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AI-QuIC machine learning for automated
detection of misfolded proteins in seed
amplification assays

Check for updates
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Seed Amplification Assays (SAAs) detect misfolded proteins associated with neurodegenerative
diseases, such as Alzheimer’s disease, Parkinson’s disease, ALS, and prion diseases. However,
current data analysis methods rely on manual, time-consuming, and potentially inconsistent
processes. We introduce AI-QuIC, an artificial intelligence platform that automates analyzing data
from Real-Time Quaking-Induced Conversion (RT-QuIC) assays. Using a well-labeled RT-QuIC
dataset comprising over 8000wells, the largest curated dataset of its kind for chronic wasting disease
prion seeding activity detection, we applied various AI models to distinguish true positive, false
positive, and negative reactions. Notably, the deep learning-based1 Multilayer Perceptrons (MLP)
model achievedaclassification sensitivity of over 98%andspecificity of over 97%.By learningdirectly
from raw fluorescence data, the MLP approach simplifies the data analytic workflow for SAAs. By
automating and standardizing the interpretation of SAA data, AI-QuIC holds the potential to offer
robust, scalable, and consistent diagnostic solutions for neurodegenerative diseases.

Advancements in AI, in particular deep learning1, have revolutionized
numerous scientific fields, including life sciences and disease diagnostics.
Pioneeringdevelopments inprotein structurepredictionalgorithms, such as
AlphaFold2 and RosettaFold3,4 have demonstrated the impact of AI on
predicting protein folding, with significant potential implications for
accelerated drug discovery. These breakthroughs have set the stage for
applyingAI to tackle challenges in neurodegenerative diseases characterized
by protein misfolding.

Early detection of misfolded proteins is crucial for diagnosing and
managingneurodegenerative diseases such asAlzheimer’s, Parkinson’s, and
amyotrophic lateral sclerosis (ALS). Seed amplification assays (SAAs), such
as protein misfolding cyclic amplification (PMCA)5, quaking-induced
conversion (QuIC)6–8, and real-time QuIC (RT-QuIC)9, have emerged as
powerful tools for detecting pathogenic proteins in various neurodegen-
erative diseases10–16. SAAs cyclically amplify proteinmisfolding to enable the
rapid conversionof a large excess of themonomeric substrate intoprion-like
amyloid fibrils with minimal quantities of seeds formed by misfolded
proteins8,17. These assays recapitulate the seeding-nucleationmechanisms of
protein misfolding and help determine whether samples contain detectable
(positive) or undetectable (negative) levels ofmisfolded proteins5. Examples
of misfolded proteins detected by SAAs include prions in prion diseases
(e.g., Creutzfeldt-Jakob Disease)6,9,14,18–20, amyloid-beta21 and tau10,11,22 in

Alzheimer’s disease, alpha-synuclein in synucleinopathies12,15,23,24, and TAR
DNA-binding protein 43 in ALS13. By achieving ultrasensitive detection of
misfolded proteins, SAAs hold great potential for early diagnosis and
prognosis of such disorders14.

While SAAs have broad applications across multiple neurodegenera-
tive diseases in humans, their development has benefited significantly from
prion diseases in animals, especially Chronic Wasting Disease (CWD) that
naturally occurs in cervids (e.g., deer, elk, andmoose)25–32. Therefore, CWD
is considered a robust model for studying protein misfolding in RT-QuIC.

Sharing the fundamental principles of SAAs, RT-QuIC assays are
performed in multi-well plates with 4-8 technical replicates/reactions per
sample9. The plate undergoes cyclic shaking and incubation while heated to
facilitate fibril fragmentation and promote seeding-nucleation, resulting in
the exponential amplification of misfolded proteins9 (Fig. 1a). ThT, a rotor
dye, exhibits enhanced fluorescence upon binding to growing amyloid
fibrils in the reaction mixture due to restricted rotational motion, enabling
real-time monitoring of amyloid formation9,33. Several methods have been
applied to RT-QuIC data to establish predictable values using various
metrics28,34,35 (Fig. 1a), but it is unclear whether there is unutilized infor-
mation in the raw fluorescence measurements. The complexity of inter-
preting amplification signals is compounded by factors such as the
concentration of misfolded proteins, strain conformation, and cross-
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seeding34,36,37. In short, processes for the optimization of data interpretation
and standardization across different assay platforms and disease-associated
proteins remain unexplored.

Drawing conclusions (positive vs. negative for seeding activity) from
RT-QuIC reactions requires expertise by trained personnel, often requiring
nuanced and subjective knowledge that is hard to formalize and articulate in
human language or as a written manual38. AI is uniquely suited for such
challenges as it can replicate and capture expert knowledge, identify com-
plex patterns, and make accurate predictions, thereby enhancing the relia-
bility and efficiency of RT-QuIC assays. Integrating AI into these processes
bridges gaps in human expertise and enables robust, scalable testing
operations.

The fluorescence measurements at each time point in an RT-QuIC
reaction formanRT-QuICcurve,which canbeuseddirectly or summarized
into derivedmetrics to serve as features or input parameters for trainingML
models.ManyAImodels exist, eachwith a unique approach to carrying out
such tasks. For example, clustering classifiers such as K-Means are a subset
of unsupervised AI models that identify patterns in data and assign labels
associated with those patterns39,40. These can be used while considering

whether an RT-QuIC reaction has seeding activity (positive) or not
(negative), making them invaluable for use with large, unlabeled RT-QuIC
datasets, as verifying labels can be time-consuming. More complex and
supervised models, namely Support Vector Machines (SVMs) and Multi-
layer Perceptrons (MLPs), can be trained to identify positive RT-QuIC
reactions on labeled data, potentially with better performance41,42. Investi-
gating AI-driven automation and standardization techniques for inter-
preting SAAdata, particularly fromRT-QuIC assays, holds great promise in
further enhancing the already significant impact of SAAs on the detection
and diagnosis of neurodegenerative diseases.

