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The performance of electrochemical cells for energy storage and conversion can be improved by
optimizing their manufacturing processes. This can be time-consuming and costly with the traditional
trial-and-error approaches. Machine Learning (ML) models can help to overcome these obstacles. In
academic research laboratories, manufacturing dataset sizes can be small, while MLmodels typically
require large amounts of data. In this work, we propose a simple but still novel application of a Transfer
Learning (TL) approach to address these manufacturing problems with a small amount of data. We
have tested this approach with pre-existing experimental and stochastically generated datasets.
These datasets consisted of component properties (e.g., electrode density) related to different
manufacturing parameters (e.g., solid content, comma gap, coating speed). We have demonstrated
the robustness of our TL approach for manufacturing problems by achieving excellent prediction
performance for electrodes in lithium-ion batteries and gas diffusion layers in fuel cells.

Electrochemical energy cells (EECs) are devices that work through redox
(reduction-oxidation) reactions. These include energy storage devices, such
as Lithium-IonBatteries (LIBs) cells, and energy conversion devices, such as
Proton Exchange Membrane Fuel Cells (PEMFCs). Both types of devices
play a crucial role in the green transition needed tomitigate climate change.
Due to the intermittent nature of renewable energy sources and the need for
on-demand electricity generation, EECs can facilitate more effective inte-
gration of these energy sources into the energy matrix. On one side, LIBs
offer several key advantages, including high energy density, extended life-
span, and low self-discharge. These benefits have had a considerable impact
on various industries, including electronics and telecommunications,
making them essential components in portable devices1,2. LIBs are also
contributing to the electrification of the transportation industry by being
used in electric vehicles (EVs)3. On the other side, PEMFCs also present
several advantages, such as high efficiency, low operating temperature, and
zero carbon emissions4. They present a viable alternative for applications
where EVs face limitations, such as heavy-duty trucks. However, despite the
mentioned advantages, both LIBs and PEMFCs face challenges that require

further research and development efforts to optimize their manufacturing
processes to achieve better performance and efficiency5,6.

The redox reactions in a commercial LIB cell occur at its main com-
ponents, the positive and the negative electrodes. The final electrochemical
performance of these components depends on their microstructure, which
is highly influenced by the manufacturing process parameters7. The man-
ufacturing process includes different stages. The first of them is the slurry
preparation, which consists of mixing Active Material (AM), electron
conductive additive, binder, and solvent. This is followed by the slurry
coating over the current collector. Then, since this is a wet process, it is
followed by the drying step, where the solvent is evaporated to get the dried
electrode. Then, this dried electrode is calendered to improve the contact
between the electrode and the current collector. In addition, this step
reduces the overall thickness, which improves the cell energy density. By
controlling themanufacturing parameters in each one of these steps, like the
AMchemistry selected for the slurry preparation or the gap and the speed of
the rolls during calendering, one is able to also control the electrode
microstructure. Therefore, it is essential to understand the effect of these
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manufacturing parameters on the final electrode properties (density, por-
osity, mass loading, tortuosity factor) to choose the best set of parameters
that allow the optimization of the LIB cell performance8–10.

For PEMFCs, the Gas Diffusion Layer (GDL) is one of the most
important components that controls the electrical and thermal conduction.
It also influences the reactant gases’ dispersion, diffusion, and water man-
agement, which in turn affects the performance of the PEMFC. The three
main stages of theGDLmanufacturing involve the carbonfiber production,
followed by the preparation of the carbon paper substrate and finally, the
finishing treatment. This process starts with a wet-spinning step, in which
polyacrylonitrile-derived carbon fibers are processed into precursor fibers.
These carbon fibers are then sized and chopped after stabilization and
carbonization. In order to improve the mechanical stability, conductivity,
and achieve the desired porosity, the next step is tomix the previous carbon
fibers with water and binder. These are then subjected to papermaking,
bonding, impregnation, curing, and carbonization steps. Finally, the GDL
substrate is dipped in polytetrafluoroethylene (PTFE). By varying the
manufacturing parameters involved in the mentioned steps, such as the
weight percentage of carbon and PTFE loading, the properties of the GDL
can be changed, such as electronic and thermal conductivities, porosity and
geometric tortuosity11,12. This manufacturing process is also relevant for
optimizing the GDL performance.

For many years, numerous studies based on experimental approaches
have been conducted to gain insight into the electrochemical, physical, and
mechanical phenomena in LIB electrodes and PEMFC GDLs13–23. The
objective is to elucidate the relationship between input factors and output
properties23. However, designing experiments is a complex process due to
the large number of input parameters and the intrinsic properties of the
materials involved. This hinders the optimization of the LIB electrodes and
PEMFC GDLs manufacturing processes24,25. Additionally, experimental
outputs have limited resolution, and often, it is difficult to characterize and
track the time series of the microstructure evolution. This limits the way
researchers can control and optimize experiments. To compensate the
intrinsic experimental limitations, computer simulations appear as efficient
complementary tools to study LIB electrodes and PEMFC GDLs. Compu-
tational modeling allows to understand the underlying process by
numerically solving the mathematical equations describing the physical
process. These techniques have also contributed to evaluatingLIB electrodes
and PEMFC GDLs processes and improving their performance26–29.

In the case of LIB cellmanufacturing, theARTISTICproject30 has been
a pioneer in optimizing these processes with different computational
modeling techniques at themesoscale. TheARTISTICproject has proposed
3D-resolved dynamic simulations of the entire manufacturing chain of
electrodes and cells, from the slurry preparation, passing by the drying, the
calendering of the resulting electrode, the electrolyte filling of the electrodes
and cells, and the resulting cell performance. These physics-based compu-
tational models are designed to simulate and predict the influence of
materials properties and manufacturing parameters on the electrode and
cell properties31. They have been calibrated and validated against experi-
mental data. To face the computational cost that these models can have,
data-driven Machine Learning (ML) surrogate models have been trained
with the physics-based models obtained datasets to accelerate the optimi-
zation of different manufacturing steps24,25,32,33. For example, a Deep
Learning (DL) model has been trained to track microstructure evolution
over time during the electrode calendering step by using Discrete Element
Method (DEM) time series data34. Also, in the PEMFC field, ML models
have been trained to predict various properties of the GDLs as a function of
their most relevant manufacturing parameters35.

