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The lack of high-quality datasets in materials science hinders artificial intelligence (AI)-driven alloy
design. To address this challenge, wire arc additivemanufacturing (WAAM)was employed to fabricate
graded alloys, generating extensive data for machine learning (ML)-assisted property prediction. ML
models were developed using high-throughput experiments, computational models, and genetic
algorithm to optimize feature selection, successfully predicting hardness and porosity. TheMLmodel
demonstrated its efficacy bydesigning a gradient alloywith enhanced properties. However, scaling up
revealed uncertainties in tensile property andporosity due todifferences in size and thermal conditions
between the designed alloy build and the gradient print used to construct the ML model. This
underscores the need for uncertainty quantification and process optimization in WAAM-driven alloy
design. Our work advances AI-integrated additive manufacturing, offering a rapid approach to
exploring process–structure–property relationships and accelerating materials development.

The machine learning (ML) method, which maps the relationship between
the property of interest and materials descriptors, has gained significant
attention due to its ability to expedite numerical simulations and facilitate
thematerials design1,2. The approach proves valuable for alloy development
and materials property prediction in the vast composition space3–9. None-
theless, the scarcity of robust databases constrains the widespread adoption
ofMLwithin thematerials community10. To surmount these limitations and
unlock the full potential ofML inmaterials discovery and design, concerted
efforts must be directed toward the acquisition of high-quality databases.
Compiling a substantial and reliable database pose challenges due to the
scarcity of comprehensive data in literature. Furthermore, variations in
materials processing and property testing conditions across publications
introducenoise anddiminish thequality of the availabledata.Consequently,
the construction of a high-quality database necessitates the implementation
of high-throughput experiments, and various methodologies have been
developed to fulfill this purpose. Magnetron sputtering can map several
compositions in thin-film form, while it cannot be used for producing bulk
samples with more representative characteristics, such as mechanical
properties and corrosion resistance11–13. The development of diffusion
couples ormultiples has a long-standinghistory14,15, offering an effective and

feasible approach for investigating phase diagrams and exploring
composition-process-microstructure-property relationships16. Never-
theless, the determination of element distribution is inherently tied to their
respective diffusivities, posing challenges in achieving the desired compo-
sition. Additionally, the limited size of the diffusion zone often hinders the
direct deduction of bulk properties17–19.

Additive manufacturing (AM)20–23 revolutionizes the fabrication of
components by layer-by-layer material deposition, enabling rapid con-
struction of near-net-shape geometries and the development of com-
positionally graded materials. Such capabilities, unparalleled by other
high-throughput processing techniques, hold the promise of a paradigm
shift in the efficient screening of alloy compositions24. In comparison to
alternative additive manufacturing techniques like laser powder bed
fusion25, directed energy deposition26, and electron beam freeform
fabrication27, wire arc additive manufacturing (WAAM) has demon-
strated notable advantages28–30. These include cost reduction through the
utilization of wire instead of powder (which can be up to three times
more expensive) and higher deposition rates31,32 for the fabrication of
large-sized builds33,34 with near net shape. Compared with the powder-
bed process, wire feed has higher material usage efficiency with up to
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100% of the wire material deposited into the component35. Additionally,
due to the existing welding techniques, wires are lower in cost and readily
available than alloy powders as the feedstock materials, making wire-feed
technology more cost-competitive. In contrast to the low energy effi-
ciency of laser-based processes (ranging from 2% to 5%)36 and electron
beam processes (ranging from 15% to 20%)37, arc welding techniques
such as gas metal arc welding (GMAW), gas tungsten arc welding
(GTAW), or plasma-arc welding (PAW) can achieve energy efficiencies
of up to 90%38.