The objective of this proof-of-concept study is to demonstrate the
potential of AI in detecting the seeding activity of misfolded proteins and to
explore the effectiveness of various AI models including deep learning
models, such as MLPs (Fig. 1b), in analyzing data from SAAs, using RT-
QuIC data fromCWDprions as a representative example. In particular, we
focused on the automated determination of whether seeding activity
induced by CWD prions exists in individual RT-QuIC reactions. We first
analyzed a well-labeled, previously generated dataset using various AI
models to assess the potential of AI in distinguishing true positive, false
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Fig. 1 | Visualization of key concepts. a Example graph of the RT-QuIC data from a
single reaction with the source of Time to Threshold (TTT), Rate of Amyloid For-
mation (RAF), Max Slope (MS), and Max Point Ratio (MPR) highlighted. The
different phases of the reaction are identified with a visual of how the monomers

form a fibril, increasing the fluorescence. b Diagram of the multilayer perceptron
used in this study with 65 input features. The network also includes 3 hidden layers,
each with 65 neurons and a single output layer with 3 classes. c Flowchart of how the
data is processed in the study.
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positive, and negative RT-QuIC reactions for CWD prions. We then eval-
uated and compared the performance of various AI models, including a
widely used unsupervised algorithm (K-Means) and supervised models
(SVM and MLP) (Fig. 1c), on both summarized metrics and raw fluores-
cence data from RT-QuIC assays. Next, the best performing models were
applied to a more complex subset of the data not used during training,
assessing whether AI can identify patterns in RT-QuIC data that are not
readily discernible using current methods. The final evaluation consisted of
testing the models on an independent validation dataset to determine the
generalizability of the models.

Results
Extraction of early reaction features and validation of existing
metrics by PCA
The PCA algorithm provided key insights into how the data can be distilled
into only the most vital components. This information can then be used to
generate insights into how the data is structured and, in the case that the
identified variance relates to classification, can provide visuals of how
clusters form.

This visual can be demonstrated in the form of a scatter plot (Fig. 2) for
both the raw data and themetrics data. In the case of the raw data, these two
PCsaccount fornearly80%of the variance in themselves, representing twoof
the four PCs used to train the raw K-Means and SVMmodels. In the case of
the metrics data, these two PCs account for over 90% of the variance in the
dataset, and both represent linear combinations of the calculatedmetrics. In
this case, it becomes clear that using all four of thesemetricswas unnecessary
asTTTandRAFcontainmuchof the same information since they are simply
reciprocals of one another. As such, only 3 PCs are required to represent the
dataset in most cases. In addition to these insights, the two scatter plots also

demonstrate the capability bothdatasets possess tomeaningfully separate the
data. Although there is overlap (particularly between the false positive and
positive reactions), somedistinction canbe inferredbetweendatapointswith
different class identities. This is particularly interesting in the case of the
metrics data, as this clear distinction indicates that themetrics (a significantly
simpler dataset than its raw data counterpart) are sufficient to provide
meaningful distinctions between classes. This validates the use of these
existing metrics as a viable way of classifying RT-QuIC data. It should be
noted that all the negative samples appear to be closer to the positive samples
than the false positives. This arises from the decision to set TTT for samples
that never reached the threshold to a hard 0. PC1 and PC2 both depend on
TTT, and positive reactions will, in general, take less time to reach the
threshold than false positive reactions resulting from false seeding. Com-
bining these PCs, then, causes this distinction to become apparent.

A few edge-case examples of positive and false positive reactions can
also be plotted (Fig. 2), providing a visualization of any reactions that may
not be straightforward to classify. These edge-cases were identified from
examination of the scatter plots and selection of data from each of these two
classes, which were furthest in the apparent positive region. Ultimately,
these visualizations show the difficulty inherent to this dataset in the false
positive reactions. Many of these reactions are difficult to distinguish from
true positive reactions. Models with decent degrees of accuracy on these
reactions, then, represent a powerful, standardized tool for handling edge
cases without needing human annotation.

K-Means metrics performed well for unsupervised RT-QuIC
classification
Among classification algorithms, perhaps the most interesting and chal-
lenging to apply are unsupervised learning algorithms. Able to pick out
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Fig. 2 | Demonstration of useful attributes captured by PCA. a Class Separation
Achieved by PCA. A PCA was run on the raw data and metrics data and generated
principal components (PCs) corresponding to linear combinations of the input
features. The figures demonstrate how these PCs create distinctions in the dataset

which can be used with AI. b Edge-case Examples. The PCA plots from a) were used
to select the most positive-like false positives for each feature extractionmethod and
compare with clearly defined positive samples. This demonstrates any likenesses
which may make it difficult for PCA to create meaningful distinctions.
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patterns in unlabeled data, unsupervised algorithms provide a critical
foundation in understanding the dynamics of a dataset, allowing us to
determine if the variances PCA and metrics-based feature extraction
identifies aremeaningful to classifying RT-QuIC reactions. The patterns the
algorithms select are not directed as in supervised learning, so good per-
formance of these models indicates a dataset in which the predominant
patterns are the onespertaining to the classificationofRT-QuIC reactions as
positive or negative.