Given the numerous variables that impact the final component quality
and performance, it is not straightforward to optimize the manufacturing
processes using a trial-and-error method. In this scenario, ML techniques
are excellent tools for unveiling patterns and relationships hidden in
manufacturing datasets. They also allow for faster optimization of the
parameters involved in the manufacturing steps25,36. ML algorithms have a
significant potential in other critical domains. These include applications

such as material discovery, real-time monitoring, state estimation, battery
usage, fault detection, and life cycle management37. As we have previously
demonstrated in our ARTISTIC project initiative, ML can be used to
accelerate both the understanding of the processability of new materials
(chemistry and formulation), and the optimization of LIB electrode and cell
manufacturing process38.

SupervisedML techniques require labeled data (where each input data
point has an associated output value) to enable data-driven predictions and
optimizations. In contrast, unsupervisedML uses unlabeled data to identify
patterns within it. For LIB cells, both mentioned types of ML have been
applied to experimental datasets. Specifically, for LiNi0.33Mn0.33Co0.33O2

(NMC) electrodes, we can find studies involving different stages of the
manufacturing process with various ML methods. For instance, Pinto-
Cunha et al. analyzed Decision Trees (DTs), Support Vector Machine
(SVM), and Deep Neural Networks (DNNs) to find the interdependencies
between slurry parameters andNMC final properties39. Duquesnoy et al., in
addition to considering slurry parameters, included coating parameters to
develop an automatic methodology which used a Gaussian Naives Bayes
classifier to assess the homogeneity or heterogeneity of the resulting
electrode40. ML was also used to predict the influence of electrode for-
mulation and calendering conditions on the electrode properties41. Fur-
thermore, K-Means clustering was used in the calendering step of NMC-
based electrodes by Primo et al.42. Regarding graphite anodes, Faraji-Niri
et al. collected a lab-scale dataset containing control variables in the slurry
and coating stages, that were used to train Random Forest (RF) models for
predicting final properties of the electrode43. For the State of Health (SoH)
estimation of commercial LGM50 cells, Faraji-Niri et al. trained a Gaussian
Process Regressor by selecting features from electrochemical impedance
spectroscopy data44. Moreover, Neural Networks (NNs) have been devel-
oped for the detection of cracks in LIB electrodes by using 3D image data45

and for mapping the 3D architecture of NMC particles with focused ion
beam slicing in sequence with electron backscatter diffraction data46.
Meanwhile, for GDLs, various literature works show the use of MLmodels
for different applications. For instance, Hou et al. formulated an Extreme
Learning Machine model that allowed to determine the optimal GDL
structure parameters with the minimum temperature, maximum current
density, and good oxygen concentration uniformity47. Shum et al. used DT
and Convolutional NN (CNN) algorithms to segment GDL’s x-ray com-
puted tomography image stacks, comparing their performance with basic
image processing techniques48. In addition, Cawte et al. developed a 3D
CNN to predict the GDL materials’ permeability directly from 3D binary
image data49. Froning et al. also employed a CNNmodel to predict the GDL
materials’ permeability, but with stochastically generatedmicrostructures50.
Saco et al. tested and observed SVM regression, Linear Regression (LR) and
k-Nearest Neighbors algorithms on different humidification processes
during experimental studiesofPEMFCs51. Theyconcluded that, in their case
of study, LR provided better accuracy than othermodels51. Furthermore, for
deformed GDL, Wang et al. built an M5 model, which included multi-
physics and multi-phase flow simulation, ML-based surrogate modeling,
multi-variable andmulti-objects optimization. This M5 model proved to be
effective and efficient for optimizing the GDL current density and oxygen
distribution52. It is worth noting that all these previous works have
emphasized the development of ML tools for analyzing vast datasets. Sur-
prisingly, none of the previous works addressed the problem of how to
derive reliable ML models with smaller datasets, either due to the lack of
sufficient experiments or the computational cost of running large simula-
tions to produce synthetic data.

Transfer Learning (TL) is a very interesting paradigm within ML that
uses the knowledge learnt from solving one task to accelerate learning and
improve performance on a related but different task. This approach uses an
existingMLmodel trainedonavast dataset in the sourcedomain and adapts
or extends it to extrapolate its predictive power to another domain with a
smaller target dataset. This significantly reduces training time and data
requirements compared to building a model from scratch. TL practices are
typically associated with NNs, which allow data-driven strategies to benefit
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from existing knowledge in related domains, improving their overall per-
formance. TL has demonstrated excellent results in various fields, such as
medicine, mechanics, art, physics, security, or biology53. Specially, it has
shown interesting results for tasks involving computer vision54,55 andnatural
language processing techniques56,57. TL has also been used in LIB and
PEMFC research, particularly for cell SoHestimations and aging prediction,
extrapolating predictions to different domains and usage conditions58–62. As
far as we know, TL has not been used in LIB electrodes or PEMFC GDLs
manufacturing at the time of this article writing.

There are four main approaches for transferring knowledge: feature-
based, instance-based, parameter/model-based, and relational/adversarial-
based53,63. By adjusting the weights of individual instances (data points),
instance-based transfer helps to bridge the gap between the source and
target domains, even when the overall data distributions are different.
Feature-based transfer focuses on transferring the feature representation
learned from the source domain to the target domain, while parameter-
based transfer directly transfers the weights and biases learned by the pre-
trained model as a starting point for the target domain model. In NN
models, this approach freezes some layers and/or finetunes some layers,
and/or adds some new layers to the originalmodel. Finally, relational-based
TLapproaches transfer logical relationships or rules learned from the source
domain to the target domain and are usually associated with generative
adversarial networks54–59,63.

In this present work, we propose a simple TL approach to understand
how relationships between manufacturing parameters and components
properties can be transferred to different chemistries with experimental
data, and todifferent volume sizeswith stochastically generateddata (Fig. 1).

