPG4, the evalua-
tion of biases in rPPG methods5, and investigations into the effective-
ness of various rPPGmethods in different settings6,7. Additionally, there
have been studies on the use of machine learning for blood pressure
detection using rPPG8,9. However, the accuracy of rPPG is often com-
promised by artifacts, primarily due to motion and external light
interference, which significantly impact signal quality10. This presents a

substantial challenge, especially in scenarios where precision and
reliability are crucial.

Signal quality indices (SQIs) have thus become critical in the field of
biosensing for assessing the integrity of biosignals11. These indices, including
the widely recognized signal-to-noise ratio (SNR), offer a quantitative
measureof a signal’s reliability,making themessential tools in the evaluation
of rPPG signals12. They help in distinguishing high-quality signals from
those corrupted by noise and artifacts, ensuring the accuracy of health
monitoring.

In recent years, the clinical relevance of conventional PPG mea-
surements has attracted significant research interest13,14. Despite this
growing attention, a comprehensive understanding of the most effective
SQIs for rPPG, especially within the context of mobile health applica-
tions, remains a challenge. Addressing this gap, our study investigates
eight distinct SQIs previously examined for conventional PPG signals15.
We aim to simplify (reduce complexity) real-time analysis by identifying
a singular SQI capable of capturing high-quality video for accurate heart
rate detection and cardiac assessment. Additionally, we focus on
establishing a practical threshold for this SQI. This is intended to
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facilitate its immediate and straightforward implementation on smart-
phones, wearables, or other portable devices, enabling efficient real-time
video analysis in rPPG—a task that has traditionally been characterized
by its complexity and high resource demands.

Results
In Fig. 1, we can see that the POS rPPG method produces a value of
zero in the chart with a 1-s window. This happens because this method
doesn’t provide any useful signal when used with such a small
window.

We are conducting an investigation involving the CHROM, GREEN,
and OMIT rPPG methods to understand how the average change in heart
rate (∣ΔBPM∣) behaves as we use larger window sizes. You can find this
information in Fig. 2.

In Fig. 2, we observe a significant drop in heart rate from 1 to 3 s. This
drop aligns with our expectations and was already visible in the previous
figure. Interestingly, increasing thewindow size beyond 5 s does not seem to
significantly affect the accuracy of heart rate prediction. Furthermore, when
we use a window size of 3 s, our predictions are already very close to the
lowest possible accuracy.

It is worth noting that in a prior study that focused onPPG (not rPPG),
researchers found that the best window size for assessing the quality of a
PPG waveform was 2 s. This 2-s window size was able to distinguish
between recordings that were considered ‘Excellent’ and those that
were ‘Unfit’.

To further enhance the clarity of our analysis, we conducted a labeling
analysis using DTWand the coefficient ‘r.’ This analysis spanned a window
size range from 3 to 12 s. The outcome of this process was the classification
of rPPG signals into three distinct categories: ‘Unfit,’ ‘Acceptable,’ and
‘Excellent.’ Each classification was assigned to specific rPPG methods,
window sizes, and datasets.

To streamline our analysis, we made the decision to exclude window
sizes smaller than 3 s. This choice was informed by the data presented in
previous figures, which unequivocally demonstrated that none of the
obtained signalsmet the predefinedcriteria for being labeled as ‘Acceptable.’
Consequently, all signals falling within this range were automatically cate-
gorized as ‘Unfit,’ rendering the associated data irrelevant for our intended
purpose.

For larger window sizes, we still observed a preponderance of signals in
the ‘Unfit’ class.However, certain rPPGmethods, such as LGI,GREEN, and
OMIT, exhibited a more balanced distribution between ‘Excellent’ and
‘Acceptable’ signals. This balance becamemore pronounced as the window
size increased, as evident in Fig. 3.

The subsequent phase of our analysis involved evaluating the effec-
tiveness of SQIs in classifying the quality of rPPGsignals. To achieve this, we
employed four classifiers and utilized leave-one-out cross-validation
(LOOCV) for three specific pairwise comparisons: ‘Excellent’ vs. ‘Unfit,’
‘Unfit’ vs. ‘Acceptable,’ and ‘Excellent’ vs. ‘Acceptable.’

It is worth noting that, in some cases, the three classes exhibited
imbalances, and in certain instances, one or more classes had no samples at
all. This necessitated a careful consideration of the feasibility of conducting
the aforementioned comparisons. For example, when examining Fig. 3,
particularly for the casewith 4-s window size, it became evident that none of
the comparisons for signals derived from the POS, ICA, PBV, and PCA
methods would yield statistically significant results. This was due to the
‘Excellent’ class either being emptyor containingonly a single sample,which
is insufficient for reliable LOOCV.

