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Interpretable feature-based machine
learning for automatic sleep detection
using photoplethysmography
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Sleep disorders affect millions globally, leading to serious health issues. Accurate sleep-wake
classification is essential for diagnosis and management. While polysomnography is the gold
standard, it is costly and invasive; photoplethysmography (PPG) offers a viable alternative. Using the
Cyclic Alternating Pattern Sleep Database (84 participants, 85,542 epochs), we extracted 330 features
and reduced dimensionality via statistical tests and the SelectFromModel method. To address class
imbalance, we applied Adaptive Synthetic (ADASYN) sampling. A Random Forest model, validated
with 20-fold cross-validation on the unbalanced dataset (75 features), achieved an F1 score of 89.05%
but struggled with wake detection. With ADASYN balancing and 35 features, it achieved 88.57%
sensitivity (sleep) and 71.31% specificity (wake), with an F1 score of 81.40%. This feature-based
approach improves PPG-based sleep classification, supporting clinical adoption and integration into

wearable devices for remote sleep monitoring.

Sufficient sleep is vital for maintaining good physical and mental health,
yet a significant proportion of adults worldwide suffer from sleep defi-
ciencies and disorders. In the United States, one-third of adults experience
inadequate sleep', and globally, sleep disorders such as obstructive sleep
apnea affect an estimated 936 million adults’. These sleep issues lead to
various health problems, including obesity, diabetes, cardiovascular dis-
eases, and mental health disorders’. Accurate sleep-wake detection is
critical as it forms the basis for understanding, diagnosing, and treating
sleep disorders. Disturbances in sleep-wake cycles can indicate conditions
such as insomnia*’, sleep apnea’, and restless legs syndrome®’. However,
detecting sleep-wake cycles remains challenging despite advancements in
sleep monitoring.

Polysomnography (PSG) is the clinical gold standard for sleep mon-
itoring, recording physiological parameters such as electroencephalography
(EEG), electrooculogram (EOG), electromyogram (EMG), breathing effort,
airflow, pulse, and blood oxygen saturation. The American Academy of
Sleep Medicine (AASM) provides the most widely used framework for sleep
staging using PSG data, grouping sleep into four stages: N1, N2, N3, and
rapid-eye movement (REM) sleep. N1 and N2 stages are often combined as
light sleep (LS), while N3 is referred to as deep sleep (DS)"’. Despite its
precision, PSG is expensive, time-consuming, and requires an overnight lab
stay with professional supervision and manual labeling, limiting its practi-
cality. It also suffers from high inter-rater variability (82.6% agreement''),

can disrupt natural sleep patterns, and fails to account for night-to-night
variations'>".

Actigraphy, using wrist-worn devices with accelerometers to estimate
sleep based on inactivity, has become the accepted method for home-based
sleep monitoring'*"*. However, the Cole-Kripke algorithm'® used in acti-
graphy is only modestly successful, does not differentiate sleep stages, and
can overestimate sleep due to motionless wakefulness' . Consumer
wearables like Oura, WHOOP, Apple Watch, and Fitbit offer cost-effective
home-based sleep staging, but fall short of clinical use due to a lack of
transparency and access to raw data, hindering validation against PSG™.

Photoplethysmography (PPG) is widely used in clinical and wearable
devices for non-invasive cardiovascular monitoring. By using a light source
and photodetector on the skin, PPG measures variations in light absorption
with each heartbeat, reflecting changes in blood volume. The PPG wave-
form, with peaks corresponding to systolic and diastolic phases, reflects the
balance between sympathetic and parasympathetic activity, which varies
across sleep stages’”. PPG’s ability to capture these variations makes it
valuable for sleep staging. Additionally, its established clinical use***°, makes
PPG highly scalable and supports widespread application. PPG-based
automatic sleep staging could provide a simple, cost-effective and accurate
alternative to existing methods for sleep monitoring.

In the advancement of automatic sleep staging, the adoption of
machine learning classifiers trained on PPG data is gaining traction.
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Previous research has employed various approaches, leveraging both pub-
licly available and proprietary datasets. Using public datasets, such as the
Sleep Heart Health Study (SHHS), the Cleveland Family Study (CFS)”’, the
Multi-Ethnic Study of Atherosclerosis (MESA)”, Emory twin study follow-
up database (ETSF)**”, the Childhood Adenotonsillectomy Trial
(CHAT), SIESTA (Study of Insomnia and Sleep Estimation)’ ~**, Sleep and
Obstructive Sleep Apnea Monitoring with Non-Invasive Applications
(SOMNIA)** and the CAP (Cyclic Alternating Pattern) sleep database”,
enhances the replicability and generalizability of findings. In contrast, a
significant body of research® relies on proprietary data, limiting the wider
applicability of the outcomes.

One significant challenge in sleep staging is the inherent imbalance in
sleep stages, with wake constituting only about 20% of the sleep cycle and
sleep stages making up the remaining 80%. This imbalance can lead to
models being biased towards the majority stages, reducing their effectiveness
in accurately detecting less prevalent stages. Only a few studies have
addressed this issue through techniques such as data balancing or adjusting
class weights”?%***#>1%% Implementing these approaches before model
training can significantly enhance the model’s generalizability and avoid
bias, making them crucial steps often overlooked in previous studies.

The model inputs vary between studies, with some using feature-
based approaches and others using PPG signals directly. Feature-based
classifiers are particularly valuable for clinical PPG-based sleep staging.
Compared to raw signal approaches™****~*>3°2% feature-based classi-
fiers offer enhanced interpretability and reduced computational demands.
They also present the potential to identify biomarkers for different sleep
stages. Studies have shown that feature-based models can capture the
nuances of sleep and wake stages, making them suitable for clinical
applicationsz&z‘),S 1-33,35-37,39,43-50,52-58,60,61 .

The models used in PPG-based sleep staging vary, ranging from tra-
ditional machine learning algorithms™*"***#-3033%3=%% 14 more complex
deep learning approaches™>%*%*!2373639-2:455L323961 - Although feature-based
classifiers like LGBM showed the best performance in some 5-stage classi-
fication tasks’*, this may be influenced by specific dataset characteristics,
and there are concerns about potential data leakage in train-test splitting, as
subject-level separation wasn’t always explicitly described’™*. For sleep/
wake classification, deep learning models using raw PPG data show the
highest accuracies, although they often sacrifice interpretability””***"*.

Despite advancements, several challenges persist in previous studies:
limited generalizability due to proprietary datasets, inadequate handling of
class imbalance, potential data leakage, and lack of interpretability in deep
learning and non-feature-based approaches. The objective of this study is to
bridge these gaps by developing an interpretable feature-based machine-
learning model using the clinical CAP dataset, with a specific focus on binary
epoch-by-epoch sleep-wake classification. Given that many key sleep
metrics rely on sleep-wake transitions, binary classification is a practical first
step toward robust PPG-based sleep staging. By leveraging a feature-based
approach and addressing class imbalance, we aim to create a robust and
generalizable model suitable for real-world clinical settings. An overview of
the study workflow is presented in Fig. 1.