K-Means. The model performance metrics for the PCA feature-
extracted dataset and for the manually feature-extracted dataset were
calculated (Table 1). For the raw data, the results represent an accuracy of
84%. For the feature-extracted data, the results represent an accuracy
of 97%.

TheK-Meansmodel trainedon the rawdatawas consistently poor and
unstable, indicating data thatwas not cleanly separable into distinct clusters.
The K-Means model trained on metrics, however, achieved high accuracy
and excellent sensitivity. This suggests that the metrics provided a more
useful basis for extracting salient features for the K-Means model to use.

Supervised learning achieved high accuracy for RT-QuIC
classification
Supervised algorithms, having access to labels during training, provide an
important point of comparison against unsupervised models for learning
patterns in datasets. These algorithms excel at finding patterns that support
class identities specified by the operator, making them more adept at clas-
sifying more complex datasets.

Support Vector Machine. The SVM results represent 93% accuracy on
the raw data as well as 98% accuracy on the metrics data (Table 2).

The SVM performed very well on the testing data and with minimal
training time, with the metrics-trained model outperforming the raw data/
PCA approach in most metrics. The high accuracy of this model, com-
pounded with the highest precision of any of the models evaluated in this
study,makes this a compelling choice.The sensitivity is also the lowest out of
all the models (with the exception of the raw data K-Means model), how-
ever, incurring a cost for the high precision.

Multilayer Perceptron. The metrics produced by the MLP were calcu-
lated and represent an accuracy of 97% (Table 3).

Requiring less preprocessing than the SVMs and K-Means, the MLP
benefited from a simpler implementation (feature-engineering-free) while
still achieving high accuracy and specificity. This positions the MLP as an
effective and adaptable model that is not significantly affected by specific
implementation. TheMLPappeared to be an excellent all-around candidate

for classification,maintaining comparatively highprecisionwithout amajor
sacrifice to sensitivity. Leveraging its high performance, compounded with
its versatile implementation, the MLP represents the capability of deep
learning to be broadly applied without the need for expert-dependent fea-
ture engineering. This makes the MLP and other deep learning techniques
prime candidates for the classification of SAA data generated using other
neurodegenerative diseaseswithout the need for application-specific feature
extraction.

Summary. The supervised learning methods used in this study repre-
sent a useful alternative to the unsupervised learning methods pre-
sented previously. Both the SVM trained on metrics and the MLP
achieved relatively higher precision than the unsupervised models,
making them more useful in applications where negative wells greatly
outnumber positive wells. Particularly in the case of the MLP, deep
learning was able to identify useful relationships in the dataset with a
relatively simple implementation and achieved excellent all-around
results. This highlights the capability of DNNs to extract salient features
fromdata without the need for expert feature engineering, making these
networks powerful choices for datasets that have not been well
characterized.

A comparative analysis of unsupervised and supervised learning
forRT-QuICclassification revealed key performancedifferences
Unsupervised Overview. The confusion matrices (Fig. 3a) and ROC
curves (Fig. 3b) provide greater insight into how the performance of the
models varies under different conditions. The K-Means trained on the
metrics data is the best performer of the two, never missing a positive
sample in the entire testing dataset. Additionally, the 3.6% of negative
samples it classified as positive aremade up entirely of false positives. This
model never successfully classified a false positive, and the false positives
are the only reactions the model misclassified. The example curves
(Fig. 3c) also support the finding in the PCA analysis that these false
positive curves are not always trivial to classify.

SupervisedOverview. Examining the supervised model results, the first
important detail is how the different training approaches for the SVMs
affected the outcome. The SVM trained on raw data with the PCA-based
feature extraction was more balanced between specificity and sensitivity,
but faced an overall performance decrease that the metrics-trained SVM
did not exhibit (Fig. 4). Comparing thismetrics-trained SVM to theMLP,
there is no clear better performer as each performed well with different
strengths and weaknesses. In the case of the MLP for example, while the
results were more balanced than the metrics-based SVM approach, the
slightly worse performance on correctly identifying negative reactions

Table 1 | K-Means Performance Metrics (Higher is Better)

Train Type Sensitivity Specificity Precision F1-Score Negative Support Positive Support

Raw 0.89 0.99 0.38 0.53 1444 160

Metrics 1.00 0.97 0.78 0.87 1444 160

Table 2 | SVM Performance Metrics (Higher is Better)

Train Type Sensitivity Specificity Precision F1-Score Negative Support Positive Support

Raw 0.94 0.93 0.59 0.72 1444 160

Metrics 0.93 0.98 0.84 0.88 1444 160

Table 3 | MLP on Raw Data Metrics (Higher is Better)

Train Type Sensitivity Specificity Precision F1-Score Negative Support Positive Support

Raw 0.98 0.97 0.80 0.88 1444 160
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represents a much larger portion of the dataset as negative reactions are
more common in general (Figs. 4, 5). This higher prioritization of correct
classification of positive samples, however, favors the MLP in the ROC
evaluation (Figs. 4b, 5b). As was the case with the unsupervised models,
the example plots demonstrate the challenge of classifying some of the
false positive samples (Figs. 4c, 5c).