This proposed TL approach allows dealing with small datasets, which may
be the case in academic research laboratories. In the experimental
demonstration, we used a largerGraphite dataset for preparing LIBnegative
electrodes to train an NN and transfer it to Silicon-Graphite (Si-Gra) and
NMC smaller datasets for preparing negative and positive electrodes
respectively.Weconsider theAMweightpercentage and the solid content in
the electrode slurry formulation, the coating speed and the comma gap in
the coating step, and the roll speed and the roll gap in the calendering step.
These sixmanufacturing parameters are considered to predict the electrode
density andmass loading.Meanwhile, forGDLs,weuse a larger datasetwith
calculation results for small volume microstructures to train an NN and
transfer it to a smaller datasetwith fewer calculations butwith larger volume
microstructures that are computationally more expensive to obtain. In this
case, we predict the geometric tortuosity by considering as input parameters
the fiber diameter, the fiber concentration, the binder concentration, the
thickness, and the compression factor. It can be highlighted that none of
these datasets were specifically generated for the purpose of training a ML
model. Therefore, their distributions were not specifically designed for this
application, but our approaches here allow us to obtain good results despite
this aspect. In the first case, the dataset is heterogeneously distributed and in
the secondone it is uniformlydistributed,which shows the robustness of the
method when applied to different distribution types. In the following Sec-
tion, we explain our findings from applying these approaches to our man-
ufacturing process experimental dataset related to LIBs cells and
stochastically generated dataset related toPEMFCs.We also useExplainable
Artificial Intelligence (XAI) to interpret the behavior of our NN’s predic-
tions before and after theTLapproach is applied. Finally,we concludewith a

Fig. 1 | Our workflow for the application of the simple Transfer Learning (TL)
approach. In the upper part of the diagram, we have the case of applying it to an
experimental dataset to predict electrode density and mass loading using the Gra-
phite dataset as the vast one and transferring it through the TL approach to the

Silicon-Graphite (Si-Gra) and the NMC smaller datasets. In the lower part of the
diagram, we have the case of applying the TL approach to the stochastically gen-
erated dataset (GDL200 as a source dataset andGDL1000 as a target dataset, explained
in the Methods section) to predict the GDL geometric tortuosity.
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discussion of the results obtained and indicate the future perspectives of
our work.

Results
Experimental LIB cell manufacturing dataset
Overall, our pre-existing experimental dataset consists of 235 Graphite-
based, 53 Si-Gra-based, and 63 NMC-based electrodes that were fabricated
under the conditions described in the Methods section. Figure 2 shows the
distributionof the experimentalmanufacturingparameters for eachAM.As
global aspects of these distributions, we can highlight that Graphite is the
most extensive one, in terms of the range of values considered and the
amount of data that can be appreciated in the counts y-axis. Then, Si-Gra
and NMC have parameter values in the same range except for some cases
such as the AMweight percentage in Si-Gra or solid content in NMC. This
makes the decision to use TL a good one, as the added extra layers (1 in our
case) are expected to adapt the model to each of these particularities. The
goal of thiswork is to learn the impactof these six input features (AMweight

percentage and solid content in the formulation, coating speed and comma
gap in the coating step, and roll speed and roll gap in the calendering step) on
the final electrode properties (density and mass loading) from Graphite-
based electrodes and then apply the TL approach to Si-Gra- and NMC-
based electrodes. The size of these datasets reflects a typical experimental
casewhere their acquisition requires a significant amount of resources. Such
situations may recur in academic laboratories and therefore the TL
approach proposed here aims to address them.

The AM weight percentage varies from 85% to 97.5% for NMC and
from 91% to 95.5% for Graphite. For the particular case of Si-Gra, the AM
weight percentage is considered to be equal to the weight percentage of Si in
the Si-Gra composite electrode and ranges from 8% to 15% (even though,
Graphite functions also as an AM in the operating electrode). A coating
speed value of 0.3 m/min is considered for Graphite and Si-Gra, while for
NMC more cases between 0.2 m/min and 1m/min are considered.
Regarding comma gaps, the range of values goes from 100 to 300 µm for
Graphite and Si-Gra electrodes and from 50 to 400 µm forNMC electrodes.

Fig. 2 | Experimental manufacturing parameters analysis. Distributions of the manufacturing parameter values in the pre-existing experimental dataset used as input
features in the Neural Networks (NNs) for each Lithium Ion Battery electrode Active Material (AM): Graphite (light blue), Si-Gra (dark blue), and NMC (red).

Fig. 3 | Experimental electrode properties analysis.
Distributions of the target electrode properties for
the NNs: aDensity and bMass loading. In each plot
the electrode AMs are represented by the following
colors: Graphite (light blue), Si-Gra (dark blue), and
NMC (red).
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For the roll gap, we refer to the initial gap between the two calendering rolls
before the electrode (supported on the current collector) passes between the
rolls. During the calendering process, this gap can change to accommodate
both theelectrodeand thecurrent collector.Thevaluesof the roll gaphavebeen
previously calibrated to produce different pressures for different values of the
calendering gap42,64. For example, Primo et al. from our group calibrated the
dependence of the pressure on the roll gap for a given electrode42. While for
Graphite theminimumandmaximumvalues are 1 µmand135 µm, the values
for Si-Gra and NMC are 15 µm and 102 µm, and 20 µm and 206 µm,
respectively.Their respectivemeanvaluesare70 µm,58 µmand62 µm.For the
roll speed we have two possible values of 0.27m/min and 0.54m/min. Finally,
the solid content varies from 42% to 66% for NMC and from 22% to 42% for
Graphite slurries, since the Graphite slurry is more viscous at the same shear
rate and formulation65,66 due to the choice of the binder, and the solid content
for Si-Gra slurries are close to the lower values ofGraphite (from24% to 32%).

The final electrode properties considered for prediction in this work are
thedensity and themass loading,whosedistributions are shown inFig. 3. The
electrode density, along with the electrode mass loading, are important
properties that control the final performance of the LIB cells. Increasing
electrode mass loading and density generally increases energy density.
However, this often results in a decrease in power density67. The optimization
of these properties is always a balancing act and is also highly dependent on
the type of electrode. As we can see in Fig. 3a, Graphite- and Si-Gra- based
electrodes are generally less dense than NMC-based electrodes due to the
lowermass density ofGraphite andSi compared toNMC, resulting in a lower
value of themaximumelectrode density, leading to differences in the range of
the possible values of each electrode. In Fig. 3b, the mass loading of NMC-
based electrodes is broader and considers larger values than the other two
AMs. The higher mass loading is due to two factors. NMC has a higher
density thanGraphite, resulting inahighermassofAMin the samevolumeof
the electrode.Also, because solid content of theNMCslurry phase is higher, a
higher amount of NMC is on the same area of the current collector for the
same comma gap compared toGraphite or Si-Gra, resulting in a highermass
loading of NMC electrodes compared to these other electrode AMs.