Conversely, when we examined the class distribution for the 8-s win-
dow size case, we found that all three comparisons would generate mean-
ingful results for seven out of eight rPPG methods. Our analysis
encompassed a comprehensive investigation of rPPG signals, including
labeling, SQI-based classification, and considerations of class distribution.

Considering the eight rPPG methods as individual annotators for
labeling the signals, we calculated the inter-rater agreement as the
percentage of signals labeled in the same class across all rPPGmethods.
For the PURE dataset, the highest agreement occurred with a 3-s
window size (0.40), while for the LGI-PPGI dataset, the highest
agreement was observed with a 6-second window size (0.47). Com-
bining the datasets, a window size of 5 s resulted in the highest agree-
ment (0.41) among the eight rPPG methods.

Additionally, we used the kappa statistic to assess the agreement
between the eight rPPG methods in the context of three rPPG quality
classifications. The average inter-observer pairwise Cohen’s kappa coeffi-
cient (Cohen’s kappa is defined as: k ¼ PA�PE

1�PE
, where PA is the observed

agreement among raters (proportion of items on which they agree), and PE
is the expected agreement (probability that two annotators would agree by
chance).) between the CHROM and GREEN methods was k = 0.37, indi-
cating moderate agreement. Furthermore, we employed Fleiss’ kappa
coefficient (Fleiss’ kappa is defined as: k ¼ Pobs�Prnd

1�Prnd
, where Pobs represents

the observed agreement among raters, calculated as the proportion of all
assignments classified into a particular category, summed over all categories
and all raters, andPrnd is the probability of chance agreement.) to investigate
agreement amongmore than twomethods. The average result was k = 0.17
for the CHROM, GREEN, and OMIT methods, indicating fair agreement.

Based on the results of the kappa agreement, we tested the ability of
SQIs to classify the quality of rPPG signals obtained through the GREEN,
CHROM, and OMIT rPPG methods individually. We focused on the
window sizewith the highest agreement,whichwas 3 s for the PUREdataset
and 6 s for the LGI-PPGI dataset.

To assess theperformanceof SQIs in evaluating rPPGsignal quality,we
conducted leave-one-out cross-validation (LOOCV) using four supervised
learning classifiers: support vector machine (SVM), linear discriminant
analysis (LDA), decision tree classifier (TREE), and logistic regres-
sion (LOGI).

We reported Sensitivity (SE), Positive Predictivity (PP), the F1 score
(F1), and the Overall F1 score (OF1) of the four classifiers after LOOCV on

Fig. 1 | Impact of window size on rPPGmethod accuracy. This figure displays the
average absolute beats-per-minute difference (|ΔBPM|) across all activities and
subjects for various remote photoplethysmography (rPPG) methods, as the window
size increases from 1 to 3 s (from left to right). |ΔBPM| serves as a key metric for

evaluating the precision of each rPPG technique over short analysis intervals. The
data was obtained from the PURE dataset. ∣ΔBPM∣ beats-per-minute difference,
rPPG remote photoplethysmography.
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the normalized SQIs in Table 1 (PURE Dataset) and Table 2 (LGI-PPGI
Dataset). The results are ordered in decreasing order of theOF1 score, which
is themean value of the F1 scores from the four classifiers. Notably, the gold
standard PSQI generally did not exhibit discriminative power for the three
comparisons. In contrast, the NSQI outperformed all other SQIs for the
‘Excellent’ vs. ‘Unfit’ and ‘Excellent’ vs. ‘Acceptable’ comparisons in both
datasets. For the ‘Unfit’vs. ‘Acceptable’ comparison, theKSQI emerged as the
most effective index in both datasets. Furthermore, it is worth mentioning
thatNSQI andKSQI consistently achieved thehighestOF1 scores compared to
other SQIs.

Wealso established straightforward linear thresholdsusing the support
vectors obtained from the linear SVM applied to the labeled NSQI and KSQI

features. Figure 4 displays the decision boundaries for the three compar-
isons, derived from a linear SVM utilizing data from the two combined
datasets.

Furthermore, we have identified three distinct thresholds, as illustrated
in Fig. 5, which serve as valuable tools for assessing signal quality based on
the normalized index values fromprevious observations. Thefirst threshold
distinguishes between Excellent and Unfit signals, the second threshold

separatesUnfit from Acceptable signals, and the final threshold demarcates
the boundary between Excellent and Acceptable signals.

Figure 5 effectively encapsulates the essence of our study, illustrating
our central contribution: a novel and straightforward approach to rPPG
signal quality assessment. Traditionally, real-time video analysis in this
context hasbeen resource-intensive, its effectiveness constrainedby the time
complexity of the algorithms used. Our research counters this challenge by
introducing a simplified method, employing a singular SQI with a defined
threshold, specifically (NSQI < 0.293). This threshold has been carefully
selected to accurately pinpoint high-quality cardiac information within
video frames.