Performance on Dataset with Label Ambiguity. In addition to the 554
samples that made up the training and testing dataset for the models,
19 samples with ambiguous labels were tested separately. This subset of
the dataset consists of swab samples where human annotators, using a
plot of the replicates overlayed for each swab, classified the swab sample
differently than what was suggested by statistics. In particular, each of
these samples was identified as positive by a human annotator, but
determined to be negative by statistical analysis in the original study43. As
a point of comparison, the three best-performing models were selected
(the K-Means and SVM models trained on metrics as well as the MLP)
and tested on these samples.

Each sample dilution was annotated by the K-Means and SVM
models trained on metrics, the MLP, and a human annotator (ML) for
comparison (Table 4). Examining these reactions, it becomes clear that
machine learning represents a far superior method of classification to
other statisticalmethods of evaluation. The excellent agreement between
themodels and human annotation represents amajor improvement and
demonstrates the capability of AI to limit the need for human annota-
tion, providing a standardized, automated approach with an accuracy
approaching that of humans.

Models performance on external validation data shows
generalizability
In addition to the testing and evaluation performed on a subset of the
original dataset, each model was applied to an external validation
dataset27,44,45 to highlight generalizability. The results of this evaluation
(Fig. 6) demonstrate the capabilities of the different models to generalize to
this new dataset. With the exception of the KMeans model trained on raw
data, each model performed generally well on this dataset. One important
distinction ariseswhen comparing the supervised andunsupervisedmodels,
however. Each of the unsupervised models generalized poorly, losing sig-
nificant performance on this validation dataset. The supervised models all
performed similarly, however, with the raw data SVM achieving the highest
specificity while the MLP and SVM trained on metrics both achieving
similar performance with near perfect sensitivity. With the smaller size of
this dataset, the results are insufficient to pick a single, statistically best-
generalized model. The supervised models, however, were far superior at
generalizing than the unsupervised models.

Discussion
This proof-of-concept study demonstrated the promising potential of AI in
enhancing the interpretation and automation of RT-QuIC data, using
ChronicWasting Disease (CWD) as a robust model for protein misfolding
disorders. The results addressed two primary objectives: first, our com-
parative analysis of unsupervised (K-Means) and supervised (SVMs,MLPs)
AI models unveiled their unique strengths in processing both summarized
metrics and raw fluorescence data; second, we established that AI models
can effectively identify seeding activity in RT-QuIC reactions. Our findings
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demonstrate that AI models can effectively automate the detection of
misfolded protein seeding activity in RT-QuIC assays. Notably, the deep
learning-based MLP approach performed similarly to or better than other
models by leveraging its inherent ability to extract relevant features auto-
matically, directly learning from raw data without requiring dimensionality
reduction techniques like PCA. This eliminates the need for expert-
dependent and time-consuming feature engineering, streamlining the
analysis process. The MLP model possesses adaptability to diverse datasets
and assay conditions. By reducing reliance on data preprocessing, the MLP
approachoffers amore efficient and scalable solution for standardizing SAA
data interpretation across various neurodegenerative diseases. Collectively,
our study lays the groundwork for AI-driven enhancements in RT-QuIC
data analysis and the development of AI-assisted diagnostic tools for a
spectrum of neurodegenerative disorders characterized by protein
misfolding.

In examining the capabilities of the various models and comparing
performance between the two datasets, a pattern of support emerges for the
metrics selected to describe the curves. Firstly, it is worth acknowledging the
apparent similarities between the PCA-selected features and the chosen
metrics. The analysis of the PCA (Fig. 2) demonstrates evidence that
machine learning and human intuition for curve description are both

capable techniques for clustering data. As is the case with nearly all machine
learning applications, the exact patterns identified by the algorithm do not
perfectly line up with human-identified patterns and concepts. The other
primary goal of this study was to provide a method of reliably automating
curve identification. Identifying a curve as positive ornegative by the human
eye can be time-consuming and inconsistent among labs and technicians.
As such, AI represents a powerful solution, being highly adaptable and
capable of identifying key patterns without significant technician time.
While a few models stood apart as particularly effective at classifying the
data in this study, nearly all of them demonstrate the viability of this
approach, obtaininghigh accuracy similar to that of a technician. In addition
to this high accuracy, the models are all highly reproducible and consistent.
Once the dataset has been generated and the code written, thesemodels can
each classify tens of thousands of samples in seconds.

Artificial intelligence (AI), particularly machine learning (ML), has
shown remarkable effectiveness in identifying patterns that hold predictive
value. Our study utilized the dataset of over 8000 RT-QuIC reactions, the
largest of its kind to contain both human annotations and metrics com-
monly used on RT-QuIC data, providing unprecedented depth for
analysis43. With research efforts involving more comprehensive datasets,
various misfolded proteins, and the development of AI models specifically
tailored for SAA data, these models could potentially match or surpass
human experts in distinguishing positive from negative samples, over-
coming current challenges such as strain differences, cross-seeding, and
concentration effects that could hinder accurate diagnosis in clinical set-
tings. Future integration of AI with SAAs holds the potential to enhance
diagnostic accuracy, streamline workflows, and ensure consistent inter-
pretation across various assays and laboratory conditions, mitigating dis-
crepancies in interpretation among personnel. The implications of our
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Table 4 | Replicate Reactions in Agreement with Human
Annotation

SVMMetric MLP K-Means Metrics

Reactions Agreed with Human
annotation

304/304 292/304 304/304
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findings extend beyond CWD and RT-QuIC to other SAAs, such as
PMCA21,23, HANABI46, Nano-QuIC31,47, Cap-QuIC48, MN-QuIC32, which
face similar challenges indata interpretation.AI-driven approaches offer the
potential for standardization and automation across a spectrum of neuro-
degenerative diseases that have already shown seeding activity detectable by
SAAs, including Alzheimer’s10,21,49,50, Parkinson’s23,51, as well as ALS and
frontotemporal dementia13,52.