In this experimental demonstration of our simple TL approach, we stu-
died the dependence of electrode density and mass loading on the fraction in
mass of AMand percentage of solid content in the formulation, coating speed
andcommagapduringcoating, androll speedandroll gapduringcalendering.
To simplify the subsequent application of TL techniques and training,we have
split the problem into two prediction problems, i.e., prediction of the electrode
density and prediction of the electrode mass loading. To demonstrate that the
Graphite dataset is vast enough tobe considered as the sourcedataset in theTL
application,wehaveperformedanablation study,which is shown inFigure S2.
It is worth noting that the error converges to a plateau before reaching the full
size of the dataset, demonstrating that this Graphite dataset is vast enough for
this TL application. A random train-test split of 70%-30% was performed on
thedataset for eachelectrode.Then,10%of the70%training setwasusedas the
validation set during the training process. The optimization loss function was

the Mean Absolute Percentage Error (MAPE) and the Adam optimizer was
used per 250 epochs. We have studied the sensitivity of the pre-trained NNs
with the percentage considered in the training-testing split in Figure S1 of the
Supporting Information. We chose this split over the most common 80–20%
split because of the amount of data that we have in the smaller datasets (given
that they have similar errors). For example, we have 53 Si-Gra electrodes,
which with the 80%-20% train/test leaves only 11 electrodes for testing.
Meanwhile,with the chosen split percentages,wehave16electrodes for testing.
Figure 4 shows the MAPE loss of the NN with the Graphite dataset for both
density and mass loading cases. For both models, the loss decreases with an
asymptotic shape until it reaches a plateau for both the train and the validation
sets. This indicates that optimal weights of the NNs are found and there is
neither over- nor under-fitting. The following results in plots and tables cor-
respond to the evaluations on the test set.

Having obtained the good performance of the pre-trained NNs for
Graphite electrode dataset, which could capture the relationships between
the experimental manufacturing parameters and electrode properties, we
now extend them to Si-Gra and NMC smaller datasets. Training such
models for these two electrode datasets with the lack of data leads to over-
fitting in the respective training set, as shown in Fig. S3 and S4 of the
Supporting Information. Therefore, the goal here is to adapt these pre-
trained NNs to the new chemistries using the proposed TL approach. To
overcome this problem, we freeze the weights in the connections between
the layers of the pre-trained NN architecture for the Graphite electrode
dataset and add an extra hidden layer to each of the other chemistries NNs,
with the samenumber of nodes of the corresponding pre-trainedNN.Thus,
since only the weights of this layer are trained, the problem adapts better to
the amount of data of Si-Gra and NMC datasets. The train and validation
losses for the training of the TL-based NNs in these smaller datasets are
shown in Fig. S5 and S6. The need for these additional layers can be justified
with the results shown in Table 1. The pre-trained NN for predicting
electrode density gives an error of 4.5%when evaluatedwithGraphite-based
test data. The error of this model increases up to 78.8% and 56.1% when
tested on Si-Gra and NMC test data, respectively. This is because the pre-
trainedNNextrapolatesoutside the feature range forwhich itwas trained, as
seen in Figs. 2 and 3. In the next row of Table 1, we can see a decrease in the
Si-Gra andNMC test errors, where these errors decrease to 14.5%and 8.1%,
respectively, demonstrating the improvement provided by the TL-based
NNwhen the additional layer is added. For the pre-trainedNN that predicts
the electrode mass loading, we have a similar behavior where the error is
13.9% when evaluated in Graphite test data and increases to 45.0% and
70.8% for the Si-Gra andNMC test data, respectively. These errors decrease
to 3.7%and10.6%when the simpleTLapproach is applied.These errors can
also be compared to the errors we get when we train different baseline
models on our pre-existing experimental datasets (Table S1 in the Sup-
porting Information).These are anaverageprediction (amodel that predicts
the average of the target property in the training set), a linear regression, and
an RF model. The errors of some of these baseline models are of the same

Fig. 4 | Training/validation loss curves. Mean
Absolute Percentage Error (MAPE) loss plot for
electrode (a) Density and (b) Mass loading for both
training (blue curve) and validation (red curve) sets
for theNN trained on theGraphite electrode dataset.
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order as those of the NNs. In other cases, however, the errors of the NNs
(both pre-trained and TL-based) are significantly smaller. Furthermore, in
contrast to these baseline models, the TL approach has the advantage of
allowing us to adapt a pre-existing model (here, the pre-trained NN in the
Graphite dataset) and then train it on smaller datasets (the TL-based NN in
the Si-Gra and NMC datasets).

Figure 5 shows this in a more graphical way, where each prediction is
plotted against its actual value. In the left column of the plots, we have the

predictions fromthepre-trainedNNs.Basedon theMAPEresultspresented
in Table 1, good performance is not expected for the Si-Gra and NMC test
data. In the right column, we have the TL-basedNNs, so an improvement is
expectedwith respect to the left column. Figure 5 show the linear trend of an
ideal model as a dashed gray line in each subfigure. For both pre-trained
NNs (Fig. 5a and c), the predictions of Graphite test data are shown, where
in the case of electrode density we obtain a good behavior, while in the case
of electrode mass loading an artifact of overestimation of low mass loading

Table 1 | Mean Absolute Percentage Error (MAPE) of density andmass loading predictions in the test sets for both pre-trained
and TL-based NNs

Error (MAPE) [%]

Density Mass loading

Graphite Si-Gra NMC Graphite Si-Gra NMC

Pre-trained NN 4.5 78.8 56.1 13.9 45.0 70.8

TL-based NN -- 14.5 8.1 -- 3.7 10.6

The standard deviation of the reported errors is 0.5%andwas estimatedby performing aK-fold cross-validationwith 5 random train-test splits. The specific error of each oneof the folds is given in Table S2
of the Supporting Information.