This innovative approach markedly reduces the computational bur-
den, simultaneously maintaining high accuracy in the extraction of cardiac
data from video streams. The ability to selectively filter video frames based
on their assessed quality, focusing exclusively on those classified as excellent,
is a distinctive feature of our study. Such precision in identifying high-
quality frames is instrumental in optimizing rPPG signal processing, paving
the way for more efficient and accurate remote cardiac monitoring
technologies.

Fig. 2 | Comparison of rPPG method performance across PURE and LGI-PPGI
datasets. This figure illustrates the average absolute beats-per-minute difference
(|ΔBPM|) for three remote photoplethysmography (rPPG) methods: CHROM,
GREEN, and OMIT, across all activities and subjects within the PURE (a) and

LGI-PPGI (b) datasets. The analysis covers a range of window sizes from 1 to
12 seconds. |ΔBPM| represents the difference in beats per minute, serving as a
measure of accuracy for each rPPG method.

Fig. 3 | Distribution of reconstructed signals by rPPG methods across different
window sizes. This figure presents a comparison of the signal distributions obtained
from eight remote photoplethysmography (rPPG) methods, utilizing window sizes
of 4, 8, and 12 s, respectively. Each panel illustrates how the labeled signals are
reconstructed under the specifiedwindow size, providing insights into the variability

and consistency of each rPPGmethod’s performance. In the leftmost figure, we have
a total of 75 Excellent signals, 35 Acceptable signals, and 362 Unfit signals. In the
central figure, we have a total of 125 Excellent signals, 74 Acceptable signals, and 273
Unfit signals. In the rightmost figure, we have a total of 143 Excellent signals, 85
Acceptable signals, and 245 Unfit signals.
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Table 1 | Performance metrics of four classifiers (SVM, LDA,
LR, and TREE) evaluated through leave-one-out cross-
validation on the PURE dataset.