Looking forward, we propose the continued development of AI-
QuIC to integrate diverse data types, such as image and spectral data and
accommodate a wider range of assay parameters, enhancing its applic-
ability to numerous neurodegenerative diseases. In addition, forecasting
techniques and in-depth time-series analysis could lay the foundation
for the reduction of runtimes of the RT-QuIC assay, increasing speed
and accuracy in an all-inclusive diagnostic framework. While the utili-
zation of AI-QuIC on RT-QuIC data in this study is in its early stages, it
represents a significant advancement toward the early detection and
diagnosis of neurodegenerative diseases. By harnessing the pattern-
recognition capabilities of AI - particularly the streamlined, feature-
engineering-free approach of the deep learning MLP model - AI-QuIC
effectively captures the dynamics of protein misfolding during SAA
assays, enabling automated and standardized data interpretation. Just as
AI has revolutionized protein folding modeling, the integration of AI
into SAA analysis shows the potential to enhance diagnostic workflows
and contribute to drug discovery pipelines. Recent breakthroughs, such
as the cryo-electronmicroscopy determination of the atomic structure of
misfolded prions53 have unveiled the structures of misfolded protein
aggregates, providing new insights into their pathogenic mechanisms.
These structural data also offer training data for AI to better predict not
only normal protein folding but also misfolding processes. As AI con-
tinues to advance in modeling both protein folding and misfolding, it

may facilitate the identification of new drug targets for protein mis-
folding diseases. By combining AI-enhanced diagnostics, such as AI-
QuIC, with AI-based modeling of protein misfolding, we can accelerate
our understanding of neurodegenerative disorders and our ability to
diagnose them at an early stage.

Methods
Data Generation and Processing
The dataset was sourced fromMilstein, Gresch, et. al.43, a study that tested
different disinfectants on CWD and consisted of the RT-QuIC analysis of
swab samples after disinfection of various surfaces. The portion of the
dataset used for this study comprised 8028 individual wells, representing
573 samples, eachpreparedwith 2-3 dilutions and assayed in 4-8 technical
replicates/reactions. Data from a total of 7331 sample reactions and 984
control reactions were used to evaluate the ML models. Among the
573 samples, 19 were withheld due to ambiguous labels, being classified as
negative by statistical tests but positive by a “blind” human evaluation.
These samples were further reviewed to exclude those with complex
identities for additional characterization. The final dataset used for
training and initial testing of the models included 7027 sample wells and
984 control wells. Each of these wells was characterized by taking a
fluorescence reading 65 times at 45-minute intervals over a 48-hour run.
Considering this sourcing, the ground-truth CWD positive/negative
status of each sample was not directly known due to the introduction of
disinfectant and the indirect nature of the swabbing method used to
generate the RT-QuIC data (Fig. 7). The “true” sample identities were
instead determined by experienced researchers using statistical assess-
ments, providing an excellent opportunity to compare the performance of
AI solutions against existing methods for identifying CWD prions in RT-
QuIC data.
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Fig. 5 | Multilayer Perceptron (MLP) model results. aModel confusion matrix
represents the ratio of howmany samples from each true class were classified in each
predicted class. b The Receiver Operator Characteristic (ROC) illustrates the
sensitivity-specificity tradeoff of the model, with an ideal model having an area

under the curve (AUC) of 1. c The examples include a single false positive a given
model misclassified along with correctly classified reference samples, highlighting
how distinguishable a misclassified false positive was.
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Fig. 6 | Model results on external validation data.
Model confusionmatrices represent the ratio of how
many samples from each true class were classified in
each predicted class. The data used to generate these
confusion matrices was generated from studies28,45,46

independent from the rest of the swab dataset ana-
lyzed in Figs. 3–5.
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to be used as a comparative dataset. Both datasets are split into a training and testing
set. These datasets are used respectively to train and test the models, with the testing
data providing the basis for evaluation.
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Three labels were introduced for this study based on the results of each
RT-QuIC reaction: negative, false positive, and true positive. Each of these
labels is related to sample identity and the threshold defined in the original
study43. A negative label represents a reaction involving a negative or a
positive sample that never crossed the threshold (i.e. was identified as
negative by analysis of theRT-QuIC results).A false positive label indicates a
reaction with a CWDnegative sample that crossed the threshold after being
identified as a negative sample in the Milstein, Gresh, et. al. study43. A true
positive label was identified as a reaction involving a CWD positive sample
that crossed the positive threshold after being considered as positive in the
original study43. In this dataset, there were 6781 negative reactions, 239 false
positive reactions, and 991 positive reactions.