Results

Model evaluation

Using the original dataset, the RF classifier demonstrated consistent per-
formance across 5-, 10-, and 20-fold CVs. The optimized hyperparameters
for this model included bootstrap set to True, a maximum depth of 19,
maximum features set to ‘sqrt’, a minimum of 4 samples per leaf, 2 mini-
mum samples per split, and 500 estimators. The results indicated high
overall performance (F1 = 89.05%) and excellent capability in identifying
sleep stage (SE = 94.56%) but lower effectiveness in correctly identifying
wake stage (SP = 23.85%) (Table 1, Fig. 2). ROC curve analysis (Supple-
mentary Fig. 4) showed that the classifier trained on the unbalanced dataset
had moderate discriminative ability (AUC = 0.7104), suggesting limited
robustness across different thresholds. Improvements were observed with
ADASYN balancing, which maintained high sensitivity (SE = 88.57%) and

F1 score (F1 = 81.40%), while significantly enhancing specificity (SP =
71.31%) and MCC (MCC = 0.6080), demonstrating a well-rounded ability
to distinguish between sleep and wake stages effectively (Table 1, Fig. 2).
This was further supported by ROC curve analysis (Supplementary Fig. 4),
where the ADASYN-balanced model achieved an AUC of 0.8798, indicating
substantially improved model separability and generalization. The opti-
mized hyperparameters for the classifier trained on the ADASYN-balanced
dataset were bootstrap set to False, a maximum depth of 18, ‘sqrt’ for
maximum features, a minimum of 1 sample per leaf, 6 minimum samples
per split, 367 estimators, and a random state of 42. Confusion matrices for
each cross-validation fold using the original and ADASYN-balanced
datasets are presented in Fig. 3. To further support the choice of ADASYN
over RUS and SMOTE, Supplementary Fig. 5 provides a comparison of
classification performance across balancing techniques. While RUS and
SMOTE contributed to some improvements in specificity, ADASYN
achieved the best balance between sensitivity and specificity, ultimately
leading to the highest MCC.

Classification performance varied across sleep disorder groups, with
evaluation using LOSO CV revealing distinct patterns in model perfor-
mance. In the unbalanced dataset, the highest performance was observed in
the NFLE and no pathology (No path.) groups, achieving F1 scores of
93.24% and 92.72%, respectively. The narcolepsy (NL) group also per-
formed well, with an F1 score 0of 92.72%. In contrast, insomnia (INS) had the
lowest F1 (68.19%), highlighting its classification challenges. While NFLE,
NL and no pathology group had high F1 scores, their low specificity suggests
a bias toward classifying wake periods as sleep. Other groups, including
periodic limb movements (PLM), REM behavior disorder (RBD), and sleep
disordered breathing (SDB), showed moderate performance, with varying
trade-offs between sensitivity and specificity. In the ADASYN-balanced
dataset, classification improved, particularly in terms of specificity. The
classification performance remained the highest in NL (F1 = 87.92%), NFLE
(F1 = 82.45%) and no pathology groups (F1 = 81.54%), confirming their
reliable classification. INS and SDB showed the lowest performance (F1 =
68.79%, and F1 = 76.95%, respectively), indicating that distinguishing sleep
and wake states in these groups remained challenging. Overall, class bal-
ancing enhanced classification robustness across sleep disorder groups,
particularly improving wake detection, though some conditions, particu-
larly insomnia, remained more challenging (Table 2).

Feature importance

In the sleep-wake classification using the unbalanced dataset, the most
important features across all participants included the skewness of the PPG
signal (PPG_skew), trimmed mean (PPG_TM25), Lyapunov exponent
(PPG_LC), the standard deviation of the ratio between e and a points in the
2nd derivative of the PPG data (e_a_ratio_std), and the RMS of PPI signal
(PPL_RMS) (Fig. 4 1a). In the ADASYN-balanced dataset, the most impor-
tant features included PPI frequency-domain features (PPI_LF_HF_power,
_VLF_LF_power, PPI_LF_Total_power, PPI_VLF_HF power), emphasiz-
ing the role of autonomic nervous system activity in differentiating between
wake and sleep stages. While PPG morphology and 2nd derivative features
(e.g., rise times, width metrics, e/a ratio) remained relevant, their rankings
dropped in favor of HRV-based spectral features (Fig. 4 2a). Feature
importance patterns also varied between the two most common sleep dis-
orders, RBD and NFLE. A key distinction in RBD was the presence of EMD-
Hilbert features, which appeared in the top 20 for both unbalanced and
ADASYN-balanced datasets but were absent in NFLE (Fig. 4 1c and 2¢)
Additionally, while PPG_LC was among the most important features in
datasets trained on all participants and RBD patients, it did not appear in the
top 20 for NFLE (Fig. 4 1b and 2b). The extent of overlapping and distinct
feature importance patterns is further emphasized when examining the
overlap among the top features across unbalanced, ADASYN-balanced, and
disorder-specific datasets. Several features, such as e_a_ratio_mean,
Width_10_Percent_Time_avg, PPI_Min, PPG_Skew, and PPG_TM25,
consistently appeared across datasets (Fig. 5a), indicating their broad rele-
vance in sleep-wake classification. However, when focusing on the top 5
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Fig. 1 | Overview of study workflow and results. a Cohort and dataset: 84 parti-
cipants (33 females, 51 males), with most diagnosed with sleep disorders. 81% of
available epochs were sleep, and 19% were wake. b Preprocessing and feature
extraction: Steps included signal smoothing with moving average (window size =
10), Chebyshev Type I filtering (0.5-8 Hz, 0.2 dB ripple), normalization, and
extraction of 330 features for each epoch (xE). ¢ Feature selection, model training,
and evaluation: Feature selection from unbalanced and ADASYN-balanced datasets

Importance

Value

identified 79 and 35 features, respectively. Random Forest classifier was used for
training and evaluation, with confusion matrices showing classification perfor-
mance for 20-fold cross-validation. d Feature importance: Importance of top fea-
tures for unbalanced and ADASYN-balanced datasets. e Feature values in wake vs
sleep: Distribution comparison of PPG_TM25 feature values, where PPG_TM25
represents the trimmed mean of the PPG signal with 25% of extreme values removed,
between wake and sleep stages, showing clear distinction.

features, greater variability emerges, for instance, only PPG_Skew remained
consistently among the top 5 features across unbalanced and ADASYN-
balanced datasets (Fig. 5b). The distribution of feature groups further
highlights these differences (Supplementary Fig. 6). PPG signal character-
istic and nonlinear dynamics features were well represented across all
groups, reinforcing their overall importance in sleep-wake classification.
However, PPI frequency-domain features became more dominant in

ADASYN-balanced datasets. These findings suggest that while a core set of
features remains important across conditions, the most highly ranked fea-
tures can shift depending on sleep disorder and balancing approach.