A second challenge in constructing ML models lies in the selection of
suitable material descriptors to predict the desired property. Typically, the
ML approach involves establishing a surrogate model f that discerns the
connection between the property of interest Y and a series of material
descriptors X. Consequently, the effectiveness and precision of the ML
prediction are contingent upon the chosenmodel f andmaterial descriptors
X. To ensure robust and accurate predictions, it becomes imperative to
amass an extensive collection of “good” descriptors and curate the appro-
priate set for analysis. When it comes to gathering “good” descriptors,
computational tools offer the potential to augment the limited experimental
data by introducing additional physics-based features into the analysis39,40.
However, given the multitude of descriptors derived from both experi-
mental and simulation sources, the quest for an effectivemethod to select an
optimal descriptor recipe becomes essential. The sheer number of possible
descriptor combinations, which grows exponentially with the number of
descriptors (n), renders a brute-force inspection impractical, with a total of
2n− 1 choices for the descriptor recipe10,41. To overcome this challenge,
genetic algorithms (GA) emerge as a powerful tool. Mimicking the evolu-
tionary principles of “natural selection” and “survival of the fittest“42, GA is
capable of efficiently sifting through the extensive pool of collected
descriptors. By leveraging GA, the most appropriate material descriptors
can be selected and thus enhance the model’s performance through judi-
cious feature selection. CALPHAD (Calculation of Phase Diagrams)43 is a
reliable shortcut to determine the phase equilibria and thermodynamics of
multicomponent systems.High-throughputCALPHADcalculations canbe
employed for deducing the thermodynamic properties in a large compo-
sition domain that are complex, expensive, and time-consuming to be
determined using experiments. This makes it an efficient method for gen-
erating the material descriptors for GA.

This study presents a design framework that integrates WAAM, the
CALPHAD approach, and GA to establish aMLmodel aimed at the design
of a new alloy. Specifically, our focus lies in the development of functionally
gradedmaterials obtained through theprintingprocess, employingP91 steel
and Inconel 740H (denoted as 740H hereafter) superalloy as the base
materials44,45. As shown in Fig. 1, the initial step of our investigation entails

the utilization of WAAM to fabricate a wall-shaped sample, gradually
transitioning frompure P91 steel to 740H superalloy in 10 wt.% increments.
Subsequently, we employed a comprehensive suite of characterization
techniques, including hardness testing, SEM imaging, and composition
measurements, along three distinct tracks spanning from the P91 side to
740H in the left, middle, and right of the sample. Each track comprised 145
data points, yielding a total of 435 SEM images (about an area of 7000 μm²)
along with corresponding hardness and composition measurements at
various locations. In addition to these measurements, properties such as
phase fractions and thermodynamic characteristics were calculated to fur-
ther augment the database depth and richness. GA was performed for
exploration of the dataset, pinpointing the most influential features capable
of accurately predicting hardness and porosity. Subsequently, armed with
this optimized model the alloy design was conducted by blending 740H
superalloy and P91 steel during a twin-wire feed AM, two materials known
for their excellent as-built properties. The resultant alloy was constructed
and subjected to systematic characterization. The outcomes demonstrate
the remarkable accuracy of our model, with the designed alloy exhibiting
exceptional as-built properties, attesting to the efficiency and efficacy of our
alloy design framework. It isworthnoting, however, that the thermal history
and location-specific properties inherent in large-scale AMbuilds introduce
an element of uncertainty in WAAM prints, necessitating their important
consideration in future endeavors aimed at quantifying quality.

Results
Characterization and CALPHAD modeling of linear
gradient sample
Figure 2 illustrates the gradual compositional transition, as measured by
EDS, fromP91 steel to 740H superalloy in the gradient build depicted in Fig.
1. This spatial variation in composition yields a distinctive set of experi-
mental data with unique compositions. Notably, there exists a favorable
correlation between the measured composition and the nominal compo-
sition of the graded alloy, affirming the efficacy of composition control
achievable through the implementation of a twin-wire feeder in WAAM.

In Fig. 3, three distinct tracks from the builds exhibit diverse properties
and microstructures at equivalent distances along the build direction. This
high-throughput experimentation elucidates the evolution of structure and
properties in response to varying compositions, which can be explicated as
follows: The hardness initially experiences an increase followed by a sudden
decrease (Fig. 3b) due to the transition of the matrix from the martensite to
austenite phase (Fig. 3g, h). As depicted in Fig. 3d, the porosity displays a
randompattern along the build direction, suggesting its independence from
composition. However, the presence of more black dots (Track 1) signifies
higher porosity, indicating a potential sensitivity of porosity to the location