This formation of the dataset imposes a few limitations to the utility of
the models evaluated in this study. Firstly, without knowing the identity or
“ground truth” of the samples, these models can only be compared against
the labels of annotators and, in the case of the supervised models, will be
trained with any implicit biases held by the annotators. Additionally, the
ambiguity in sample identity also limits the results; rather than classifying a
reaction or sample as a whole, this method is limited to the classification of
each replicate individually based on its annotation. While this individual
replicate identity, or well-level identity, can inform sample identity, this
limitation prevents the model from being an all-inclusive diagnostic tool.
Next, there is additional classification difficulty in the extreme similarity
between some false positive samples and true positive samples. A false
positive RT-QuIC reaction is characterized as a reaction that was identified
as positive but is known to be CWD negative, resulting from false seeding.
As such, many of the false positive reactions were difficult to distinguish
from true positive reactions (Fig. 8). Despite these limitations, the models
still learned meaningful patterns which could be invaluable to future
sample-level identification and serve as a proof of concept for models that
could potentially surpass current annotator/metrics-based classification
methods.

In addition to this dataset, a smaller, external validation dataset was
used to assert the validity of these methods by testing them on data gen-
erated completely independently from the training dataset. This data fea-
tured 122 negative reactions, 15 false positive reactions, and 31 positive
reactions, with 156 wells being sourced from samples and 12 being control
reactions. For this dataset, the samples were derived directly from tissue
samples (including ear, muscle, and blood), making the labels more
reliable27,44,45.

Everymethod chosen for this study attempts to contribute to twogoals:
(1) to evaluate classificationmethods based on prevailing knowledge on the
analysis of RT-QuIC data, and (2) to create a new method with the auto-
mation capabilities that machine learning represents. These two goals were
supported by two datasets—a dataset of precalculated metrics and a raw
fluorescence dataset (Fig. 1c). The first of these datasets, in line with the first
goal of the study, consisted of four features extracted from the raw fluor-
escence values of each well. The feature set included the time to a

precalculated threshold (TTT), the rate of amyloid formation (RAF), the
maximum slope of the fluorescence curve (MS), and the maximum point
ratio (MPR) between the smallest and largest fluorescence readings. These
features were selected for their ability to characterize the curves RT-QuIC
generates and for their relevance to the current method of using a pre-
calculated threshold for classifying a test result as positive or negative. RAF
and TTT are reciprocals of one another, with TTT measuring the “time
required for fluorescence to reach twice the background fluorescence”43 and
RAF being the rate at which this threshold ismet. Both were included in the
metrics dataset to give the feature selection algorithms used in this study the
freedom to select whatever combination of these it deems best. The inclu-
sion of RAF also gave models an indication of the dilution factor of the
sample in the reaction as the two features are linearly related34. Additionally,
reactions that did not reach the thresholdwere set to a TTT of 0 as this value
is not physically realizable and works better for scaling than choosing some
other large value that would need to depend on the runtime of the assay.MS
was calculated with a sliding windowwith a width of 3.75 hours or 6 cycles.
Byfinding the difference between thefluorescence reading at a current point
and one taken 3.75 hours previously, the entire curve can be characterized
into slopes. The maximum of these is selected. MPR was determined by
dividing the maximum fluorescence reading by the background fluores-
cence reading43. In contrast to this first, distilled dataset, the second dataset
consisted of the raw fluorescence readouts, preserving all the information
obtained from a particular run for the algorithms to extract. Once the two
datasets were generated in the aforementioned formats, a few universal
preprocessing steps were applied to ensure the data was ready for machine
learning.

Firstly, RT-QuIC data in its raw form is not well suited to machine
learning due to the wide variabilities in the absolute fluorescence. Different
machines and concentrations, for example, can cause fluorescence curves to
reach higher in some plates than in others, making it difficult to derive
meaningful patterns in the larger dataset. The Scikit-Learn (sklearn) Stan-
dard Scaler54 was used to remedy this, centering the means of each well at 0
and scaling the dataset to unit variance. This was done separately to the
training and testing partitions of the data. Secondly, as this study focused on
the behavior of individual wells, it was crucial to remove any patterns in the
data that could be derived from the ordering of the dataset. To account for
this, the samples were shuffled into a random order using tools in the
Numpy package55.

Creation of training/testing sets
All of the models utilized distinct training and testing sets to ensure the
models could generalize beyond the training data. To accomplish this, 20%
of the dataset was selected at random andwithheld from training to be used
in the evaluation of themodels. The separation was done at the sample level
to ensure different reactions from the same sample were not present in both
the training and testing sets. The model predictions on this testing dataset
are the source of the evaluationmetrics and plots generated for eachmodel.

Fig. 8 | Example reactionplots. aA single positive annotated reaction plot, b a single
false positive annotated reaction plot, and c a single negative annotated reaction is
shown in the three plots. The plots demonstrate an example visualization of the raw

data used in this study and allow for an intuitive comparison of reactions with
different class identities.
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All of the models were configured to use the same data for training and
testing to allow for direct comparison.

Principal component analysis
Before training two of the model types, SVM and K-Means, a Principal
Component Analysis (PCA) was applied to the raw dataset. The PCA
implementationused in this studywas a part of the sklearnpackage54. PCA
is a linear dimensionality reductionmethod that extracts relationships in a
dataset and creates a new set of features based on these relationships. The
algorithm works by identifying linear combinations of the different fea-
tures in the dataset, matching each variable with every other variable and
assigning a score based on how related they are to one another. This score
is called the covariance. These scores are stored in a matrix that can be
used to calculate eigenvectors, which transform the original features into a
set of linear combinationsof features. These linear combinations are called
Principal Components (PCs). The eigenvalues of these eigenvectors, then,
represent the overall variance/feature importance of each individual fea-
ture. PCA can then select the features with the largest eigenvalues to
represent the dataset56. Typically, the number of PCs to incorporate into
thefinal dataset is identified by using a scree plot and identifying a point at
which adding additional features has greatly reduced improvement in
overall variance (also called finding the “elbow”). Using this method on
thePCsobtained fromthe rawdata, it was determined that 4 or 5 PCswere
all that was necessary to represent the dataset. 4 PCs were selected from
this set to be used in training some of themodels as this aligned with the 4
features of the metrics dataset and captured nearly 90% of the variance in
the dataset. Both K-Means and SVMs train poorly on data with large
numbers of features (such as the raw data with 65 timesteps used in this
study), making PCA an effective way to give these algorithms an assist.
Additionally, applying PCAenhances the variance in the data,making the
training of K-Means and SVM more efficient. In contrast, deep learning
models, like the MLP, inherently handle high-dimensional data through
their robust feature extraction capabilities1. Therefore, we did not apply
PCA when training the MLPmodel, allowing it to learn directly from the
raw data.