The role of the most important features in distinguishing wake and
sleep states becomes more apparent when examining their distributions.
Histograms and boxplots provide a clearer view of how these features
separate the two states, highlighting differences in their mean values
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Table 1 | Results for sleep-wake classification datasets

ACC SE SP F1 MCC AUC

Unbalanced dataset

5-fold CV 81.54% 94.50% 25.79% 89.26% 0.2729 0.7301
10-fold CV 81.36% 94.68% 24.00% 89.18% 0.2574 0.7343
20-fold CV 81.15% 94.47% 23.85% 89.05% 0.2507 0.7104
LOSO CV 82.13% 95.30% 17.19% 88.81% 0.1929 0.6913
ADASYN-balanced dataset

5-fold CV 80.45% 90.48% 70.45% 82.15% 0.6220 0.8805
10-fold CV 79.99% 88.48% 71.31% 81.50% 0.6070 0.8829
20-fold CV 79.97% 88.57% 71.31% 81.40% 0.6080 0.8798
LOSO cV 78.04% 89.50% 66.67% 80.19% 0.5875 0.8666

ACC accuracy, AUC area under the receiver operating characteristic curve, CV cross-validation, F7 F1 score, LOSO leave-one-subject-out, MCC Matthews correlation coefficient, SE sensitivity, SP

specificity

a Sleep-wake classification results

94%

89% 89%

81% 80% 81%
1%
0.61
24% 0.25
ACC SE SP F1 MCC —— Unbalanced 20-fold CV

@ Unbalanced 20-fold CV @ ADASYN 20-fold CV

Fig. 2 | Results for sleep-wake classification using 20-fold cross-validation across
unbalanced and ADASYN-balanced datasets revealed key performance differ-
ences. a Classification results: Bar plots comparing the results for sleep-wake clas-
sification using 20-fold cross-validation across unbalanced and ADASYN-balanced
datasets. The model trained on the unbalanced dataset showed higher ACC, SE, and
F1 scores but suffered from significantly lower SP and MCC. In contrast, the
ADASYN-balanced model notably enhanced SP and MCC, while also maintaining

b Comparison of models

—— ADASYN 20-fold CV

competitive ACC, SE, and F1 scores. b Comparison of models: A chart visualizing
the differences in evaluation metrics between models trained on unbalanced and
ADASYN-balanced datasets. ACC accuracy, ADASYN Adaptive Synthetic, CV
cross-validation, F1 F1 score, MCC Matthew’s correlation coefficient, No balanc. no
balancing (the unbalanced dataset), SE sensitivity, SP specificity. Epoch counts: No
balancing: 85,542 (Wake: 16,128, Sleep: 69,414), ADASYN: 139,410 (Wake: 69,754,
Sleep: 69,656).

between wake and sleep classes (Fig. 6, Supplementary Fig. 7). For example,
PPG_TM25 and PPG_LC are higher during wake, while PPI_Min shows
higher values during sleep. The histograms from ADASYN-balanced
dataset show a more apparent distinction between sleep and wake feature
values compared to the unbalanced dataset, resulting in less overlap and
more defined separation. This improved feature differentiation likely con-
tributes to the improved model performance in detecting the wake stage
when using ADASYN-balanced dataset.

Discussion

The developed 2-stage classifier for PPG-based sleep staging exhibits
competitive performance and overcomes several critical limitations noted in
previous research (Table 3). Employing a substantial dataset of 84 partici-
pants from the publicly accessible CAP database, we enhance the general-
izability of our results. Additionally, we prevented data leakage by
employing group-wise cross-validation, ensuring that all data from a given
subject are contained within either the training or validation set, effectively
avoiding the overlap that can inflate performance metrics. Our study utilizes
a feature-based random forest classifier, favoring transparency and inter-
pretability crucial for clinical applications. We also addressed class imbal-
ance, a common issue in sleep staging. While RUS and SMOTE are
commonly used for this purpose, they come with inherent limitations - RUS

reduces generalizability by eliminating majority class instances, while
SMOTE may lead to overfitting and noise by creating new samples. In
contrast, ADASYN enhances model robustness by adaptively generating
synthetic samples in regions where the class imbalance is more pronounced,
and learning is more challenging, thereby enhancing model robustness and
improving generalization. We evaluated our classifier on both, the unba-
lanced and ADASYN-balanced datasets.

Table 3 provides a comprehensive comparison of our model’s
performance with 16 prior studies on PPG-based sleep-wake classifi-
cation. However, differences in dataset size, preprocessing, class bal-
ancing methods, validation approaches, and model architectures must
be considered when interpreting cross-study comparisons. Our devel-
oped model achieved an accuracy of 81.15% on the unbalanced dataset
and 79.97% on the ADASYN-balanced dataset. Although these figures
are slightly lower than those reported in some previous
studies***"*"%% jt s crucial to note that these studies often had
smaller sample sizes (e.g. n = 2°°°, n = 10°>°"%) and potential data
leakage issues where the same subjects’ data were possibly included in
both training and testing sets™**’. Additionally, two studies with higher
accuracies used deep learning approaches with PPG signal as direct
inputs®*’, which, while effective, lack the transparency and interpret-
ability provided by the feature-based approach of our model.
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Fig. 3 | Confusion matrices for sleep-wake classification using the unbalanced and ADASYN-balanced datasets. Confusion matrices and respective F1 scores for sleep-
wake classification using fivefold, tenfold, and 20-fold cross-validation. a Results from the unbalanced dataset. b Results from the ADASYN-balanced dataset.

Table 2 | Results for sleep-wake classification datasets using
LOSO cross-validation for different patient groups

ACC SE SP F1 MCC AUC

Unbalanced dataset

No path.  87.03% 94.18% 10.26% 92.72% 0.0918 0.5949
INS 57.79% 84.98% 29.05% 68.19% 0.1979 0.7334
NL 85.43% 99.65% 18.14% 91.21% 0.3517 0.8544
NFLE 87.95% 97.77% 9.95% 93.24% 0.1431 0.7032
PLM 77.99% 92.83% 18.48% 86.02% 0.1730 0.6436
RBD 79.31% 94.14% 30.06% 87.11% 0.3038 0.6729
SDB 81.63% 97.26% 10.48% 89.48% 0.1447 0.6028
ADASYN-balanced dataset

No path.  80.24% 87.93% 72.55% 81.54% 0.6131 0.8783
INS 66.93% 75.78% 58.29% 68.79% 0.3688 0.7668
NL 86.79% 96.60% 77.19% 87.92% 0.7522 0.9520
NFLE 79.86% 93.98% 65.75% 82.45% 0.6274 0.8932
PLM 76.09% 83.21% 69.20% 77.52% 0.5369 0.8258
RBD 77.80% 87.21% 68.55% 79.60% 0.5858 0.8530
SDB 73.08% 88.57% 57.53% 76.95% 0.4872 0.8265

ACC accuracy, AUC area under the receiver operating characteristic curve, F1 F1 score, INS
insomnia, LOSO leave-one-subject-out cross-validation, MCC Matthews correlation coefficient,
No path. no diagnosed pathology, NFLE nocturnal frontal lobe epilepsy, NL narcolepsy, PLM
periodic limb movements, RBD REM behavior disorder, SDB sleep disordered breathing, SE
sensitivity, SP specificity.