Fig. 1 | Flow chart of the proposed work. First, build the gradient alloy block using
WAAM. Second, measure the hardness, porosity, cracks, and compositions and use
different modeling tools to build the database for the ML model. Third, optimize

descriptor selection using a genetic algorithm. Lastly, predict the gradient alloy
property, verify the design using experiments, and discover the location-specific
properties.
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perpendicular to the build direction. The carbide fraction exhibits an initial
increase followed by a subsequent decrease (Fig. 3e), analogous to CAL-
PHAD calculations conducted utilizing the Scheil module of Thermo-Calc
software (refer to Supplementary Fig. S1). In Fig. 1g, h, thematrix undergoes
a transformation from martensite to austenite when the building distance
reaches 10,000 μm,which alignswith the predictedMs temperature (refer to
Supplementary Fig. S2). This congruity between experimental observations
and simulations substantiates the accuracy of the simulation in capturing
material properties and structure, thereby validating the utilization of the
calculated results as material descriptors.

MLmodel aided by genetic algorithms
Material models are only as good as the descriptors they are built on. In this
work, additional descriptors were calculated in addition to experimentally
measured chemical composition, including phase fractions, thermo-
dynamic properties, and Ms temperature, etc. These calculated descriptors
proved essential since incorporating them showed dramatically lower error
than those relying on composition alone (Fig. 4). Genetic algorithms were
repeatedly applied to select the most informative descriptors and refine our
models. With each iteration, the models improved, until reaching an opti-
mal plateau within 40 iterations. The algorithms effectively identified the

Fig. 2 | Element distribution along with the gradient build. a Fe, Ni, Cr, Co, Ti, and Nb; (b) Al, Si, Mn, Mo, and V.
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most effective descriptor set to explain hardness and porosity. All three
genetic algorithms tests performed similarly, indicating the algorithms can
search the space of possibilities to find the best descriptor combinations.

The automated feature selection approach using GA, enables the
identification of the most informative descriptors that yield the smallest
prediction error, shedding light on the potential physical connections

between these descriptors and the target properties. Fig. 5a concisely sum-
marizes the frequency of feature selection in the GA-derived descriptor sets
across three trials. Notably, in the hardness model, features such as the
composition of Fe, Ni, Si, Mn, N, Martensite, and Laves phase fractions, as
well as the latent heat at the solidus temperature, have been selected more
than twice. Similarly, the porositymodel highlights the repeated selection of
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All features Hardness model Porosity model
Fe (at.%) 3 2
Ni (at.%) 3 0
Si (at.%) 3 3
Al (at.%) 0 3
Mn (at.%) 3 0
Ti (at.%) 0 3
Nb (at.%) 0 3
Cu (at.%) 0 3
C (at.%) 2 2
N (at.%) 3 2
Cr (at.%) 0 2
V (at.%) 0 0

Co (at.%) 0 0
Mo (at.%) 0 0

Ms (K) by decision tree 3 2
Laves mole fraction (Fe10) 2 3
Laves mole fraction (Ni10) 0 0
MX mole fraction (Fe10) 0 3
MX mole fraction (Ni10) 0 0

BCC mole fraction (Fe10) 0 0
BCC mole fraction (Ni10) 0 1
FCC mole fraction (Fe10) 0 0
FCC mole fraction (Ni10) 0 0

Freezing range (Fe10) 0 0
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TEC at solidus (Fe10) 0 3
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Fig. 5 | Evaluation of the GA-selected features. a Materials properties selected by
GAmodels the numbers denote the number of times the feature has been selected by
GA during the three trials. Fe10 and Ni10 denote features calculated using TCFE10

and TCNI10 databases, respectively. b SEM image showing the Laves phase and the
pore close to it. cConfusionmatrix showing the relationship labeling accuracy based
on more than 140 black features in SEM images.
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features including the compositionof Si,Al, Ti,Nb,Cu, Laves andMXphase
fractions, as well as thermal properties like the TEC, latent heat, and heat
capacity (Cp).

The GA’s feature selection process offers valuable insights into the
relationship between these features and the properties of interest with some
of these relationships being confirmed by literature. For example, Al and Ti
were selected 3 times for porosity prediction, indicating their content have
an impact on the porosity. This finding aligns with Panwisawas et al.46 who
reported that lower Ti and Al content could increases both dynamic visc-
osity and thermal conductivity in superalloys which leads to more stagnant
fluid flow during additive manufacturing and consequently lower porosity.
Additionally, TEC, latent heat, and heat capacity emerged as important
features for predicting porosity.Due to the layer-by-layernature ofWAAM,
there is a temperature gradient between layers. This temperature difference
combined with a high TEC, results in substantial thermal contraction and
the generation of residual stresses, which can exceed the local strength of the
material and formmicrocracks47. Furthermore, latent heat andheat capacity
are key parameters in analytical models for thermal distribution, melt pool
geometry, temperature and velocity field calculations48 that could further
impact on the pore formation46,49.