Excellent vs. Unfit

Index NSQI KSQI ESQI SSQI MSQI ZSQI RSQI PSQI

Overall OF1 0.86 0.79 0.76 0.71 0.63 0.63 0.63 0.6

SVM SE 0.83 0.85 0.76 0.55 0.26 0.56 0.33 0.6

PP 0.9 0.78 0.77 0.47 0.41 0.62 0.3 0.42

F1 0.86 0.81 0.76 0.76 0.81 0.71 0.75 0.74

LDA SE 0.87 0.74 0.81 0.56 0.37 0.53 0.46 0.62

PP 0.87 0.86 0.78 0.46 0.41 0.42 0.61 0.52

F1 0.87 0.78 0.79 0.76 0.57 0.7 0.61 0.54

LOGI SE 0.85 0.79 0.81 0.53 0.37 0.51 0.46 0.62

PP 0.92 0.79 0.78 0.45 0.41 0.42 0.61 0.53

F1 0.88 0.79 0.79 0.73 0.57 0.68 0.61 0.55

TREE SE 0.84 0.78 0.7 0.58 0.57 0.41 0.54 0.55

PP 0.81 0.78 0.7 0.58 0.56 0.45 0.51 0.55

F1 0.82 0.78 0.7 0.58 0.56 0.43 0.52 0.55

Excellent vs. Acceptable

Index NSQI ESQI KSQI SSQI MSQI ZSQI PSQI RSQI

Overall OF1 0.78 0.74 0.74 0.72 0.71 0.7 0.66 0.64

SVM SE 0.86 0.86 0.98 0.91 0.65 0.64 0.73 0.69

PP 0.73 0.7 0.7 0.62 0.45 0.45 0.57 0.51

F1 0.82 0.77 0.77 0.73 0.65 0.75 0.63 0.58

LDA SE 0.97 0.86 0.94 0.88 0.57 0.82 0.8 0.76

PP 0.71 0.65 0.67 0.68 0.45 0.64 0.63 0.63

F1 0.82 0.74 0.78 0.76 0.76 0.71 0.7 0.69

LOGI SE 0.93 0.86 0.94 0.86 0.57 0.79 0.8 0.76

PP 0.72 0.69 0.67 0.66 0.45 0.61 0.63 0.6

F1 0.8 0.76 0.78 0.74 0.75 0.69 0.7 0.67

TREE SE 0.65 0.72 0.6 0.61 0.68 0.7 0.65 0.62

PP 0.7 0.7 0.63 0.64 0.7 0.69 0.62 0.6

F1 0.67 0.71 0.61 0.62 0.69 0.66 0.6 0.61

Acceptable vs. Unfit

Index KSQI SSQI NSQI ZSQI ESQI MSQI RSQI PSQI

Overall OF1 0.81 0.69 0.67 0.66 0.61 0.53 0.48 0.41

SVM SE 0.3 0.26 0.23 0.28 0.25 0.3 0.12 0.11

PP 0.85 0.79 0.68 0.84 0.67 0.55 0.3 0.14

F1 0.87 0.68 0.79 0.84 0.7 0.68 0.33 0.29

LDA SE 0.3 0.26 0.23 0.43 0.19 0.31 0.21 0.26

PP 0.85 0.39 0.34 0.93 0.31 0.54 0.26 0.51

F1 0.87 0.68 0.79 0.72 0.59 0.47 0.57 0.42

LOGI SE 0.3 0.26 0.23 0.35 0.23 0.31 0.21 0.26

PP 0.85 0.39 0.33 0.92 0.33 0.79 0.26 0.5

F1 0.87 0.79 0.67 0.59 0.67 0.49 0.57 0.41

TREE SE 0.6 0.4 0.42 0.46 0.3 0.32 0.28 0.33

PP 0.62 0.42 0.38 0.56 0.3 0.31 0.28 0.32

F1 0.61 0.6 0.41 0.49 0.45 0.47 0.42 0.49

Binary classification was performed on rPPG signals processed using CHROM, GREEN, and OMIT
methods across three signal quality classes: Excellent, Acceptable, and Unfit. Metrics include
Sensitivity (SE), Positive Predictivity (PP), and F1 score (F1). The NSQI index showed superior per-
formance inExcellent vs.Unfit and Excellent vs.Acceptable comparisons, whileKSQI excelled in the
Acceptable vs.Unfit comparison. Note: OF1 represents the overall F1 score, calculated as themean
of the F1 scores from the four classifiers.
Bolded numbers indicate the highest classification rate achieved.

Table 2 | Performance metrics of four classifiers (SVM, LDA,
LR, and TREE) evaluated through leave-one-out cross-
validation on the LGI-PPGI dataset.