Unsupervised Learning Approaches
K-Means Clustering. A K-Means model was trained on both the raw
dataset and on the dataset of metrics, yielding a total of two models.
KMeans is a powerful clustering utility and one of the most famous
unsupervised learning algorithms. The algorithm works by identifying
cluster centers through various methods and adjusting these locations/
scales to optimally separate the dataset into distinct sets. The KMeans
algorithm evaluated in this study was developed using the Scikit-Learn
package in Python and used Lloyd’s KMeans Clustering Algorithm
(LKCA)57. This algorithm uses an iterative optimization approach to
approximate cluster centers for data with arbitrary numbers of features,
making it more practical for multidimensional datasets like RT-QuIC
reactions than manually calculated approaches to clustering. However,
likemanymachine learning algorithms, LKCA frequently finds solutions
that are only locally optimal. Practically, this means that the solution
KMeans will find to a clustering task is highly influenced by the initial
conditions of the algorithm. In order to generate these initial conditions,
the model was set to use a random initialization, selecting the features of
two random samples as cluster centers, whichwere iteratively adjusted by
LKCA to find an optimal solution. LKCA was allowed to run up to 500
iterations or until the algorithm had converged on a solution - whichever
required less time. Due to the high initialization sensitivity of KMeans,
the algorithm was configured to select 150 random samples to use as
initial cluster centers, selecting the best version. The goal was to greatly
increase the odds that KMeans selected two samples, one which nearly
epitomizes a negative sample and one which nearly epitomizes a positive
sample. Then, with the optimization of LKCA, this increases the like-
lihood of finding a globally optimal solution. Considering the high effi-
ciency of the KMeans algorithm, this process takes little time. The raw

data was passed through a PCA algorithm to highlight the variance in the
data and reduce dimensionality.

Themodel was configured to find three clusters, with the idea that one
cluster would represent positive RT-QuIC reactions, another would
represent false positive reactions, and the final cluster would represent
negative reactions. As most of the analysis used to evaluate the models was
not compatible with multiclass output, the model output was converted to
yield a 0 or a 1, corresponding to negative or positive. False positive clas-
sifications were treated as negative except when evaluating performance on
false positives. Since the model was not given labels, it randomly selected
whether the positive labelwas a 0 or a 1. The rest of the evaluation required a
uniform system of outputs, so a standard was selected (1 represented
positive, and 0 represented negative). Any model that underperformed
below what was predicted by random guessing had its labels flipped to
match this standard.

Supervised learning approaches
Support vector machines. While SVMs are elegant in their simplicity,
they often suffer from poor performance on datasets with many features
(as in our case with 65 time steps). Considering this, the SVM trained on
raw data was considered a prime candidate for the PCA preprocessing
step, which was applied to the raw dataset via the Scikit-Learn package54

prior to training and testing. This created amuch smaller feature space of
just the relationships for the SVM to learn. The SVM was constructed
using the Scikit-Learn implementation54. The model itself uses a radial
basis function (RBF)58 kernel. RBFs are a family of functions that are
symmetric about a mean, such as a Gaussian distribution. These func-
tions allow SVMs to classify data that is not separable by a polynomial
function (such as concentric circles), making the SVMmore versatile but
also more complex58.

SVMs implemented with Scikit-Learn are inherently binary classifiers
and do not supportmultiple classification boundaries.While it is possible to
implement multiple classes by training multiple models, the implementa-
tion in this study did not use that approach in order to simplify the training
and testing of the model. The PCA/SVM combo was run on the raw data
and the SVM alone was run on the feature-extracted data.

Deep learning: multilayer perceptron. Multilayer Perceptrons (MLPs)
are one of the simpler types ofDeepNeuralNetworks1 (DNNs) developed
for classification tasks. MLPs consist of a set of 1-dimensional layers of
neurons, featuring an input layer, an output layer, and at least one hidden
layer in between. The weights between each layer are used to identify
patterns that correspond to the training task42.

TheMLPwas selected for this task due to its natural compatibility with
the dimensions of the problem. Since the study examined each replicate
individually, the data was one-dimensional, consisting of just the fluores-
cence reading at each of the 65 time steps. MLPs are able to compare each
timestepwith every other timestep, allowing them to extract a wide range of
features from the dataset, evenwhen these features are not linearly separable
by class.