In the meantime, GA also guides us to uncover insights worth
exploring. For instance, further investigation revealed the significance of
Laves and MX phases in porosity prediction. Fig. 5b demonstrates that the
co-presence of Laves phase and pore. This is possible due to that Laves
phases typically forms in the interdendritic region at the end of
solidification50. If it is in conjunction with inadequate transformation of
liquid to solid, this can result in the development of localized regions of
porosity within the interdendritic region, which leading to the co-presence
of Laves phase and pores. Fig. 5c is the confusion matrix to describe the
accuracy of our model labeling in phase based on the black feature shape,
and it reveals the limitations of ourmethod in distinguishing between pores
and MX phases. During the SEM image analysis black feature is labeled as
SiO2 if the shape was very large, it is labeled as carbides if it showed a sharp
edge, and it is pore if it had a roundedor complex shape.Thenwe tookmore
than 100 black features andmeasured their composition using EDS to what
are the true phases. In the analysis, if the black feature has the matrix
composition it is the pore; it is SiO2 if the Si content is high; it is carbide if it
has highNb/Ti content. Based on the first row, 86% of pores were labeled as
pores basedon shape, 2%of poresweremislabeled as SiO2, and 12%of pores
were mislabeled as MX carbides. Although it identifies 86% of pores, it
occasionally mislabels MX phases as pores, resulting in a correlation
between porosity and MX phase fraction. It is to be noted that the SiO2

particles canbe either those stuck to the sample surfaceduring the last stepof
polishing and remains stuck even after sonification or due to the Si in the
feedstock which serves as deoxidizers and form SiO2 during printing. These
findings underscore the role of GA in discerning the relevance of materials
descriptors to the target properties, thereby enhancing model performance.

Furthermore, the selection of an appropriate thermodynamic database
holds paramount importance when designing gradients between dissimilar
materials. Here, features were calculated using the TCFE10 and TCNI10
databases, and intriguingly, GA consistently favors the results derived from
the TCFE10 database over the TCNI10 database. This preference suggests
that the TCFE10 database offers greater utility in modeling hardness and
porosity within the scope of this study.

Models were constructed utilizing GA-selected features to predict the
hardness and porosity, employing a linear gradient composition spanning
from740H superalloy to P91 steel (Fig. 6). The projected hardness exhibits a
gradual decrease upon the composition gradient from P91 steel to 740H
superalloy. However, once reaching an 80 wt.% P91 composition, the
hardness experiences a dramatic surge, peaking at approximately 400 HV,
and subsequently declines as the compositionnears pureP91.Moreover, the
porosity shows a less smooth change along with the change of P91 content.
This is due to the porosity dependent on features like heat capacity and the
thermal expansion coefficient (TEC), which vary non-linearly with the P91
content (Supplementary Fig. S3c, d). Nevertheless, the porosity shows a

relatively low value of about 0.007 near the hardness peak region. Thus, by
employing ML models, the 90 wt.% P91 alloy emerges as a promising
candidate for the WAAM manufacturing method, boasting relatively low
porosity and high hardness as shown in Fig. 6.

Evaluation of the design alloy and its location specific structure
and properties
Consequently, a 90% P91 sample was fabricated, possessing dimensions of
190mm length, 15mmwidth, and 105mmheight (Fig. 7a)). To investigate
property and microstructure variations along the build direction, eight
locations were chosen from the bottom to the top of the build, aligning with
the build direction.