While accuracy is a commonly used metric for model evaluation, it
may not always provide the most reliable insights for unbalanced datasets.
However, previous studies did not consistently report the F1 score and
MCC, which better account for class imbalance. Our model on the unba-
lanced dataset achieved an F1 score of 89.05%, outperforming all but two
other studies that provided F1 scores. One study with a higher F1 score
(89.47%) only used sleep recordings from two participants’. The other
study, which reported an even higher F1 score (94.01%), used recordings
from only 10 participants and employed a deep learning approach with the
PPG signal as input, rather than a feature-based approach™. The ADASYN-
balanced model also showed robust results with an F1 of 81.40% and MCC
of 0.61, indicating a balanced classification capability, superior or com-
parable to most other studies.

Our model demonstrated high sensitivity, indicating its excellence in
detecting sleep, with the classifier trained on the unbalanced dataset
achieving a rate of 94.47%. This result outperformed most other studies
except two**’. The sensitivity for the ADASYN-balanced model was slightly
lower at 88.57%.

Regarding specificity or the model’s ability to detect wake stages, our
classifier trained on the unbalanced dataset encountered challenges,
marking the lowest specificity among all studies reviewed. Similar difficul-
ties were observed in the study by Eyal et al.”’, where there was a substantial
gap between high sensitivity (91.70%) and low specificity (38.10%). By
employing ADASYN-balancing, we significantly enhanced specificity
to 71.31%.

Classification performance varied across sleep disorders, reflecting
differences in sleep-wake patterns. Disorders with distinct physiological
transitions, such as narcolepsy and nocturnal frontal lobe epilepsy, exhibited
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Fig. 4 | Top-performing features in sleep-wake classification by importance. (1)

Unbalanced dataset: PPG time-domain and nonlinear dynamics features (e.g.,
PPG_skew, PPG_TM25, PPG_LC) and time-domain PPI characteristics (e.g.,
PPI_RMS, PPI_SVD) were among the most influential. (2) ADASYN-balanced
dataset: Frequency-domain PPI metrics (e.g., PPI_LF_HF_power,

2 Top 20 features — ADASYN-balanced dataset
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PPG_Min

PPI_En2nd

Width_10_Percent_Time_avg

PPG_LC
RiseTime_TimeBetweenSysPeaks_Mean
Width_Half_Duration_std

PPG_TMS0

e_a_ratio_mean

000 002 004 006 008 010 012
Average Importance

2b NFLE

PPI_LF_HF_power
PPI_LF_Total_power

PPIVLF_LF_power

PPI_HF_Total_power

PPIVLF_HF_power

PPG_Signtest_p

PPG_skew

PPG_Ymax
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PPI_Min

e_a_ratio_mean
RiseTime_fromHalfPeak_std

PPG_IQR

e_a_ratio_std

DiasArea_abs_avg
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PPG_En2nd
RiseTime_TimeBetweenSysPeaks_Mean
Area_NegHalfPeak_ToEnd_abs_avg
Width_Half_Duration_std

0.00 0.02 0.04 0.06 0.08
Average Importance

2c RBD

PPI_VLF_HF_power
PPI_VLF_LF_power
PPI_LF_HF_power
PPI_LF_Total_power
IMF1_Inst_Freq_Mean
PPI_MAD

PPG_p3_Power_SD
PPG_Enlst
RiseTime_FromHalfPeak_avg
b_a_ratio_mean
e_a_ratio_mean

PPG_LC
Width_10_Percent_Time_avg
IMF1_LM_Ratio

PPG_Ymax

PPG_HFD

DiasArea_abs_avg

PPI_QOO

IMF1_TP_Int_SD

PPI_Min

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
Average Importance

PPI_VLF_LF_power) became more dominant, suggesting their increased role in
distinguishing wake from sleep after balancing. For both (1) and (2), (a) shows the
top 20 features for all participants, (b) for NFLE patients, and (c) for RBD patients.
NFLE nocturnal frontal lobe epilepsy, RBD REM behavior disorder.
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a Top 20 features across datasets

e_a_ratio_mean -
Width_10_Percent_Time_avg -
PPI_Min -

PPG_skew -

PPG_TM25 -
DiasArea_abs_avg -
RiseTime_TimeBetweenSysPeaks_Mean -
PPG_LC -
RiseTime_FromHalfPeak_avg -
PPG_Enlst -

e_a_ratio_std -
PPI_VLF_HF_power
PPI_VLF_LF_power
PPG_Ymax

PPI_Q90 -

PPI_LF_HF_power

PPG_Q75 -
RiseTime_FromHalfPeak_std -
PPG_En2nd -

a_b_mean -

b_a_ratio_mean
IMF1_Inst_Freq_Mean
PPI_LF_Total_power
PPG_Signtest_p

PPG_IQR
Width_Half_Duration_std
PPG_p3_Power_SD

PPI_RMS -

PPI_PerEn

DiasTime_avg -

PPI_MAD

PPI_SVD -

e_a_Ratio_std
Area_NegHalfPeak_FromStart_std
PPI_HF_Total_power
PPG_Min

FallTime_Half_std
IMF1_LM_Int_Mean
IMF1_LM_Ratio
IMF1_TP_int_SD
PPG_Enlst_2nd

PPG_HFD

PPG_PerEn

PPI_En2nd

PPG_Q25

PPG_TM50
PPG_p2_Total_Power
Area_NegHalfPeak_ToEnd_abs_avg
PPG_p4_Total_Power -
PPI_CCM

PPG_p4_Power

All_ADASYN

NFLE_ADASYN

All_Unbalanced
NFLE_Unbalanced
RBD_Unbalanced -

RBD_ADASYN

Fig. 5 | Overlap and variability in top features across datasets and balancing
methods. a Top 20 features across different dataset configurations: showing sub-
stantial overlap in feature selection across groups. b Top 5 features across datasets:
highlights greater variability in the most critical predictors depending on dataset
composition and sleep disorder type. Yellow indicates that a feature was included in
the top-ranked features for a given dataset, while purple indicates that it was not.
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While some features, such as PPG_skew and PPG_TM25, were consistently among
the top-performing features in all unbalanced datasets, and PPI frequency-domain
features in all ADASYN-balanced datasets, the highest-ranked features differed
more substantially between NFLE and RBD patients. This suggests that dataset
composition and disorder-specific physiological influences impact feature
importance.

the highest classification efficiency, reflected by the highest F1 scores and
MCC values, while conditions with fragmented sleep, such as insomnia and
sleep disordered breathing, posed greater challenges. The poor classification
performance in insomnia likely stems from frequent micro-arousals and
fragmented sleep structure, leading to systematic misclassification of wake
as sleep. The classifier’s strong performance in the no-pathology group
highlights its effectiveness when applied to stable sleep patterns but also
underscores its limitations in detecting subtle sleep-wake transitions in
more complex cases.