The MLP that produced the results in this paper used the Keras
package in Python. Keras is a machine learning package that makes model
development simpler and is part of the Tensorflow package59. The model
consisted of 3 hidden layers. The input layer matched the input shape (65
nodes, one for each timestep). The next three hidden layers used 65 neurons
each, matching the shape of the input, which proved effective in testing.
Each of these layers used aRectified LinearUnit (ReLU) activation function,
a popular activation that eliminates negative inputs completely60. The
model, while originally tested as a binary classification setup, is configured
with 3 output neurons, each corresponding to a class (negative, false posi-
tive, or positive). This forces theMLP to learn distinctions between positive
and false positive classes in a more meaningful way. The model uses a
softmax activation function in the final layer, converting the input to this
layer into a score from0 to1 for eachof the three classes.These scores addup
to 1 and can be seen as themodel’s “confidence” that a reaction belongs to a
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given class. With this information, the highest scoring class can be taken as
the model’s prediction or can be processed more carefully to intuit new
insights about the data.

Before the model is trained on the data, the inputs are first processed
according to the steps outlined in the Data Generation and Processing
section of the main manuscript. An important note, however, is that the
MLP is the only model type explored in this study that does not require
additional feature extraction. Neural networks are themselves feature
extractors, so attempting to train the model on PCA extracted features or
metrics would limit the potential features fromwhich themodel can extract
information. This represents a massive advantage DNNs have over other
ML methods, as DNNs generally do not require time-consuming feature
engineering to achieve good performance1.

Training an MLP involves passing training data through the network
in groups called batches. For this implementation, the number of reactions
in a batch was 64. Once the network obtains predictions on this data, the
prediction is compared to the true class using an error function (more
commonly known as the loss function). This loss is then used to update the
weights in between neurons of the network through a process called
backpropagation1,61. This process continues until all the training data has
been passed through the network, completing one iteration or epoch of
training. TheMLP used in this study was set to train for a maximum of 100
epochs.While training, a portion of the training dataset is withheld (10% in
this case) for validation of the model after each epoch. Should the model
begin to overfit, a process in which the model loses the ability to generalize
beyond the training data without learning more generally applicable pat-
terns, the loss of themodel on the validation data will begin to increase even
as the trainingdata lossdecreases.The loss of themodel on this validation set
wasmonitored during training (Fig. 9) and used to limit overfitting. At each
epoch, the model was saved as a checkpoint if the validation loss at that
epoch was less than the best previous validation loss. At the end of training,
the last checkpoint was restored to the model iteration that performed best
on the validation set. For the MLP used in this study, however, the model
always improved on the validation set, so the checkpoint that was restored
was the final state of the model after the 100th epoch.

Once the model was trained, the outright classification was a non-
optimal representation of the data in this study. The false positive samples
and the positive samples were not clearly distinguished by the model,
meaning any well with a curve would score highly in both the false positive
and positive classes. This behavior was undesirable as many positives were

mistaken for false positives and vice versa. In order to rectify this issue, a
weighted averagewas applied to the output to get a single, unified score. The
model output used the function shown in Eq. 1 to calculate the final score
used for final classification. In the equation, Yneg is the score for the negative
class, Yfp is the score for the false positive class, Ypos is the score for the
positive class, and Yout is the overall binary score used in the results. This
smoothed out the poorly defined class boundary into a spectrum from0 to 2
(noting that the sum of the score outputs produced by the model are nor-
malized), with any score less than 0.5 being labeled a negative prediction,
any value between 0.5 and 1.5 being labeled a false positive prediction, and
anything above 1.5 being labeled a positive prediction.

Yout ¼ 0×Yneg þ 1 ×Yfp þ 2×Ypos

Equation 1: Weighted Average Applied to MLP Output

Evaluation criteria
Evaluation of the models primarily considered five metrics, accuracy, sen-
sitivity/recall, specificity, precision, and F1-score. The accuracy metric
corresponds tohowmanywellswere classified the sameas thehuman labels.
As this study used 2 classes, theworst possible accuracy score should be 50%
(when adjusted for class weight), corresponding to a random guess. A
significantly lower accuracy would likely be the result of a procedural issue,
so for each accuracy metric, it is imperative to consider the improvement
over 50% as the true success rate of themodel.While accuracy evaluates the
dataset holistically, sensitivity (or recall) evaluates the performance of the
model on identifying positive samples correctly. Specifically, sensitivity
corresponds to the fraction of human-labeled positive wells that were
classified correctly. Low sensitivity corresponds to a model that frequently
classifies annotator-labeled positive samples as negative. Specificity, con-
trary to sensitivity, identifies the fraction of human-labeled negative wells
thatwere classified correctly. Low specificity, then, correlates to amodel that
frequently classifies negative samples as positive. Anothermetric, precision,
provides additional insight into howwell a model is distinguishing between
classes. Precision is defined as the fraction ofmodel-labeled positive samples
that were actually positive. This metric is of particular interest in this
application as the number of negative reactions in the dataset is much
greater than the number of positive reactions - an environment that can
allow the previousmetrics to be high despite a poorly performingmodel. In
particular, precision measures a model’s false positive rate, with a low
precision indicating a high rate of false positives relative to the number of
true positives, making a positive prediction less meaningful. F1-score is a
combination of sensitivity and precision, creating ametric that evaluates the
performance of a model on positive samples considering these factors
together.While less useful for identifyingpatterns ofmistakes inmodels, F1-
score can be used to put sensitivity and precision in context together. F1-
score is calculated as the harmonic mean of precision and sensitivity,
meaning a particularly lowprecision or sensitivitywill create a lowF1-score.

Data availability
Data used in this manuscript can be found at: https://github.com/
HoweyUMN/QuICSeedAI.
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