Excellent vs. Unfit

Index NSQI ESQI KSQI PSQI ZSQI RSQI SSQI MSQI

Overall OF1 0.77 0.75 0.75 0.51 0.5 0.49 0.45 0.27

SVM SE 0.81 0.76 0.81 0.37 0.52 NaN 0.35 NaN

PP 0.82 0.78 0.77 0.55 0.63 NaN 0.56 NaN

F1 0.81 0.76 0.79 0.54 0.7 NaN 0.53 NaN

LDA SE 0.81 0.81 0.81 0.41 0.4 NaN 0.4 NaN

PP 0.82 0.79 0.73 0.41 0.65 NaN 0.61 NaN

F1 0.81 0.79 0.77 0.62 0.61 NaN 0.61 NaN

LOGI SE 0.76 0.76 0.74 0.37 0.3 NaN 0.35 NaN

PP 0.81 0.85 0.79 0.56 0.62 NaN 0.61 NaN

F1 0.78 0.8 0.76 0.65 0.51 NaN 0.56 NaN

TREE SE 0.69 0.64 0.74 0.5 0.45 0.5 0.46 0.29

PP 0.67 0.67 0.61 0.55 0.41 0.49 0.47 0.26

F1 0.68 0.65 0.67 0.51 0.43 0.49 0.47 0.27

Excellent vs. Acceptable

Index NSQI ESQI KSQI SSQI MSQI ZSQI PSQI RSQI

Overall OF1 0.72 0.69 0.68 0.67 0.67 0.66 0.64 0.59

SVM SE 0.92 0.92 0.72 0.82 0.82 0.82 0.63 0.73

PP 0.63 0.63 0.58 0.61 0.61 0.61 0.55 0.58

F1 0.75 0.75 0.63 0.7 0.7 0.7 0.59 0.65

LDA SE 0.92 0.82 0.82 0.82 0.82 0.82 0.72 0.65

PP 0.63 0.65 0.61 0.61 0.69 0.61 0.58 0.55

F1 0.75 0.72 0.7 0.7 0.75 0.7 0.63 0.59

LOGI SE 1.00 0.82 0.82 0.82 0.82 0.82 0.82 0.65

PP 0.66 0.65 0.61 0.61 0.69 0.61 0.61 0.55

F1 0.79 0.72 0.7 0.7 0.75 0.7 0.7 0.59

TREE SE 0.55 0.57 0.73 0.63 0.43 0.55 0.75 0.45

PP 0.6 0.57 0.67 0.55 0.5 0.51 0.57 0.63

F1 0.57 0.57 0.7 0.59 0.48 0.53 0.65 0.52

Acceptable vs. Unfit

Index KSQI PSQI NSQI ZSQI ESQI MSQI SSQI RSQI

Overall OF1 0.68 0.67 0.57 0.5 0.4 0.36 NaN NaN

SVM SE 0.38 0 0.38 0.38 0 0 0 0

PP 0.75 NaN 0.6 NaN NaN NaN NaN NaN

F1 0.75 NaN 0.67 NaN NaN NaN NaN NaN

LDA SE 0.38 0 0.38 0 0.25 0 0 0

PP 0.38 NaN 0.3 0 0.67 0.0 NaN NaN

F1 0.75 NaN 0.67 NaN 0.57 NaN NaN NaN

LOGI SE 0.25 0 0.13 0 0.13 0 0 NaN

PP 0.67 NaN 0.17 NaN 0.5 0 NaN NaN

F1 0.57 NaN 0.29 NaN 0.33 NaN NaN NaN

TREE SE 0.38 0.25 0.38 0.25 0.13 0.25 0 0

PP 0.3 0.5 0.3 0.25 0.17 0.14 0 0

F1 0.67 0.67 0.67 0.5 0.29 0.36 NaN NaN

Binary classification was executed on rPPG signals derived using CHROM, GREEN, and OMIT
methods within three distinct signal quality classes: Excellent, Acceptable, and Unfit. Reported
metrics are Sensitivity (SE), Positive Predictivity (PP), and F1 score (F1). TheNSQI indexwas found to
bemost effective inExcellentvs.UnfitandExcellent vs.Acceptablecomparisons,whereasKSQIwas
predominant in the Acceptable vs. Unfit comparison. Note: OF1 denotes the overall F1 score, the
mean of the F1 scores across the four classifiers.
Bolded numbers indicate the highest classification rate achieved.
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Discussion
This study introduces a novel approach for assessing the quality of rPPG
signals using eight SQIs across three signal quality classes. While the find-
ings are promising, we recognize several limitations:
1. Dataset: The dataset used in this study was limited in both size and

diversity, featuring a small number of subjects with limited variation in
age and skin color. These constraints were due to practical limitations
at the time of the study. Future research with larger and more diverse
datasets is crucial to enhance the generalizability and applicability of
our findings.

2. Equipment: We employed only a standard webcam and an indus-
trial camera for signal collection. This setup may not fully repre-
sent real-world scenarios where a variety of camera types and
sensors, especially those in smartphones, are commonly used.
Future studies should assess the applicability of ourmethod using a
broader range of sensing modalities to ensure its relevance in
different contexts.

3. Methodology: Our methodology relies on handcrafted features and
traditional machine learning algorithms. Although this approach was
effective for our specific dataset, its performance may vary in other
datasets or scenarios that require different features or algorithms.
Investigating advanced techniques, such as deep learning, could

potentially improve the accuracy and robustness of rPPG signal quality
assessment in future research.

4. Cardiometrics: The current study focused on the quality of rPPG sig-
nals without exploring their correlation with specific physiological
parameters like heart rate, respiratory rate, and blood oxygen satura-
tion. Understanding this relationship is essential to determine the
clinical relevance of rPPGmeasurements. We recommend that future
studies investigate this correlation and explore the potential clinical
applications of rPPG technology.

While this study aimed to identify a singular optimal SQI, it opens
avenues for future research in several areas:
1. Combining SQIs: Future research could explore the feasibility of

combining multiple SQIs to potentially enhance the quality of rPPG
signal assessment. This exploration could lead to more accurate and
reliable biosensing applications.

2. Applications: Additional studies are encouraged to explore the broader
applications of rPPG technology in clinical and non-clinical settings,
further expanding the utility of this promising biosensing method.

In conclusion, this studymarks a significant leap in rPPG signal quality
assessment by introducing a novel, straightforward methodology. Our

Fig. 4 | Decision boundary and KDE of rPPG signals classified by a linear SVM.
This figure showcases the decision boundary determined by a linear support vector
machine (SVM) in the classification of remote photoplethysmography (rPPG) sig-
nals, alongside the kernel density estimation (KDE) for signals fromdifferent classes.
The visualization elucidates the separation achieved by the linear SVM and provides
a density-based perspective on the distribution of rPPG signals across the classified

groups.We considered labeled signals reconstructed through the CHROM,GREEN,
and OMIT rPPG methods from the PURE and LGIPPGI datasets combined with a
window size of 5 s. For each comparison, we considered the best SQI (see Tables
1 and 2): aNSQI for Excellent signals vs.Acceptable signals; bKSQI forUnfit signals vs.
Acceptable signals; and c NSQI for Excellent signals vs. Unfit signals.

Fig. 5 | Application of thresholds in quality assessment of rPPG for near contact-
level cardiac monitoring. This figure illustrates the application of predetermined
quality thresholds to assess the signal quality of remote photoplethysmography
(rPPG) signals, reconstructed from facial videos for real-time cardiac monitoring,
aiming for a precision comparable to traditional contact-based PPG signals from the

fingertip. It showcases how Signal Quality Indices (SQIs) thresholds are utilized to
differentiate among rPPG signals. This approach provides immediate signal quality
feedback, offering a practical tool for researchers to refine rPPG-based cardiac
analysis technologies.
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approach uniquely simplifies real-time video analysis, traditionally a com-
plexand resource-intensive task.By employing a singular SQIwith a specific
threshold, such as (NSQI < 0.293), we demonstrate the ability to consistently
identify high-quality cardiac information in video frames. This methodol-
ogy not only enhances the efficiency of cardiac data extraction from videos
but also ensures higher accuracy.Our findings suggest that excellent-quality
frames can be reliably used for accurate heart and cardiac information
analysis. This innovative use of a singular SQI in rPPG signal analysis is a
pioneering contribution to the field, offering a practical solution to one of
remote biosensing’s most challenging aspects.