Figure 7b, c reveals a martensitic microstructure, wherein the prior
austenite grains exhibit an increasing trend in size from the bottom to the
top of the build. Themain reason for the smaller prior austenite grains in the
bottom portion is because of the effective heat dissipation by the mild steel
substrate with high thermal conductivity leading to higher cooling rate. As
the build height increases, the previously deposited material which is at
higher temperature will act as the substrate for the newly depositedmaterial
and hence, will have lower cooling rate, leading to larger prior austenite
grain size.Among the available techniques, indentation testing stands out as
a particularly suitable method for characterizing the mechanical properties
of compositionally-graded specimens51, as it correlates with both the 0.2%
proof stress and the ultimate tensile strength52. Therefore, hardness map-
ping was employed to investigate the distribution of hardness throughout
the build. As depicted in Fig. 7d, themeasured hardness is 369.6 ± 20.3 HV,
which is in close agreement with the predicted hardness of 393.7 HV,
proving the model trained based on data obtained from small gradient
sample (25mmgradient section) canbeused topredict thehardness of large
90 wt.% P91 build (105mm in height). Nonetheless, the hardness exhibits
significant variation, ranging from 207 to 416HV. Notably, within the
middle region of the build, there are numerous areas with low hardness,
represented by blue and green colors. Such occurrencesmay be attributed to
the indents encountering a pore. The high hardness regions (red islands) in
the hardness map could possibly be regions with the hard MX phase. This
observation underscores the non-uniform distribution of hardness or
porosity along the build.

To further investigate the performance of the designed alloy, three
tensile tests were performed and themicrostructure of the 90 wt.%P91 alloy
in as-built condition was characterized. Based on Fig. 8a, there is a sig-
nificant variation in the performance of the sample cut from the WAAM
build alloy. For test 1, it showsa yield strengthof 873MPa, tensile strengthof
1086MPa and elongation of 6.46%. in the as-built condition. The yield
strength are higher than the austenized and tempered P91 (475MPa)
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reported by Pandey et al.53, yet slightly lower than the as-quenched P91
(900MPa). Meanwhile, the 90 wt.% P91 build also exhibits higher strength
compared to as-built (529MPa) and heat-treated (710MPa) 740H reported
by Hu et al.54 as well as welded 740H (620MPa)55. Additionally, when
comparing our gradient builds to other dissimilar compositions56, our yield

strengths are generally higher, albeit with different elongation values. This
demonstrates the effectiveness of our gradient design via hardnessmodeling
in achieving high strength.

However, theductility of our sample is ahalf or one thirdof theP91and
740H reported in literature, and test 2 and 3 shows even worse ductility.

Fig. 8 | Uncertainty of the tensile property andmicrostructure of as-built 90 wt.%
P91 alloy. aUniaxial tensile stress-strain curves of as-built samples. b SEM image of the
test 1 fracture, (c) SEM image of the test 3 fracture, SEM image showing the difference of

porosity at (d) bottom, (e) middle, (f) and top of the 90% P91 build, SEM image using
secondary electron of the (g) test 1, (h) test 3 gauge length part of the 90% P91 build, and
(i) schematic showing the variation of pores at different locations.

1

2

3

4

5

6

7

8

15 mm
B

 noitcerid dliu
10

5 
m

m

200 µm 200 µm 200 µm 200 µm 200 µm 200 µm 200 µm200 µm

200 µm 200 µm 200 µm 200 µm 200 µm 200 µm

200 µm

200 µm

1 2 3 4 5 6 7 8
The prior austenite grain size is growing larger from bottom to top

   416
390
364
338
312
285
259
233
207

Length- 190 mm

(a)

(b)

(c)

(d)

76.5 mm

8.
8 

m
m

200 µm

Fig. 7 | Build and characterize the designed 90 wt.% alloy. a Photo of the WAAMmanufactured 90 wt.% P91 sample, (b) EBSD image along the build direction, (c) prior
austenite reconstructed for (b), and (d) hardness map of the manufactured sample.

https://doi.org/10.1038/s44334-025-00028-x Article

npj Advanced Manufacturing |            (2025) 2:17 6

www.nature.com/npjadvmanuf


Based on the fracture surface, it was clear that more dimples were found in
the test 1 sample (Fig. 8b) indicating a ductile mode of fracture compared
with the fracture surface (Fig. 8c) from test 3 which showedmore cleavages
denoting brittle mode of fracture.