The feature importance analysis provided valuable insights into the
most influential features for sleep-wake classification and the impact of
using unbalanced versus ADASYN-balanced dataset. Some features
appeared important in both, the unbalanced and ADASYN-balanced

datasets, and were supported by previous studies. For example, two fea-
tures that have been highlighted in multiple prior studies, the trimmed
mean of the PPG signal (PPG_TM25)***% and the skewness of
the PPG signal, indicating the asymmetry of the PPG waveform
(PPG_skew)™**°0%45%% were found important in both datasets, likely due
to their ability to reflect subtle physiological changes during wakefulness.
PPI_min, which reflects the lowest HRV in an epoch and provides insights
into cardiovascular stability and sympathetic tone, also consistently
appeared among the top-performing features, mirroring findings from
previous studies’**. The recurring importance of these features across
different methodologies and supported by previous applications in
research, underscores their potential to enhance the accuracy of wake
detection in PPG-based sleep staging algorithms. On the other hand, some
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Fig. 6 | Distribution of values for the best-performing features in sleep-wake
classification using the unbalanced and ADASYN-balanced datasets. Each sub-
plot includes histograms and boxplots illustrating the distribution of values across
sleep and wake classes, with corresponding p-values indicating significant group
differences. 1 Unbalanced dataset: 1a-1d show results from the unbalanced dataset:
1a PPG_skew, representing the skewness of the PPG waveform; 1b PPG_TM25, the
trimmed mean of the PPG signal with 25% of extreme values removed; 1¢ PPG_LC,
the Lyapunov coefficient capturing signal complexity; and 1d e_a_ratio_std, the
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standard deviation of the ratio between the ‘¢’ and ‘a’ points in the second derivative
of the PPG waveform. 2 ADASYN-balanced dataset: 2a-2d present results from the
ADASYN-balanced dataset, displaying features derived from the frequency-domain
analysis of the peak-to-peak interval (PPI) time series. 2a PPI_LF_HF_power, the
ratio of low-frequency (LF) to high-frequency (HF) power; 2b PPI_VLF_LF_power,
the ratio of very low-frequency (VLF) to LF power; 2c PPI_VLF_HF_power, the
ratio of VLF to HF power; 2d PPI_LF_Total_power, the proportion of LF power
relative to the total power spectrum.

features that appeared important in both datasets were either novel or had
limited prior reporting. The Lyapunov coefficient (PPG_LC), which
measures the complexity of the PPG signal, was previously reported in
only one study™. The mean and standard deviation of the ratio of second
derivatives of the PPG signal at ‘€ and ‘@’ points (e_a_ratio_mean,
e_a_ratio_std) also emerged as novel metrics, capturing fluctuations in
blood volume during cardiac cycles. To the best of our knowledge, these
second derivative features have not been previously reported in PPG-
based sleep staging literature. These novel features could significantly
enhance the performance and robustness of PPG-based sleep staging

classifiers. Whereas the unbalanced dataset relied more on statistical
descriptors and PPG waveform morphology, the use of the ADASYN-
balanced dataset shifted feature importance toward PPI frequency-
domain features such as VLF/LF (used in’**), VLF/HF (used in®*"’), and
LEF/HF power ratios (extensively utilized in previous studies’***%**+7%%),
emphasizing the role of autonomic nervous system activity in differ-
entiating between wake and sleep stages. These findings suggest that
synthetic resampling alters the importance of certain features, likely due to
improved class balance and reduced bias toward dominant sleep states.
Additionally, to address whether different sleep disorders emphasize
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Table 4 | Dataset overview: Distribution of participants by gender and pathology with corresponding age ranges

Female

Male

Total

All participants (n)

33

51

84

Age [years] 41.4 + 16.8 (16-76) 48.7 £21.1 (14-82) 45.8 £ 19.7 (14-82)
No pathology (n) 3 1 4

Age [years] 32.7 £ 4.0(28-35) 34 33.0 £ 3.4 (28-35)
Insomnia (n) 4 3 7

Age [years] 54.5 + 5.4 (47-59) 63.3 £ 9.0 (54-72) 58.3 + 8.0 (47-72)

Narcolepsy (n)

2

2

4

Age [years]

36.5 + 10.6 (29-44)

33.5 + 13.4 (24-43)

35.0 + 10.0 (24-44)

Nocturnal frontal lobe epilepsy (n)

18

21

39

Age [years]

33.2 + 13.2 (16-67)

27.8 + 8.3 (14-44)

30.3 + 11.0 (14-67)

Periodic leg movement (n)

3

6

9

Age [years]

51.3 + 1.2 (50-52)

55.8 + 7.9 (40-61)

54.3 + 6.6 (40-61)

REM behavior disorder (n)

3

15

18

Age [years]

74.7 + 1.5 (73-76)

71.1 + 6.6 (59-82)

71.7 + 6.2 (59-82)

Sleep disordered breathing (n)

0

3

3

Age [years]

N/A

69.0 + 6.9 (65-77)

69.0 + 6.9 (65-77)

different feature sets, we conducted exploratory analyses on NFLE- and
RBD-specific datasets. The results revealed disorder-specific variations in
feature selection, especially in terms of feature importance rankings. These
differences may reflect distinct autonomic and cardiovascular regulation
patterns in NFLE and RBD. Overall, while a core set of features remained
relevant across datasets, the most critical predictors varied based on
dataset composition and disorder-specific characteristics. This feature
importance analysis underscores the value of comprehensive feature
engineering and advanced balancing techniques in optimizing sleep sta-
ging models. Moreover, the observed differences between NFLE and RBD
subjects suggest that further studies could explore disorder-specific fea-
ture selection strategies to optimize classification performance in clinical
populations.

This study presents a comprehensive exploration of PPG-based sleep
staging and feature importance, but several limitations must be
acknowledged. Initial model selection lacked prior feature selection and
hyperparameter tuning. Ideally, all models in the model selection phase
should undergo hyperparameter tuning before and after feature selection
to optimize performance. Noise reduction was handled by filtering and
excluding epochs with missing peaks or railing, but more robust methods
like eliminating epochs based on a signal quality index or excluding
subjects with noisy recordings could further enhance data quality. How-
ever, excessive noise filtering might limit the model’s applicability to real-
world, often noisy, wearable data. Notably, some traditional HRV metrics
did not perform well, possibly due to the initial significance and correla-
tion analysis phase. Future research should implement more advanced
feature selection methods like Recursive Feature Elimination with Cross-
Validation, and noise reduction methods to improve model robustness.
Additionally, balancing the training set while maintaining an untouched
test set would further validate the model’s effectiveness in real-world
applications.

The study focused on epoch-by-epoch binary sleep-wake classification
due to its computational efficiency and lower susceptibility to class imbal-
ance. Since many key sleep metrics (e.g., total sleep time, wake after sleep
onset, sleep efficiency) primarily depend on distinguishing wake from sleep,
this approach remains a practical choice for applications like sleep disorder
screening. While the focus of this study was on granular detection of wake
and sleep states, future studies could extend this work by evaluating how well
epoch-based classification generalizes to summary sleep metrics. In con-
trast, multi-class sleep staging (e.g., Wake/REM/NREM or finer distinc-
tions) presents additional challenges, including exacerbated class imbalance,

particularly for underrepresented stages such as N1 and REM, and increased
model complexity. Expanding the classifier to multi-class sleep staging could
provide deeper insights into sleep structure. This would require additional
physiological inputs, such as actigraphy and skin temperature, and a more
balanced dataset to improve classification reliability. Finally, while this study
demonstrates the feasibility of PPG-based sleep staging, adapting the model
for wearable use remains a challenge due to lower sampling rates, missing
data, and computational constraints. Optimizing the model for real-time
processing and robust data handling will be key to ensuring its practical
application in wearable settings.