Fig. 5 | Scatter plot of the predictions versus targets.Predicted versus experimental
values of: a Density (pre-trained NN), b Density (TL-based NN), cMass loading
(pre-trainedNN) anddMass loading (TL-basedNN) in the test sets. In each plot, the

electrode AMs are represented by the following colors: Graphite (light blue), Si-Gra
(dark blue), and NMC (red).
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values is generated. For both Si-Gra andNMC electrodes, the actual density
is underestimated and the Si-Gra mass loading is overestimated. Figures 5b
and d show how the TL-based NNs correct this, with Si-Gra and NMC
predictions improving within the range of expected values. However, the
relative differences between them remain unchanged in the electrode den-
sity predictions. Futhermore,predictions are improved for themass loading,
where even the slope of the trend is improved for both AMs. Thus, the
simple TL approach allowed us to generate newmodels with great accuracy
despite the data size limitation.

To add explanation to the predictions of theNNs, we use XAI, which
is a technique used in AI to add interpretability and transparency to the
usual black-box ML models. In Fig. 6 we show the SHapley Additive
exPlanations (SHAP) values for the pre-trained and theTL-basedNNs for
a randomly selected test experiment for each chemistry. These SHAP
values compute the importance of each feature close to a fixed data point
when all the other feature values are constant68. This allows us to compare
the impact of each manufacturing parameter on the final electrode
property for the different chemistrieswhen evaluating a given experiment.
In Fig. 6, the base value indicates the average of all predictions in the test
set of the given chemistry. The red or blue color of the arrows in these plots
indicates whether the associated manufacturing parameter, with the
specified value and unit, is pushing the electrode density prediction to a
higher or lower value relative to that base value. The magnitude of each
feature’s contribution is indicated by the size of the corresponding arrow.
When all of these arrow lengths are added to the base value, with the sign
indicated by the color, the final prediction is obtained. For the experiment
selected from the Graphite test set, we have a strong influence of the AM
wt.%, roll gap and the comma gap by pushing the electrode density pre-
diction to thenegative side of thebase value,while the solid content pushes
it to the positive side. While for the selected experiments of Si-Gra and
NMC respective test sets, the influence in their electrode density predic-
tion is dominated in both cases by the roll gap, the comma gap, and the
AM wt.%, with the same direction on each one but with different mag-
nitudes. This XAI allows the further improvement of these specific

experiments by indicating which manufacturing parameters have more
influence on the electrode property.

To have a global overview of the importance of each manufacturing
parameter in the prediction of the electrode density, we summarize in Fig. 7
the evaluation of the SHAP values for each experiment in the test sets. Here
each point represents a specific experiment in the test set. For Graphite
experiments, the pre-trained NN was used, while for Si-Gra and NMC, the
respective TL-based NNs were used. The color of each dot indicates the
value of the feature (relative to its distribution), while the x-axis positions
indicate the individual influence in theNNprediction (SHAPvalue). The y-
axis of each subfigure is sorted in descending order of importance of each
manufacturing parameter. We can highlight that the impact of the manu-
facturing parameters on the NN prediction depends on the chemistry. This
peculiarity indicates that the TL approach can modify the relevance of the
manufacturing parameters in the pre-trainedNNwhen transferred to a new
dataset. While for Graphite and Si-Gra pre-trained and TL-based NNs,
respectively, the manufacturing parameters that have a greater influence on
the outputs are roll gap, comma gap, AM wt.% and solid content. For the
NMC TL-based NN, the three most important manufacturing parameters
change their order with respect to the previous ones: comma gap, roll gap,
and AM wt.%. It can be highlighted that in all cases, the roll speed and the
coating speed have no influence on the NN’s predictions. This can be
attributed to their distributions (see Fig. 2), which are composed of some
specific discrete values. This should not be interpretedas implying that these
manufacturing parameters do not have influence on the final electrode
properties, but rather as a characteristic of the trained NNs, influenced by
the particularities of the pre-existing experimental dataset. Moreover, this
global representation could be used to select features and consider a less
complex model without taking into account these manufacturing para-
meters for this case or to improve their experimental sampling.

Stochastically generated GDL manufacturing dataset
The overall performance of the proposed TL approachmight not be perfect,
considering the percentage errors for some cases presented in Table 1.

Fig. 6 | SHAP values for single prediction explanation. Representation of SHAP
values for the NNs prediction of the electrode density for a randomly selected test
experiment from a Graphite, b Si-Gra, and c NMC electrode datasets. These plots

show how the input features of a given data point contribute to the prediction of the
NN by showing the magnitude and direction of the contribution as arrows with
different colors for increase (red) or decrease (blue).

https://doi.org/10.1038/s44334-025-00024-1 Article

npj Advanced Manufacturing |            (2025) 2:14 7

www.nature.com/npjadvmanuf


However, this could be attributed to the peculiar distribution of the pre-
existing experimental dataset. This is where our stochastically generated
GDL manufacturing dataset comes in. The source GDL200 dataset has 240
entries, while the targetGDL1000 dataset has 78 entries. These sizesmaintain
a similar ratio between the source and target dataset sizes of the experi-
mental demonstration. However, because they are stochastically generated,
they have a more homogeneous distribution, providing further evidence of
the validity of this TL approach. The distributions of the input features for
the NN to predict the geometric tortuosity are shown in Figure S7. The
GDL200 dataset shows a uniform distribution. While the GDL1000 dataset
shows some peculiarities due to the smaller amount of data. For both
datasets, we have similar ranges for each input parameter as these were the
ranges defined for generating the GDL microstructures. Fiber diameters
range from 6.0 to 12.0 µm. Fiber and binder concentrations vary from 10%

to 25% and from 5% to 10%, respectively. The thickness ranges from 280 to
320 µm, and finally the compression factor ranges from 0.0 to 0.5. Here we
define the compression factor as the percentage of compression applied
along the z-axis of the GDL microstructure. More details about these con-
siderations can be found in our previous work35.