For probing the reason behind this observation, SEM imaging was
performed to check the porosity. Fig. 8d–f shows the porosity variation
along the build direction. The bottomand toppart showed small spherical
gas pores, which is caused due to the trapped gas57. The porosity is 0.001
which is close ML model predicted porosity of 0.007, indicating a good
accuracy of theMLmodel. However, the lack of fusion pores is noticeably
observed in themiddle part and the porosity increased to 0.0267due to the
input heat source energy that fails to fully melt the materials and leaves
large and irregular voids58. Such porosity distribution is in accordance
with the hardness map in Fig. 7d, which shows themiddle of the build has
more lowhardness area. The sharp edges of these large pores in themiddle
can act as stress raisers during the tensile testing leading to premature
cracking. Moreover, the cracks and pores may also be caused by the
localized residual stress during the cyclic heating and cooling process59.
Fig. 8g, h show theporosity variation at the gauge section of the tensile test.
As summarized in Fig. 8i, there are more cracks, pores, and lack of fusion
in the middle portion of the sample compared with the top, bottom, left
edge, and right edge. And test 1 has better properties because it has lesser
pores of spherical shape in the gauge section. Since high porosity will
decrease the ductility and strength60, the significant difference in tensile
property can be attributed to the varying site-specific porosity in the large
single composition build (105 mm in height). On the contrary, the smaller
linear gradient block that we built for data generation (25mm in height),
only shows lack of fusion pores in 4 out of 61 SEM images within the
90 wt.% P91 section. This disparity in the lack of fusion pore occurrence
suggests that the printability characteristics of themiddle section of larger
builds differ from the AM build with smaller size. Generally, the influ-
encing factors of printability and porosity can be categorized either into
thermal ormaterial intrinsic property aspects. Since the build has the same
composition, the difference is caused by thermal profile variation at dif-
ferent locations of the build given the same printing parameters. As a
result, the impact of the location-specific thermal profile and its impact on
the properties should be considered in future work.

Discussion
This study addresses the limited availability of high-quality datasets, a
challenge that has historically hindered the application of ML in materials
science. By integrating WAAM, the CALPHAD method, and genetic
algorithms, we present a rapid and efficient approach to exploring process-
structure-property relationships and accelerating alloy development.
• WAAM was utilized to fabricate gradient alloys with controlled

compositions, generates extensive datasets containing bulk material
property and structure that are ideal for ML analysis.

• The genetic algorithm identifies key material descriptors, selecting the
most relevant properties and structural factors influencing hardness
and porosity. By leveraging these optimized features and database built
usingWAAM, theMLmodels achieve low errors (16HV for hardness
and 0.00034 RMSE for porosity), making them suitable for guiding
alloy design.

• By applying theMLmodel, a 90 wt.% P91 alloy was designed to exhibit
favorable mechanical properties in its as-built state which aligns with
the ML prediction.

• Variation in porosity across different locations in large 90wt.%
P91 samples was observed, which reduced the strength and ductility.
The porosity at bottom part agrees with ML prediction while the
middle parts show large discrepancies. This highlights that though this
approach could identify promising alloy while additional process
optimization is needed to enhance ductility and reduce porosity, par-
ticularly considering the thermal profile and control over location-
specific properties when scaling up WAAM applications.

Methods
Sample preparation
The composition (specified by vendor) for P91 steel (ER90S-B91, Euroweld,
USA) and 740H superalloy (Special Metals Welding Products Co., USA)
wires that were employed for the deposition of the designed alloy bymixing
90 wt.% P91 steel and 10 wt.% 740H alloy (named as 90 wt.% P91 alloy in
following context) and the linear gradient build (Fig. 1) using WAAM are
listed in Table 1. The diameter of the P91 steel and 740H superalloy wires
were 0.9 and 1mm, respectively. The fabrication of the linear gradient build
involved the printing of a wall structure with 25mm P91 steel on the
bottom, 25mmP91 to740Halloyon themediumand25mm740Halloyon
the top Supplementary Fig. S4. We did not build the 740H close
to the substrate since the lower thermal conductivity of 740H superalloy
(10.2W/mK) compared to P91 steel (26W/mK) means the heat generated
during deposition cannot dissipate effectively and will lead to crack
formation30. This WAAM printing task was carried out utilizing an ABB
robotic platform at the RTX Technology Research Center. The WAAM
system incorporated a Thermal Dynamics PWM300 plasma arc welding
(PAW)) torch and a twin wire feeder, both seamlessly integrated into a six-
axis robot. During the fabrication process, purified argon gas was employed
for plasma generation and as a shielding gas for the PAW torch, with a flow
rate set at 1.2 liters per minute. Each layer in the additive manufacturing
processwas constructedusing a square raster patternwith a patternwidthof
11mm and a step-over distance of 3mm. As shown in the Supplementary
Fig. S5, even-numbered layers followed a left-to-right square direction,
while odd-numbered layersmirrored this pattern in a right-to-left direction.