Methods
For our study, we utilized two prominent datasets: the LGI-PPGI16 dataset
from Pilz et al. and the PURE17 dataset from Stricker et al. Together, these
datasets offer a diverse range of scenarios and subjects, encompassing 16
individuals (3 females and 13 males) performing various head motions,
resulting in a total of 84 videos. Importantly, each subject’s pulse mea-
surements are available, providing crucial data for our analysis.

The LGI-PPGI dataset provides an in-depth look at the rPPG signal
processing in real-world conditions. It includes video recordings of six
participants, each performing four distinct activities, yielding 24 videos in
total. These activities, ranging from minimal head movement to active
scenarios, are critical inunderstanding the versatility andchallenges of rPPG
technology:
1. Resting: Minimal movement, indoor setting.
2. Gym: Significant movement, indoor setting.
3. Talk: Outdoor setting with minimal movement.
4. Rotation: Head rotation, indoor setting.

Video lengths vary, capturing realistic scenarios. The pulse oximeter
used for reference signals operates at 60 Hz, while the RGB camera records
at 25 Hz.

The PURE dataset complements our study with 10 participants
engaged in controlled head movements, recorded in 60 sequences. These
sequences cover a range of motions, providing valuable insights into the
robustness of rPPG methods:
1. Steady: Stationary, direct camera gaze.
2. Talking: Minimal movement, simulated conversation.
3. Slow Translation: Parallel head movements.
4. Fast Translation: Increased speed of head movements.
5. Small Rotation: Head orientation towards nearby targets.
6. Medium Rotation: Broader head rotation.

Each video, approximately one minute long, was recorded with an
eco274CVGEcamera and afinger clip pulse oximeter under varying natural
light conditions. The detailed recording setup enhances the reliability of our
findings.

We explored various algorithms for reconstructing remote photo-
plethysmogram (rPPG) signals from RGB data, each offering unique
insights into signal processing. Utilizing the comprehensive pyVHRPython
framework18,19, we implemented a range of rPPG methods. Below is an
overview of these methods, detailing their distinct approaches to extracting
rPPG signals:
• CHROM20: This method enhances rPPG signal quality by filtering out

noise using specific color channels, focusing on chrominance aspects.
• PBV21: PBV leverages pulse fluctuations in the RGB signal, identifying

color changes induced by vascular resistance movements.
• ICA22: It applies independent component analysis to the RGB signal,

isolating components that prominently feature rPPG signals.
• PCA23: This technique distinguishes the rPPG signal from the overall

RGB signal using principal component analysis.
• POS24: Employing a skin-tone perpendicular plane, POS derives the

rPPG signal from the RGB data.
• LGI16: LGI utilizes local transformations to create a reliable rPPG sig-

nal, enhancing the method’s robustness.

• OMIT25: OMIT reconstructs the rPPG signal through matrix decom-
position, ensuring components are linearly uncorrelated.

• GREEN26: Focusing on the green color channel, this method estimates
the PPG signal due to its close resemblance.

These methods represent the diverse approaches in rPPG signal pro-
cessing, each contributing to a more comprehensive understanding of this
advanced technology. Note that each rPPG method was applied indepen-
dently, followed by a unified filtering step. This approach ensures that the
final signal quality assessment is not biased towards any single extraction
method, providing a comprehensive evaluation.

Here, we describe the pipeline used for extracting the rPPG (remote
photoplethysmography) signal along with the corresponding SQI (Signal
Quality Index) values from video recordings. We employed the pyVHR
toolbox developed by Boccignone et al.18 to carry out this signal recon-
struction. Figure 6 provides a visual representation of the pipeline,where the
RGB signal represents the time series of the average color channel values,
and the rPPGmethod refers to the techniques employed to derive the rPPG
signal.

The initial step of our pipeline involves the frame-by-frame identifi-
cation of facial patches on the subjects. We achieve this using MediaPipe
Face Mesh27, a real-time solution that estimates 468 3D facial landmarks.
The selection of specific facial regions is basedon their influence on reflected
light due to blood volume changes. Factors such as light conditions28,
motion29, andmakeup30 are also considered. In ourdatasets,we encountered
varying light conditions, motion, and subjects without makeup. Recent
research has shown that the cheeks and forehead are optimal regions for
rPPG extraction31,32, as supported by their frequent use in the literature33,34.