The distributions in each dataset of the geometric tortuosity are shown
inFig. 8, which is the target to be predicted by theNN in this subsection. The
geometric tortuosity of the GDL is an important property because it plays a
critical role in the transport of gases, liquids, and heat within the system. It
also affects the permeability, which ultimately affects the efficiency and
performance of the PEMFC. Higher geometric tortuosity means longer
diffusion paths, which affects the transport properties of the GDL. It can be
noted that both datasets (the GDL200 and the GDL1000) the geometric tor-
tuosity distributions are right-skewed, and theGDL1000 geometric tortuosity
values are shifted to the right of the GDL200 ones.While the mean value for
the GDL200 is 1.07, the mean value for the GDL1000 is 1.09. Also, the
minimum value in the GDL200 is 1.03, while in the GDL1000 is 1.08. Both of
the distributions go up to 1.17.

For the training of the NNs, a random train-test split of 70%-30% was
performed on each dataset, with the first one being used only for training
and the secondone for the test evaluations performed in the following tables
and plots. As in the previous case, the optimization loss function was the
MAPE, and the Adam optimizer was used per 250 epochs. Figure S8 shows
the MAPE loss of the NN trained on the GDL200 dataset, where the loss
decreases with an asymptotic behavior and reaches a plateau close to 2%.
When this pre-trained NN is evaluated in the test sets, we have a MAPE
value of 2.1% for the GDL200 and of 2.6% for theGDL1000. This higher error
for the GDL1000 can be improved by applying the TL approach, which has
already shown improvementswith the experimental dataset. This decision is
also supported by Figure S9 in the Supporting Information, where we show
the overfitting obtained when the NN is trained on the smaller GDL1000
dataset. This justifies the use of the TL approach also on this stochastically
generated dataset. By adding and training the extra layer to the pre-trained
NN, the evaluation on theGDL1000 test set is reduced to 2.0%. The train and
validation losses for the training of this TL-based NN on the smaller
GDL1000 dataset are shown in Fig. S10. This information is summarized in

Fig. 7 | Contribution of eachmanufacturing parameter to the predictions.Global
representation of SHAP values for the NNs predictions of the electrode density for
each experiment in a Graphite, b Si-Gra, and c NMC electrode test sets. The SHAP
value of each manufacturing parameter for each test experiment is given on the x-

axis, while the color of each point indicates whether the feature value is higher (red)
or lower (blue) relative to its distribution. The y-axis is ordered by the relevance
manufacturing parameters to the NN prediction, with the most relevant at the top.

Fig. 8 | Geometric tortuosity characterization of the stochastically generated
datasets. Distributions of the target GDL geometric tortuosity for the NNs for each
dataset: GDL200 (red) and GDL1000 (blue).
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Table 2, which shows that there is also an improvement with the TL
approach when applied to this stochastically generated dataset.

The individual predictions are plotted against the target values for the
GDL1000 test set and both pre-trained (red squares) and TL-based (blue
circles)NNs inFig. 9.As expected from the values inTable 2, the predictions
of the pre-trained NN have a higher scatter on the predicted y-axis. This
scatter is reduced with the TL-basedNN by bringing each prediction closer
to the ideal prediction line. This improvement is clearer in the range that
goes from 1.08 to 1.12. Then, the three cases with higher geometric tortu-
osity are worse. However, these values are in the tail of the distribution and
are less sampled than those in the improved range.

Finally, we also use XAI in these datasets where entries of the
GDL200 and GDL1000 test sets are randomly selected and evaluated with
the pre-trained and the TL-basedNNs, respectively. The obtained SHAP
values are shown in Fig. S11. In the first case, we have a large influence in
the negative direction with respect to the base value, which is dictated by
the thickness, the fiber concentration, and the fiber diameter. While the
compression factor and the binder concentration have similar con-
tributions but in the opposite direction. For the second case, the com-
pression factor is the only parameter that pushes the prediction in the
negative direction. While all the other parameters push it to a higher
value, the thickness and the fiber concentration are the most relevant
ones for this test example. Going further, we can repeat this analysis for
all the samples in the respective test sets and evaluate them with the
respective NNs.When this information is plotted together (Fig. S12), we
get an overview of the influence of each feature in the NNs predictions.
In these stochastically generated GDL datasets, we see that the influence
of the features in both the pre-trained and the TL-based NN are in the
same order of importance, i.e. there is no significant change in the
relative importance of each feature to the others when making predic-
tions. As it can be seen in Fig. S12, the order of the importance of the
features is as follows: thickness, fiber concentration, binder concentra-
tion, fiber diameter, and compression factor. Thickness is the most
relevant one and compression factor is the least relevant one in deter-
mining the geometric tortuosity of the GDL microstructure datasets
with our pre-trained and TL-based NNs.

Discussion
Thenovel and simpleTL approachproposed in thisworkhas been shown to
be suitable for EECmanufacturing problems. It has been demonstrated on
pre-existing experimental and stochastically acquired datasets, which were
not specifically designed to demonstrate our TL approach. The transfer-
ability of the methodology to different systems in the context of EEC
manufacturing was proved by considering LIB electrodes and PEMFC
GDLsdatasets. Thesedatasets came fromdifferent sources: in the caseofLIB
electrodes from experiments and in the case of GDLs from (computational)
stochastic generations. In addition to all these aspects, the datasets con-
sidered presented different distributions, a heterogeneous one for LIB
electrodes and a uniform one for PEMFC GDLs. Given all these con-
siderations and the excellent performance obtained for both cases, we have
demonstrated the robustness of our TL approach to address EEC manu-
facturing problems with small datasets.

In the first application, the experimental dataset consisted of manu-
facturing process data of LIB electrodes with different AM chemistries. The
approach consisted of using a vast Graphite dataset to train NNs to predict
electrode density and mass loading. These NNs were trained using the
following manufacturing parameters as features: weight percentage of AM
and solid content in the slurry formulation, slurry coating speedand comma
gapduring coating, and roll speed and roll gap during electrode calendering.
The architecture of the NNs was designed differently for each target
property. These NNs performed well on the Graphite electrode dataset, but
their performance metrics diminished when used to extrapolate in the
smaller Si-Gra andNMCelectrode datasets. The distribution of these Si-Gra
and NMC datasets had both similarities and differences with the Graphite
dataset, but they were not large enough to train NNs from scratch. This
justified the use of TL by adding an extra layer to each one of the Graphite
pre-trained NNs and training this extra layer to adapt these models to each
one of these new chemistries. In both cases, the performance of the eva-
luation metrics improved significantly when evaluated with the TL-based
NNpredictions. The interpretation of the influence of each parameter in the
NNs predictions was also discussed for some test experiments for each
chemistry using XAI. The global analysis of SHAP values allowed us to
determine the influence of each manufacturing parameters on the final
predicted electrode properties and to sort them by relevance, showing that
this depends on the type of chemistry.