Throughout the printing process, we ensured a consistent mass
deposition rate of 0.9 kg/hr by continuously monitoring a precisely cali-
brated wire feeder. The feeder’s controlled feed rate, along with the known
material density and wire dimensions, allowed us to directly calculate and
maintain the desired deposition rate within acceptable tolerances. The
distance between the torch and the deposition point was set at 12mm,while
the wire was fed at an angle of 30 degrees. In order to achieve the desired
composition gradient, the wire feed rates were adjusted based on the pre-
scribed nominal composition, in conjunction with the appropriate current
and travel speed settings as outlined inTable 2. The layer height variesdue to
P91, 740H, and their blends exhibit different properties and solidification
behaviour. To prevent dilution from impacting the height of the build, an
interpass temperature of 175 °Cwasmeticulouslymaintained. Temperature
was continuously monitored using an infrared pyrometer, and the dwell
times between layers were dynamically adjusted to ensure that a new layer

Table1 |Composition (inwt.%)of theP91and740Hwiresused fordeposition in theWAAMprocessand thenominal composition
(in wt.%) of 90wt.% P91 alloy

Material Composition (wt.%)

Al C Co Cr Cu Fe Mn Mo Nb Ni Ti Si V

P91 0.003 0.09 - 9.2 0.03 Bal. 0.45 0.91 0.052 0.4 - 0.26 0.21

740H 1.4 0.03 20.3 24.6 0.02 0.2 0.24 0.5 1.49 Bal. 1.5 0.1 -

90 wt.% P91 0.143 0.084 2.03 10.74 0.029 Bal. 0.429 0.869 0.196 5.322 0.15 0.244 0.189
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was initiated only after the temperature had dropped below 175 °C. The
mild steel (Fe-0.165C-0.6Mn-0.225Si, wt.%) substrate, with a thickness of
approximately 13mm, served as the foundation for this intricate linear
gradient build.

In accordance with the computational design strategy outlined in this
study, a wall sample was fabricated by blending 90 wt.% P91 steel with the
740H superalloy. The wire feed rates for the P91 steel and 740H superalloy
wires were set at 2.83m/min and 0.24m/min. During the fabrication pro-
cess, the average voltage was maintained at approximately 20.9 V; however,
due to inherent process variations, this value fluctuated by several volts, and
it represents anaverageobserved across both the linear gradient and90 wt.%
P91 builds. To achieve the desired composition gradient and layer-specific
properties, the current and travel speed settings were varied for different
layers, as summarized in Table 2. To ensure proper adhesion to the sub-
strate, the initial layer was subjected to high current and low travel speed,
thereby facilitating complete bonding. Subsequently, the current was gra-
dually reduced while the travel speed was adjusted accordingly for sub-
sequent layers. This layer-by-layer approach ensured the integrity and
structural integrity of the build. Similarly, an interpass temperature of
175 °C was also controlled to ensure consistency throughout this build.

Microstructure characterization and mechanical testing
Both gradient and 90 wt.% wall sample, produced via WAAM, underwent
sectioning along the build direction (XZ plane and Z is the build direction)
using electric discharge machining (EDM) facilitating subsequent char-
acterization. To achieve optimal surface quality, the as-built sample was