The development of an interpretable, feature-based classifier holds
significant promise in clinical applications. Such a model not only aids in
understanding the physiological underpinnings of sleep and wake stages but
also offers transparency in predictions which is crucial for its clinical
adoption. Integrating this classifier in wearable technology could revolu-
tionize home-based sleep studies, enabling continuous, non-invasive,
patient-friendly, and cost-effective monitoring. Such advancements could
facilitate the early detection and management of sleep disorders, potentially
before clinical symptoms emerge. Future research should focus on opti-
mizing the model for wearable applications, while also validating it in a
broader population with more healthy individuals to enhance its general-
izability. Furthermore, expanding the model’s capabilities to classify mul-
tiple sleep stages and detect specific sleep disorders could further enhance its
clinical utility.

Methods

Dataset

The CAP sleep database””, a publicly available clinical dataset operating
under the ODC-BY 1.0 license, was used for training the classifier. The
dataset includes full overnight polysomnographic (PSG) recordings, from
which expert neurologists annotated sleep stages according to the
Rechtschaffen and Kales (R&K) rules*. R&K scoring manual categorizes
sleep into stages labeled 0 to 5: 0 represents wakefulness, while stages 1
through 5 correspond to sleep stages S1, S2, S3, S4, and REM, respectively.
To align with the more recent AASM guidelines'’, S3 and S4 can be merged
into a single deep sleep stage, N3, with the other stages remaining as is. Out
of the 108 available recordings, 84 included raw PPG signals, making them
suitable for this study. The PPG signals were collected simultaneously with
the PSG recordings, using the same clinical-grade PSG systems. The PPG
signal was sampled at 128 Hz and recorded throughout the PSG session. The
participant demographics showed a gender distribution of 33 females and
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51 males. The average age was 46, with a standard deviation of 20 years.
Most participants were diagnosed with sleep disorders, except for four
healthy participants. A detailed breakdown of the dataset, including
demographics and sleep statistics for each diagnostic group, is provided in
Table 4. The PSG-derived labels were used to evaluate the sleep staging
classifier trained on PPG-derived features.

Preprocessing

In the preprocessing phase, the initial visual inspection identified three
inverted recordings that were subsequently corrected. Next, the PPG data
was aligned with the corresponding PSG labels and segmented into 30-
second epochs for analysis. The dataset annotations were simplified by
consolidating all sleep stages (1-5) into a single ‘sleep’ category, resulting in a
binary classification of wake versus sleep.

The signal was smoothed with a 10-point moving average, filtered
using a 4th-order Chebyshev Type I bandpass filter (0.5-8 Hz, 0.2 dB
ripple), and standardized using z-score normalization. Peaks and onsets
were detected using the MSPTD algorithm from the PPG Beats toolbox™.
Epochs lacking clear peaks or onsets were discarded. Additionally, epochs
exhibiting ‘railing’—defined as having at least three peaks within 20 data
points — were removed due to physiological implausibility. A, b and e points
were detected from the second derivative of the PPG signal. Peak-to-peak
interval (PPI) time series was derived from the PPG signal by converting the
intervals between successive peaks to milliseconds. PPIs outside the phy-
siological range (shorter than 330 ms or longer than 1500 ms, corresponding
to heart rates above 182 bpm or below 40 bpm, respectively) were excluded.
After completing the preprocessing steps, 85,542 epochs were available for
training the classifier. The dataset exhibited significant class imbalance, with
only 16,128 epochs categorized as ‘Wake’.

Class imbalance

To overcome the inherent class imbalance in sleep stages, adaptive synthetic
(ADASYN) oversampling was implemented. ADASYN was chosen over
other common methods, such as Random Under Sampling (RUS) and the
Synthetic Minority Over-sampling Technique (SMOTE), due to RUS’s sig-
nificant information loss and reduced generalizability and SMOTE'’s potential
to introduce noise and overfitting. ADASYN adaptively generates synthetic
samples based on the dataset’s distribution, reducing bias towards the majority
class and enhancing the model’s overall performance and generalizability.

Feature extraction

A comprehensive set of 330 features was extracted using the filtered PPG
signal, detected physiological points, and PPI time series. 209 features were
derived from the PPG signal and 121 from the PPI time series. These
features, derived from literature, enable the development of feature-based
machine learning models for accurate sleep stage classification. The full list
of extracted features, along with their mathematical definitions and
descriptions, is provided in Supplementary Tables 1 and 2. The feature
extraction process was implemented in Matlab, and the corresponding code

is publicly available on Zenodo®.

PPG features. PPG signal characteristic features were derived from the
PPG signal to capture the shape and structural properties of the wave-
form in one PPG cycle, such as systolic peaks, systolic and diastolic areas,
cycle duration, and the width between specific amplitude points (see
Supplementary Fig. 1 for the key pulse wave characteristics used for
feature extraction). Additionally, the second derivative of the PPG signal,
which highlights the rate of change in the signal’s slope, was used to derive
features related to the a, b, and e points. These features capture subtle
changes in the waveform that may correlate with physiological phe-
nomena occurring during different sleep stages, such as changes in the
cardiac rhythm regularity and blood flow dynamics.

Time-domain features provided insights into the PPG signal's
amplitude variations and other statistical characteristics. Features such as
minimum, maximum, and range; central tendency measures like the mean,

median, and trimmed means; and various variability measures were
included. These features help assess the stability and irregularities in the
PPG signal, which may vary across different sleep stages.

Frequency-domain features were extracted using both Welch’s
method and Fast Fourier Transform (FFT) approaches to analyze the
power spectral density (PSD) across various frequency bands. The selection
of specific frequency bands and analytical methods was guided by the
work presented by Wu et al. (2020)”, Olsen et al. (2023)”', and Ugar
et al. (2018)*. Power spectral density was analyzed across 0-1.25 Hz,
1.25-2.5 Hz, 2.5-5 Hz, 5-10 Hz, and 10-20 Hz, providing insights into
signal energy distribution. Total power and variability across these bands
were also assessed, reflecting overall signal strength and fluctuations. FFT
calculations extended to VLF (0.0033 to 0.04 Hz), LF (0.04-0.15 Hz), and
HF (0.15-0.4 Hz) bands, revealing slow oscillatory processes and providing
insights into autonomic functions. Additionally, energy measures and
ratios within LF (0.04-0.15 Hz), MF (0.09-0.15 Hz), and HF (0.15-0.6 Hz)
bands were quantified. While FFT is common for spectral estimation, it
assumes signal stationarity and suffers from spectral leakage, especially in
non-stationary PPG signals. Welch’s method mitigates this by applying
overlapping windows, Hanning windowing, and averaging periodograms,
improving frequency resolution and reducing leakage.

Nonlinear dynamics features were extracted to capture the complex
and irregular behaviors of the PPG signal that are not apparent through
linear analysis alone. These features include energy measures such as
average and Teager energy, statistical metrics like skewness and kurtosis,
and Hjorth parameters that reflect the signal’s variance, frequency, and
change rate. Poincaré plot analysis provided insights into signal variability,
while fractal dimensions and recurrence analysis assessed the signal’s fractal
geometry and pattern predictability. Entropy metrics were used to measure
the signal’s unpredictability.