The second application of the simpleTL approachwas in the context of
PEMFCs with stochastically generated GDL datasets with different volume
sizes. In this case, small-volume microstructures characterized with
numerous calculations were used to train a NN to predict the geometric
tortuosity, considering as input parameters the fiber diameter, the fiber
concentration, the binder concentration, the thickness, and the compression
factor. The NN was then transferred to a smaller dataset of larger volume
microstructures that were computationally more expensive to characterize.
Since these datasets were stochastically generated, they have a more
homogeneous distribution than the experimental ones. This property of the
data led to even better results, proving that the simple TL approach can
perform better when applied to better distributed datasets.

This work provides a proof-of-concept for developing efficient data-
driven models with the simple TL approach to predict final electrode prop-
erties for new chemistries or large simulation volume sizes by taking advan-
tage of pre-trainedNNswhen available data is not enough (as it may occur in
academic laboratories). Our work perspectives include the application of our
approach toLIBelectrode formulationswithother chemistries andtosodium-
ion and Solid-State Battery electrode manufacturing processes. We believe
that the proof-of-concept presented in this article illustrates that simple AI
approaches can still deliver a lot in the complex field of EEC manufacturing.

Table 2 | Mean Absolute Percentage Error (MAPE) of
geometric tortuosity predictions in the test sets for both pre-
trained model and TL-based NNs

Geometric Tortuosity MAPE [%]

GDL200 GDL1000

Pre-trained NN 2.1 2.6

TL-based NN -- 2.0

The standard deviation of the reported errors is 0.2% and was estimated by performing a K-fold
cross-validationwith 5 random train-test splits. The specific error of each one of the folds is given in
Table S2 of the Supporting Information.

Fig. 9 | Scatter plot of predictions versus targets. Predicted versus target values of
Geometric Tortuosity in the test set of the GDL1000 test set with the pre-trained NN
(red squares) and with the TL-based (blue circles) NNs.
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Methods
Sample preparation and properties measurement in LIBs
Our pre-existing experimental dataset consisted of three different chemis-
tries for the LIB electrode AM: Graphite, Silicon-Graphite composite
(referred to as Si-Gra), and NMC. It is worth mentioning that it was not
acquired with the purpose of demonstrating the TL approach proposed in
this work. For the positive electrode, NMC AM, supplied by Umicore, was
used. C-NERGY™ super C45 carbon black (CB) from IMERYS and Solef™
Polyvinylidene fluoride (PVDF) from Solvay were used as the electronic
conductive additive and the binder, respectively. Prior to mixing with the
solvent, the powder components were first premixed overnight in a
Turbula® mixer. The mixture was then transferred to a Dispermat CV3-
PLUS high-shear mixer, and the required amount of NMP (BASF) was
added. The resultingmixturewasmixed for 2 hours at 25 oC and 3000RPM.
For the graphite electrode, Na-CMC (molecular weight∼250 K and degree
of substitution∼0.7, SigmaAldrich), C-NERGY™ superC45CB (IMERYS),
and water were used as the binder, conductive additive, and solvent,
respectively. The slurry mixing step was similar to the NMC slurry. For
some of these graphite electrodes, Si nanoparticles were also used as AM
mixedwithGraphite to fabricate Si-Gra composite electrodes. The total AM
content isfixed at 91%, and the totalweight percent of Si is varied to produce
different formulations of the electrodes.

The resulting slurries were coated over a copper current collector
(16 μm) for Graphite and Si-Gra electrodes and an aluminum current
collector (22 μm) for NMC electrodes with a prototype-grade comma-
coater machine (PDL250, People & Technology, Korea) at various comma
gaps and coating speeds as discussed in the experimental case of the Results.
The electrodes were dried in a built-in two-part oven at 80 and 95 °C for
NMCelectrodes and at 60 and 65 oC forGraphite and Si-Gra electrodes due
to the different solvents used. Calendering of the electrodes was performed
on a prototype-grade lap press calender (BPN250, People & Technology,
Korea) at various roll gaps and roll speeds. The temperature of the calen-
dering process was maintained at 60 oC for all the electrodes.

The resulting electrodes were characterized in terms of density and
mass loading, which are two final structural properties of the electrode
which can greatly influence its achievable electrochemical capacity. A
sample of 13mm diameter electrode sections was punched from the elec-
trode. The thickness and mass of the resulting electrode section were
measured, and the thickness and mass of the current collector were sub-
tracted to obtain the final mass and thickness of the electrode.Mass loading
(ml) of the electrode was calculated as

ml
mg
cm2

� �
¼ f AM × ðmelþcc �mccÞ× 4

π × 1:32
ð1Þ

where, melþcc is the mass of the electrode along with the current collector,
mcc is the mass of the current collector, and f AM is the total fraction of the
active materials. The density (ρ) of the final electrode was calculated as:

ρ
g

cm3

� �
¼ ml × 0:001

f AM × ðtelþcc � tccÞ
ð2Þ

where telþcc is the thickness of the electrode alongwith the current collector,
in cm, and tcc is the thickness of the current collector, in cm.

The slurry formulation, the coating and drying process parameters,
and the calendering process parameters are used as the input features of the
model. The slurry ismixed at the samemixing speedand for a sufficient time
for each type of electrode to ensure a homogeneous mixture. For the for-
mulation, the solid content of the slurry and the weight percentage of AM
are varied. The same weight percentage of carbon additive and binder is
taken for all the formulations. The solid content of the slurry is defined as,

Solid content %ð Þ ¼ dry mass ði:e:mass of AMþ carbon additveþ binderÞ
dry massþmass of solvent

ð3Þ

The coating and drying processes are performed roll-to-roll. The
parameters controlling the coating and drying process are coating gap,
coating speed, and drying temperature. Among these parameters, the
drying temperature is fixed for each type of electrode according to the
solvent, and the other parameters are varied. Finally, the dried elec-
trodes are subjected to the calendering process, which is controlled by
the roll speed, the roll gap, and the roll temperature. In our experiments,
the roll temperature is fixed, and the roll gap and roll speed are varied.
The fixed parameters for themixing process were chosen given previous
optimizations already performed in previous publications of our
research group42,66. The experimental dataset used in the current work
was obtained and collected in the context of the ARTISTIC project30.