Consequently, our study assesses a total of 44 landmarks across three
different facial regions: the forehead, left cheek, and right cheek. These
landmarks are denoted by specific numbers within the pyVHR framework:
(10, 67, 69, 104, 108, 109, 151, 299, 337, 338) for the forehead; (36, 47, 50,
100, 101, 116, 117, 118, 119, 123, 126, 147, 187, 203, 205, 206, 207, 216) for
the left cheek; (266, 280, 329, 330, 346, 347, 347, 348, 355, 371, 411, 423, 425,
426, 427, 436) for the right cheek.

Each landmark represents the mean value computed across all pixels
within a 20 × 20 patch surrounding it. As a result, we obtain 44 RGB values
per video frame, leading to a 1500 × 44 × 3matrix for the LGI-PPGI dataset
and a 1800 × 44 × 3 matrix for the PURE dataset. These dimensions are
calculated based on the video length, camera fps, the number of landmarks,
and RGB channels.

The subsequent step involves the creation of an RGB time series by
averaging the 44RGBvalues for each frame. Following this, in the third step,
we focus on assessing the ability of SQIs to classify signal quality for short
window sizes. We apply eight rPPG methods across window sizes ranging
from 1 to 12 s and subsequently filter the resulting signal. We employ a six-
order bandpass filter with a range of 0.7–3.5 Hz. This process yields the
filtered rPPG signal time series with dimensions of (60/window
size) × (25 × window size) for the LGI-PPGI dataset and (60/window
size) × (30 × window size) for thePUREdataset, representing thenumber of
windows and frames per window.

It is important to note that the rPPG signal reconstruction process
incorporates color channel transformations into the selected rPPG meth-
ods, with filtering steps employed to extract the rPPG signal from the RGB
signal. This filtering step occurs after the application of the eight rPPG
methods. In the final step, we extract eight SQIs features from the filtered
rPPG time series, calculated as the mean value across all windows.

This comprehensive pipeline allows us to accurately reconstruct the
rPPG signal and evaluate its quality in various scenarios.

Here, we present an evaluation of eight SQIs used to assess the quality
of PPG (Photoplethysmography) signals. Each SQI is discussed along with
its respective mathematical formula. The selection of these eight SQIs for
PPG signal quality assessment is based on their demonstrated relevance and
effectiveness in existing literature. These SQIs have been widely explored
and proven to be informative indicators of PPG signal quality,making them
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suitable candidates for our study. It is important to note that the equations
and definitions of these SQIs are adapted from15.
• Perfusion (PSQI): The perfusion index is a standard measure for eval-

uating PPG signal quality. It is calculated as the ratio of pulsatile blood
flow to static blood in peripheral tissue, often obtained from a pulse
oximeter. The formula for the perfusion index is given by:

PSQI ¼
ðymax � yminÞ

j�xj × 100;

where �x represents the statisticalmean of the raw PPG signal, and
y is the filtered PPG signal. In our study, we evaluate the perfu-
sion index using rPPG methods such as CHROM and POS,
known for their effectiveness in filtering out noise caused by light
reflection.

• Skewness (SSQI): Skewness is a measure of the asymmetry of a prob-
ability distribution and is related to distorted PPG signals. It is defined
as:

SSQI ¼
1
N

XN

i¼0

xi � bμx
σ

� �3

;

where bμx represents the empirical estimate of the mean of xi, σ is the
standard deviation, andN is the numberof samples in thePPGsignal.

• Kurtosis (KSQI): Kurtosis measures how the tails of a distribution differ
from those of a normal distribution. It determines if extreme values are
present in the distribution and has been found to be a good indicator of
PPG signal quality. Kurtosis is defined as:

KSQI ¼
1
N

XN

i¼0

xi � bμx
σ

� �4

;

• Entropy (ESQI): Entropy quantifies the uncertainty in a signal’s prob-
ability density function (PDF) and is another effective indicator of PPG
signal quality. Its formula is given as:

ESQI ¼ �
XN

n¼1

x½n�2logeðx½n�2Þ;

where x represents the raw PPG signal, and N is the number of data
points.

• Zero crossing rate (ZSQI): The zero crossing rate indicates the rate of sign
changes in the signal, representing how often the signal changes from
positive to negative. It is defined as:

ZSQI ¼
1
N

XN

n¼1

1fy < 0g;

where y is the filtered PPG signal of length N, and 1fAg is the indi-
cator function.

• Signal-to-noise Ratio (NSQI): This SQI compares the power of the
desirable signal to the power of undesired background noise. The
formula is:

NSQI ¼
σ2signal
σ2noise

;

where σsignal is the standard deviation of the absolute value of the
filtered PPG signal (y), and σnoise is the standard deviation of the y
signal.