The empirical mode decomposition (EMD)-Hilbert analysis was
employed to decompose the PPG signal into its first intrinsic mode function
(IMF), allowing for the extraction of features related to the amplitude,
frequency, and phase.

Discrete wavelet transform (DWT) utilized the ‘sym6’ wavelet for its
resemblance to PPG waveforms, providing a multi-resolution analysis that
integrates both time- and frequency-domain data. A five-level wavelet
decomposition extracted key features such as energy, variance, mean, and
standard deviation from each level and the approximate coefficients.

PPI features. Time-domain features were extracted from the PPI time
series to quantify heart rate variability (HRV), a key indicator of auto-
nomic nervous system activity during sleep. In addition to standard
statistical metrics similar to those used in PPG analysis, HRV-specific
measures such as the standard deviation of PPI (SDNN), root mean
square of successive differences (RMSSD), and counts of significant
interval differences (NN50, NN20) were also derived.

Frequency-domain features. Using Welch’s method, power spectral
density was calculated for VLF (0-0.04 Hz), LF (0.04-0.15 Hz), and HF
(0.15-0.4 Hz) bands. Each band’s power, logarithmic power transformation,
peak frequency, total power across all bands and various power ratios were
calculated. Welch’s method was chosen over FFT because it provides a more
reliable spectral estimate for non-stationary signals, where transient fluc-
tuations in autonomic activity may be lost in standard FFT processing.
Frequency-domain features derived from the PPI time series provide critical
insights into the autonomic nervous system’s behavior during sleep. For
instance, VLF power can indicate thermoregulation (elevated during REM),
LF sympathetic (elevated during REM) and HF parasympathetic activity
(elevated during NREM)®".

Non-linear dynamics features extracted from the PPI time series
include those analogous to PPG. Additionally, Teager energy features were
computed for the PPI signal’s first IMF, derived using EMD and Hilbert
Transform. Additionally, visibility graph analysis was conducted to explore
the interconnected patterns of heartbeats, offering insights into the heart
rate complexity and its implications for sleep-wake classification.
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Table 5 | Final feature set (n = 75) for sleep-wake classification using the unbalanced dataset

Feature group Features

PPG features

Signal characteristic (n = 24)

SysTime_avg®*°**5% SysPeak_avg®*****®, SysArea_avg™, SysArea_std*’, TotalArea, DiasTime_avg*>**, DiasArea_avg™,

DiasArea_abs_avg, CycleArea_std*, CycleArea_abs_avg, Area_NegHalfPeak_FromStart_avg®™®°, Area_NegHalfPeak_FromStart_std,
Area_NegHalfPeak_ToEnd_avg™*®, Area_NegHalfPeak_ToEnd_abs_avg, RiseTime_FromHalfPeak_avg,
RiseTime_FromHalfPeak_std**®, FallTime_Half_avg®*®®, FallTime_Half_std, Width_Half_Duration_avg®*, Width_Half_Duration_std™,
Width_10_Percent_Time_avg®*, Width_10_Percent_Time_std™, RiseTime_TimeBetweenSysPeaks_Mean®,

RiseTime_TimeBetweenSysPeaks_std™

2nd derivative (n = 6)

a_b_mean, a_b_std, b_a_ratio_mean, b_a_ratio_std, e_a_ratio_mean, e_a_ratio_std

Time-domain (n = 9)
PPG_Q75°, PPG_stdAD*

PPG_Min®" 85850 pPPG_MAD**0%5 PPG_TM25°0%85° pPPG_TM50*°*%4% PPG_Median*****¢', PPG_Q10°', PPG_Q25°",

Frequency-domain (n = 9)

PPG_p1_Power®, PPG_p4_Power*’, PPG_p1_Power_SD*, PPG_p3_Power_SD*, PPG_p4_Power_SD*, PPG_p1_Total_Power®,

PPG_p2_Total_Power®, PPG_p3_Total_Power®, PPG_p4_Total_Power®

Nonlinear dynamics (n = 13)

PPG_kuﬂ37'48_5D'54'58'60, PPG_Skew37,48—50,54.58,60’ PPG_IQR48—50,58,GO’ PPG_SF48—50.58,60‘ PPG_GMM).SO.SB.GO’ PPG_LCEO, PPG_HFDSO‘ PPG_DET,

PPG_ApENn*, PPG_SampEn*’, PPG_PerEn®’, PPG_En1st*’, PPG_En2nd®,

EMD-Hilbert (n = 6)

IMF1_Inst_Freq_Mean, IMF1_LM_Int_Mean, IMF1_TP_Int_Mean, IMF1_TP_Int_SD, IMF1_avgTE, IMF1_Env_P2P_Dist

DWT (n =2) PPG_DWT_L4_Energy, PPG_DWT_L4_SD

PPI features

Time-domain (n = 3) PPI_RMS®>*%, PPI_Min®"*¢%°, PP|_Q90°"*'

Frequency-domain (n = 0) N/I

Nonlinear dynamics (n = 3) PPI_Skew*?*%¢5 pp|_SVD*° PP|_WDFA®'*

This set was derived after significance and correlation analysis, and using the SelectFromModel framework with a Random Forest classifier to retain important features.

N/I'not included.

Table 6 | Final feature set (n = 35) for sleep-wake classification using ADASYN-balanced dataset

Feature group Feautres

PPG features

Signal characteristic (n = 12)

DiasTime_std®**, DiasArea_std®, Area_NegHalfPeak_FromStart_avg®*®’, Area_NegHalfPeak_ToEnd_avg®®*®,

Area_NegHalfPeak_ToEnd_abs_avg, RiseTime_FromHalfPeak_std, FallTime_Half_std, Width_Half_Duration_std*,
Width_10_Percent_Time_avg®*, Width_10_Percent_Time_std*, RiseTime_TimeBetweenSysPeaks_Mean®, PPG_Ymax®>*®

2nd derivative (n = 3) b_a_ratio_std, e_a_ratio_mean, e_a_ratio_std

Time-domain (n = 3)

PPG Min¥ 85860 ppG TM25'-05860 pPpG TM50*6-5058.60

Frequency-domain (n = 1) PPG_HF_Total_energy*®

Nonlinear dynamics (n = 4)

PPG_skew?®#%054%850 ppG_En1st®”, PPG_En2nd*, PPG_LC*

EMD-Hilbert (n = 2) IMF1_Inst_Amp_Min, IMF1_Inst_Freq_Mean,

DWT (n=0) N/I

PPI features

Time-domain (n = 1) PPI_Min?"5850

Frequency-domain (n = 4)

PPI_VLF_LF_power®®, PPI_VLF_HF_power**®, PPI_LF_Total_power®®®, PPI_LF_HF_power’':46:53:54.56.60

Nonlinear dynamics (n = 5)

PPI_VG_Nodes_HighDegree®"*?, PPI_ApEn*’, PPI_PerEn, PPI_En1st, PPI_En2nd

This set was derived after significance and correlation analysis, and using the SelectFromModel framework with a Random Forest classifier to retain important features.

N/I not included.