StochasticGenerationofGDLmicrostructures andcalculationof
geometric tortuosity
The GDL microstructures were generated using the FiberGeo module
within the Geodict69 software. The microstructures were stochastically
generated and digitally characterized according to several properties in the
context of our previous work35. In that work, the geometric tortuosity was
not used to train any ML model. The microstructures there consisted of
infinite/circular carbon fibers with the specified solid volume percentage
(SVP). We used them here with domain sizes of 2000 μm × 200 μm ×
thickness μmand 1000 μm×1000 μm× thickness μmwith a voxel length of
1 μm. These domain size datasets are referred to as GDL200 and GDL1000,
respectively. In this case, the geometric tortuosity is our target property,
whose digital characterization (determination of properties) in the GDL200

Fig. 10 | Explanation of pre-trained and TL-basedNNs.Training scheme of a NN
on (a) source dataset (Graphite-based electrodes for the experimental LIB
electrode manufacturing dataset, and GDL200 for the stochastically generated
GDL dataset), and then used for a (b) TL approach adding an extra layer for the
target dataset (Si-Gra and NMC electrode datasets for the experimental LIB
electrode manufacturing dataset, and GDL1000 for the stochastically generated
GDL dataset).
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dataset requires 65% less computational time than in the GDL1000 dataset.
The input parameters to calculate this target are the fiber diameter, the fiber
concentration, the binder concentration, the thickness, and the compression
factor.

The mentioned carbon fibers have a specified diameter and an iso-
tropic orientation using an orientation tensor that can be explained as

follows. Mathematically, dk ¼
xk
yk
zk

0
@

1
A is the unit vector describing theKth

fiber and n is the number of fibers. The orientation tensor can be expressed
as the sum of the dyadic products of dk from all n fibers, divided by n:

T ¼ 1
n

Pn
k¼1

dkd
T
k

� �
¼ 1

n

Pn
k¼1

xkxk xkyk xkzk
ykxk ykyk ykzk
zkxk zkyk zkzk

0
B@

1
CA ¼

t11 t12 t13
t21 t22 t23
t31 t32 t33

0
B@

1
CA

¼
0:4966 0 0

� 0:4966 0

� � 0:0068

0
B@

1
CA

ð4Þ

where the diagonal elements define the orientation strength for the corre-
sponding directions. After the generation of carbon fibers, the PTFE was
incorporated into the GDL domain with the desired SVP. The geometric
tortuosity (τ) was then calculated to characterize the GDL microstructure.
The calculation of the geometric tortuosity was conducted in the direction
perpendicular to the direction of the carbon fibers using the following
equation:

τ ¼ shortest path to inflow plane
distance to inflow plane

ð5Þ

Transfer learning approach
In our approaches herein, we use supervised ML by training feed-forward
NNs on the pre-existing data collected from the LIB electrode manu-
facturing experiments and the data stochastically generated for GDL, as
detailed in the previous respective subsections. NNs are chosen for their
capacity to handle complexity. NNs can learn the underlying nonlinear
relationships between the manufacturing parameters and the target prop-
erties. However, they also present some limitations: their complex structure
canmake them prone to overfitting if not carefully regularized and training
them often requires large datasets and significant computational resources.
To learn the weights of the NNs during training, the backpropagation
algorithm is used70.

As shown in the scheme in Fig. 10, we train a feed-forward NN on
the source dataset (Graphite electrode in the LIB electrode manu-
facturing experimental dataset and the GDL200 in the stochastically
generated dataset) to predict a final property (density andmass loading
in one case and geometric tortuosity in the other). This NN captures the
variations in manufacturing conditions and the resulting changes in
the target property. For the target dataset (Si-Gra andNMCon one side
and GDL1000 on the other), we freeze each pre-trained NN (Fig. 10a)
and add an extra layer to train and perform the same task (Fig. 10b).
The new layer added for each transferred NN is an adapter, that pro-
cesses the output data and extracts additional features specific to the
different manufacturing conditions in the target domain. Therefore,
adding this extra layer to accomodate different manufacturing condi-
tions is similar to the TL parameter-based approach, previously dis-
cussed. It does not change the input features like feature-based TL or
copy the weights like parameter-based TL. Instead, it uses the learned
relationships in the pre-trained NN and adjust to the target property.

First, for the experimental dataset, two feed-forward NNs are trained
using the Graphite source dataset (pre-trained NNs). One NN predicts the
electrode density, and the other one predicts the electrode mass loading.
Then, an additional layer is added to each of the pre-trained NNs, creating
two TL-based NNs for each output target (electrode density and electrode
mass loading). The NN architecture of all the four models are shown in
Table 3, where the number of trainable parameters is also given. For both
pre-trained and TL-based NNs we use 6 input parameters: AM weight
percentage and solid content in the slurry formulation, coating speed and
comma gap during slurry coating, and roll speed and roll gap during elec-
trode calendering. Similarly, a feed-forwardNN is trained using theGDL200
dataset to predict the geometric tortuosity by using as input parametersfiber
diameter, fiber concentration, binder concentration, thickness, and com-
pression factor. Then, an additional layer is added to this pre-trainedNN to
train theTL-basedNNon theGDL1000dataset. Theseother architectures are
shown in Table 4. Each hidden layer in all six models is activated using the
ReLU function. The codes to train these models were written in Python by
using TensorFlow71, along with other common scientific computing
libraries72. They were trained on a 13th Gen Intel(R) Core(TM) i7-13700H
with 32 GB of RAM.

Data availability
The datasets used and analysed during the current study are available from
the corresponding author on reasonable request.

Code availability
The underlying code for this study is not publicly available for proprietary
reasons.
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