• Matching of multiple systolic wave detection algorithms (MSQI): Dif-
ferent rPPGmethods are sensitive to different types of noise. This SQI

Fig. 6 | Pipeline from a selfie video to the quality
detection of rPPG after applying SQIs. Note: RGB
Red, Green, and Blue color channel values, rPPG
remote photoplethysmogram.
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compares two PPG systolic wave detection algorithms to assess their
accuracy in separating events. The formula is defined as:

MSQI ¼
jSBillauer \ SAT j

jSBillauerj
;

where SBillauer represents systolic waves detected by Billauer’s algo-
rithm, and SAT represents systolic waves detected with an algorithm
based on the first derivative with adaptive thresholds.

• Relative power (RSQI): This SQI explores the frequencydomain to assess
PPG signal quality. It calculates the ratio of power spectral density
(PSD) in the 1-2.25 Hz frequency band to the PSD in the entire signal
(0–8Hz), providing a measure of signal quality. The formula is given
as:

RSQI ¼
P2:25

f¼1 PSDP8
f¼0 PSD

;

where PSD is calculated using Welch’s method.

These eight SQIs provide comprehensive insights into the quality of
PPGsignals, allowing for the assessment and improvementof data reliability
in various scenarios.

Here, we describe the process of automatically labeling rPPG signals
into three distinct classes. These labels help assess the quality of the signals
obtained through our pipeline.
1. Excellent: This class includes rPPG signals where we can estimate the

heart rate (HR) with an accuracy of ±5 beats, and both systolic and
diastolic waves are discernible.

2. Acceptable: Signals in this class haveHRestimations accuratewithin±5
beats, but the systolic and diastolic waves are not discernible.

3. Unfit: Signals falling into this class cannot provide a reliable HR esti-
mate, and the systolic and diastolic waves are not discernible.

Our classificationprocess involvesquantitative analysesusingdynamic
time warping (DTW) and Pearson correlation (r). Specifically, the ‘Excel-
lent’ class is assigned to rPPG signalswhere both systolic anddiastolicwaves
are discernible, and the HR estimation accuracy is within ±5 beats. Here’s
how each evaluation metric is defined:
1. Beats-per-minute difference (ΔBPM): We start by distinguishing

between ‘Unfit’ and ‘Acceptable’ rPPG signals. ΔBPM is the mean
difference between the predicted (rPPG) BPM and the ground truth
(PPG) BPM across all signal windows. It assesses how closely the
frequency of the maximum in the power spectrum (PS) of the rPPG
signal matches the heartbeat. Signals with ∣ΔBPM∣ ≤ 5 are considered
‘Acceptable,’ in line with acceptable error ranges for commercial
wearable HR estimation.

2. Dynamic time warping (DTW): DTW is a robust algorithm that han-
dles temporal fluctuations and noise. We use DTW to quantify the
similarity and alignment between rPPG and reference PPG signals,
evaluating their temporal features’ correspondence. A lower DTW
score indicates better alignment.

3. Correlation (r): Pearson correlation measures the linear relationship
between two variables. We calculate r for each sampling point in a
window to assess the linear association betweenPPGand rPPG signals.

Thefinal labeling decision is based on the overall score (OS), calculated
as:

OS ¼ 1
2
1� DTW þ rð Þ:

Here, DTW and r represent the average normalized values across all signal
windows for the eight rPPGmethods. Signalswith anOS > 0.5 are labeled as

‘Excellent,’ while those with an OS below this threshold vary between
‘Acceptable’ and ‘Unfit.’ We observed that window sizes below 3 s lead to
unreliable BPM estimations and often result in ‘Unfit’ labels.

We define ‘inter-rater agreement’ as the consensus among eight rPPG
methods, treated as individual ‘raters,’ in labeling rPPG signal quality as
‘Excellent,’ ‘Acceptable,’or ‘Unfit.’The classification relies on theOSderived
from DTW and Pearson’s correlation. Signals with an OS > 0.5 are cate-
gorized as ‘Excellent,’ while those below can fall into either ‘Acceptable’ or
‘Unfit’ categories.

Our evaluations consider factors such as color channel transforms,
window length, and class distribution of reconstructed signals. Notably,
window sizes below 3 s are associated with unreliable BPM estimations.We
further analyze the impact of increasingwindow sizes on signal labeling and
the balance between classifications. This comprehensive approach enables a
thorough assessment of rPPG method performance and signal quality.

Data availability
The LGI-PPGI and PURE datasets utilized in this study are publicly
accessible and can be downloaded from the following websites: https://
github.com/partofthestars/LGI-PPGI-DB and https://www.tu-ilmenau.de/
universitaet/fakultaeten/fakultaet-informatik-und-automatisierung/profil/
institute-und-fachgebiete/institut-fuer-technische-informatik-und-
ingenieurinformatik/fachgebiet-neuroinformatik-und-kognitive-robotik/
data-sets-code/pulse-rate-detection-dataset-pure, respectively.
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