Feature selection

For the feature selection process, first, a systematic evaluation was con-
ducted to select features that significantly differed between sleep and wake
stages. Initially, each feature underwent a normality test using the Shapiro-
Wilk method® to determine the appropriate statistical test for further
analysis. Then, features that passed the normality test were analyzed using t-
tests, while those that did not were assessed using the Mann-Whitney U
test”. Significance analysis revealed 266 features that significantly differed
between wake and sleep. To further refine feature selection and address
multicollinearity, groups of features with correlation coefficients above 0.95
were identified as redundant. Only one feature was selected from each
group, reducing overfitting and enhancing computational efficiency. 74
features were removed due to high correlations (n = 71) or feature

calculations resulting in missing values (n = 3). The SelectFromModel fra-
mework was then used to further minimize dimensionality by retaining only
the most impactful features. This method employed a Random Forest model
to assign importance scores to each feature. Features below a certain
importance threshold were discarded, enhancing the model’s robustness.
For the unbalanced dataset, 75 final features were selected for model
training, primarily PPG signal characteristics and time-domain features,
while DWT and PPI-derived features were largely excluded (Table 5). For
ADASYN-balanced dataset, only 35 features were selected. These features
similarly included many PPG signal characteristics, but also included more
PPI frequency-domain and nonlinear dynamics features (Table 6). Selected
features predominantly captured slow-wave cardiovascular dynamics,
including cycle duration, peak amplitude, and systolic/diastolic areas, which

npj Biosensing | (2025)2:24

12


www.nature.com/npjbiosensing

https://doi.org/10.1038/s44328-025-00041-2

Article

can reflect sleep-wake transitions. In contrast, high-frequency PSD, wavelet
decomposition, and entropy-based nonlinear features were mostly dis-
carded, suggesting that transient signal fluctuations and complexity-based
measures were less relevant for classification. To examine whether feature
importance varied across sleep disorders, we conducted additional Select-
FromModel analyses on datasets including the two most common groups:
nocturnal frontal lobe epilepsy (NFLE) with 39 patients and REM behavior
disorder (RBD) with 18 patients. Feature selection patterns not only differed
between unbalanced and ADASYN-balanced datasets but also varied across
sleep disorders, highlighting how dataset composition and disorder-specific
characteristics influence feature importance (see Supplementary Figures
2 and 3 and Supplementary Table 3 for a detailed breakdown). Feature
importances were then assessed to determine the influence of each feature
on the model’s performance. After training the models, feature importances
were derived directly from the scikit-learn feature_importances_ attribute of
the classifiers.

Model selection

The models used in PPG-based sleep staging in previous research vary,
ranging from traditional machine learning algorithms like Support Vector
Machines (SVM)**~°%**% K-Nearest Neighbors (KNN)******, Random
Forest (RF)*, Linear Discrimnant Analysis (LDA)™**, Bayesian
classifiers™” and Light Gradient Boosted Machine (LGBM)™* to advanced
deep learning techniques such as Conventional”, Convolutional
(CNNs)*™”, Long Short-Term Memory (LSTMs)’»*****  Deep
(DNNs)”***" and Articificial Neural Networks (ANNs)”, and hybrid
models like CNN-RNN"***' and CNN-SVM™. To ensure model inter-
pretability, a range of traditional machine learning techniques were eval-
uated using Python’s sklearn library, including RF, LGBM, and Extreme
Gradient Boosting (XGBoost), as well as ensemble combinations (LGBM +
XGBoost, RF + LGBM, and RF + XGBoost). For initial model selection, we
performed 5-fold GroupKFold cross-validation (CV), ensuring that training
and testing sets remained subject-independent. This evaluation was con-
ducted without hyperparameter tuning, using only non-correlated sig-
nificant features to identify the best-performing model. RF outperformed
other classifiers in terms of accuracy and F1 score (Supplementary Table 4),
and was selected for further analysis due to its robustness and ability to
provide detailed insights into feature importance. Subsequently, we trained
the RF model separately on the original dataset and the ADASYN-balanced
dataset, validating performance using 5-, 10-, and 20-fold GroupKFold CV,
as well as Leave-One-Subject-Out (LOSO) CV to assess variability across
groups. Additionally, we used the Kruskal-Wallis test to evaluate statistical
differences between groups for key classification metrics, and if significant,
performed post-hoc Mann-Whitney U tests to identify specific group
differences.

Hyperparameter tuning

The performance of Random Forest classifier was optimized through a
hyperparameter tuning process using the Matthew’s correlation coefficient
(MCQC) as the scoring metric. MCC was selected due to its robustness to class
imbalance, which is inherent in sleep-wake classification, where sleep epochs
outnumber wake epochs. A default 0.5 threshold was used for classification.
First, Randomized Search was conducted to explore a wide range of hyper-
parameters, including n_estimators (100-500), max_depth (None, 3-20),
min_samples_split (2-11), min_samples_leaf (1-11), max_features (None,
‘sqrt’, ‘log2’) and bootstrap (True, False). Using 3-fold GroupKFold cross-
validation, 100 different combinations were assessed. Subsequently, Grid
Search was employed to fine-tune the hyperparameters around the best
values identified from the initial search, and 3-fold GroupKFold cross-
validation was used to ensure consistency. Hyperparameter tuning was
performed separately on the unbalanced and ADASYN-balanced datasets.

Model evaluation
A comprehensive set of metrics, namely accuracy, sensitivity, specifi-
city and F1 Score, were utilized to assess the classifier’s performance on

an epoch-by-epoch basis, where evaluation metrics were calculated
using counts of true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN). The receiver operating characteristic -
area under the curve (ROC AUC) was used to evaluate the model’s
ability to distinguish between sleep and wake across varying classifi-
cation thresholds, with values closer to 1 indicating better performance
and values near 0.5 suggesting random classification. Additionally, the
MCC was employed for its robustness in imbalanced datasets’’".
Confusion matrices were calculated to further illustrate the perfor-
mance across wake and sleep stages.
Accuracy (ACC)

N TP + TN O
ccuracy =
Y= TP £ TN + FP + FN

Sensitivity (SE, true positive rate)

TP
Sensitivity = ———— 2
ensitivity TP+ FN 2)
Specificity (SP, true negative rate)
N
Specificity = ———— 3
pecificity TN + P 3)
F1 score
FlScore — 2. Pr.ec.ision - Recall )
Precision + Recall
where
TP
Precisi = 5
recision TP+ FP (5)
and
Recall = SE 6)

Matthews correlation coefficient (MCC)

TP - TN — FP - EN
MCC = )
/(TP + FP) - (TP + FN) - (IN + FP) - (TN + FN)

Receiver operating characteristic -area under the curve (ROC AUC)

AUC = / 1 TPR (x) dx ©)]
0

Data availability

The data used in this study is publicly available and can be accessed through
the CAP Sleep Database on PhysioNet (https://physionet.org/content/
capslpdb/1.0.0/)*.

Code availability

The code described in this manuscript is publicly accessible on GitHub at
https://github.com/karmenmarkov/An-Interpretable-Feature-Based-
Machine-Learning-Approach-for- Automatic-Sleep-Staging-Using-PPG.
In addition, the specific version of the code discussed in the paper has been

archived and is available via a DOI-minting repository, Zenodo®.
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