embedded in a thermosetting resin and subjected to mechanical polishing.
This process involved grinding the sample surface with SiC emery papers
ranging from 800 to 1200 grit, followed by cloth polishing using diamond
suspensions containing 3 and 1 μm particles. A final polishing step utilized
silica suspensionwith 0.04 μmparticles, ensuring a scratch-free,mirror-like
surface finish. Observations of the as-polished surface were performedwith
a field emission gun (FEG) source-equipped FEI Scios Dual-Beam focused
ion beam (FIB) - scanning electron microscope (SEM). Elemental compo-
sitions were ascertained via energy-dispersive spectroscope (EDS) analysis
using an OctaneElite EDAX system integrated with the SEM. To delve into
the phase characteristics in greater detail, electron backscattered diffraction
(EBSD) was employed, facilitated by the EDAX Hickari EBSD system
attached to the SEM. The resulting EBSD scan data were subsequently
analyzed utilizing TSL-OIM software version 8, enabling the reconstruction
of the prior austenite grain size from the EBSD scans of the martensite
matrix using ARPGE61,62, employing the K-S orientation relationship63.
Hardness measurements were conducted on the as-polished XZ plane
utilizing an automated Vicker’s microhardness tester (AMH55 with
LM310AT Microindenter, LECO Corporation, USA) employing a load of
300 grams and a dwell time of 10 s. To assess the hardness distribution along
the sample’s length in the 90wt.% P91 build, approximately 600 indenta-
tionswereperformed along thebuilddirection (Zdirection) of theXZplane.
The space between each indent is 1 mm, which that is 10 times larger than
the ASTM standard suggested value (3 times of the indent diagonal length)
to avoid the hardening effects due to the neighboring indents. Tensile tests
were conducted in accordance with ASTM E8/E8M, using subsize speci-
mens extracted from the 90 wt.% sample, with the tensile axis aligned along
the build direction. Testing was performed at room temperature using an
MTS 880 universal testing machine with a 100 kN load capacity. Dis-
placement measurements were recorded using a 25mm extensometer, and
the tests were conducted at a strain rate of 0.03min−1.

Modeling and genetic algorithm
The prediction models for porosity and hardness were developed using the
gradient boosting ML algorithm64 implemented with the Scikit-learn
package65. To optimize the model descriptor sets and reduce the number of
features fromall 32 features to avoid overfitting,GA66 was employed.Unlike
principal component analysis, GA preserves the physical interpretability of
individual descriptors, and it is more efficient to explore the near-optimal
feature sets than a brute-force search of 2³² possible subsets. The perfor-
mance of the models was evaluated using 5-fold cross-validation67 to
identify the model with the highest accuracy and generalizability. The GA
parameters used in the optimization process were listed in Table 3. For the
two properties of interests, hardness and the porosity for three tracks with
145 indents per track were measured experimentally. The porosity was
obtained using the Scikit-Image68 package to analyze the SEM images
around the hardness indents. For the model descriptors, the compositions
around the indents were taken as the average around the four vertices of the
square-shaped hardness indent using energy dispersive spectroscopy. The
phase fractions, thermal expansion coefficient (TEC), heat capacity (Cp),
freezing range (difference between solidus and liquidus temperatures), and
latent heat at the solidus temperature were calculated using the TC-Python
toolkit from Thermo-Calc software69. Commercial thermodynamic data-
bases for steel (TCFE10) and Ni-base superalloy (TCNI10) were used for
thermodynamic property calculation70,71. Configuration entropy was cal-
culated using the equation:R

Pn
i xilnxi, whereR is the gas constant, xi is the

atomic fraction of element i, and n is the total number of elements. Total
entropy is related to the temperature profile andmatrix composition, which

Table 3 | Genetic Algorithm Parameter Settings

Population size Crossing
probability

Crossover independent
probability

Mutation
probability

Mutation independent
probability

Maximum number of
features

Tournament size

200 0.5 0.5 0.2 0.05 32 3

Table 2 | Printing parameters for linear-gradient and 90wt.%
P91 build fabricated using WAAM

Build
type

Layer No. P91
content
(wt.%)

Current (A) Travel
speed
(mm/s)

Wire feed
(m/min)

P91 740H

Linear
gradient

25–40 0 166 5 - 2.44

23–24 10 166 5 0.31 2.19

22 20 166 5 0.63 1.95

21 30 166 5 0.94 1.70

20 40 166 5 1.26 1.46

19 50 166 5 1.57 1.22

18 60 166 5 1.88 0.97

17 70 166 5 2.20 0.73

16 80 166 5 2.51 0.49

13–15 90 166 5 2.83 0.24

3–12 100 166 5 3.10 -

2 100 200 4 2.90 -

1 100 220 3.5 2.90 -

90 wt.%
P91

6–62 90 166 5 2.83 0.24

5 90 175 5 2.83 0.24

4 90 195 5 2.83 0.24

3 90 205 5 2.83 0.24

2 90 215 4 2.83 0.24

1 90 255 3.5 2.83 0.24
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varies during solidification and is not considered as a materials descriptor
for theMLmodel. Martensite start (Ms) temperature was calculated using a
data-mining decision tree model available from literature72.
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