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Phase change computational sensor
Check for updates
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Modern computing relies on separate components for data capture and processing. However, this
often leads to computational latency and congestion in data processing infrastructures. Using device
level demonstrations, in this work, we propose a phase-change computational sensor that utilizes
reconfigurable load lines to perform in-sensor-in-memory computations. This is achieved through a
combination of the crossbar topology of the sensor array and the non-volatile reconfigurability of
conductance states in phase-change memory devices. We show that certain pre-processing
computations, such as convolutional operations, can be offloaded from the in-memory processor to
the sensor to create intelligent edge sensors.

Much of the information we perceive about the external world comes in the
form of real-valued signals, and is conveyed through sensory organs. These
organs perform data pre-processing such as signal filtration, compression,
amplification, and digitization1–4. For example, neural circuits in the cochlea
(retina) and cortex leveragenon-volatile plasticity in synapses topre-process
auditory (visual) sequences, in order to enable subsequent down-streamed
computations in the brain1,5–7. This observation suggests that emerging
brain-inspired non-Von Neumann hardware concepts8,9 could enhance
compute efficiency (in terms of energy and latency) and data privacy by
incorporating ‘processing’ capabilities within sensor units. Recent progress
has demonstrated processing within sensors using three-terminal photo-
diodes based on 2D materials10–12. These leverage the modulation of the
photoresponsivities of pixels using field-effect. The first category of devices
use an active gate terminal signal. Therefore, the compute feature is lost
when thegate signal is removed.The volatility, therefore,necessitates buffers
for storage of model weights (thereby strictly following the von Neumann
architecture). In more recent demonstrations, charge-trapping effects have
been proposed to program the photoresponsivities. While benefiting from
non-volatility, this approach ismore generally challengedbypoor cyclability
and high voltage requirements13. One promising approach can be decou-
pling the sensing and compute elements within the commercialized image
pixel unit, while still maintaining dense integration. Such an approach can
enable more manufacturable computational sensors for certain in-sensor-
in-memory processing tasks (see Fig. 1a).

Here, we propose a computational sensor that utilizes embedded
phase-changememory8,9 (PCM). Key idea behind our approach is that two-
terminal non-volatile memory technologies, such as PCM can be readily
integrated at the back-end-of-the-line with commercial sensors. Indeed,
circuits using conductive ReRAM devices within image sensors have been
proposed for tasks such as spike generations and averaging14, dynamic
background subtraction15, image recording16, adaptive dynamic range
modulation17, amongothers.Broadly, in these applications, the conductance
states of the devices are either fixed (in enabling reference thresholds)14,15, or
they dynamically and incrementally evolve during exposure to the stimuli

signal16–18. Anapplicationwherememristive devices are pre-programmed to
select states within active sensor units to enable real-time visual inference
remains to be demonstrated. Here, we consider an image sensor that
incorporates PCM computational memory devices within its19–22 active
m × n pixel array to perform dot product operations for in-sensor visual
inference. The PCM devices are pre-programmed in an analog manner to
execute scalar multiplication operation on the photo-generated current,
thereby transforming the pixel output into an effective computational result.
The accumulation step, which involves adding products from multiple
pixels, is achieved by summing the output of neighboring pixels—which are
determined by the kernel size—in parallel along the interconnects of the
sensor’s crossbar. Hence, as a k × k kernel traverses a segment of the pixel
array (see Fig. 1b), the corresponding (m, n) pixels can be read out, and their
values accumulated as output signals. Consequently, the sensor generates an
image that represents a pre-computed version of the raw input. This output
can be further downstreamed to the PCM computationalmemory cores for
subsequent processing, as has been previously suggested with other
memristive-type memories23–27.

Pixel Characteristics
A PCM device integrated into the sensor’s active pixel provides a signal
division in the output (see Fig. 2a(i)), obeying vm;n ¼ vmo;no × ð

Dm;n

Dm;nþGm;nðκÞ
Þ.

Here, vm,n is the output of the Pm,n pixel in the array. Gm,n(κ) is the con-
ductance value programmed into the kth PCM device of a pixel and Dm,n is
the conductance of the pixel, that scales with the input signal ϕ. vmo,no is the
PCM device independent output of the pixel. Crucially, the expression
suggests that for a fixed input, vm,n increases with decreasingGm,n(κ), and for
a fixed Gm,n, it increases with increasing amplitude of ϕ. The device char-
acteristics can be collectively represented using load lines (RL). The figure
(see Fig. 2a(ii)) shows a simulated current-voltage characteristics of a pixel
under increasing light flux (ϕ1→5), and decreasing Gm,n (RL1→5). The plot
illustrates that by modulating Gm,n, it becomes possible to configure a
selection of sensitivity anddynamic range to light detection at the individual
pixel level. For instance, in bright environmental conditions, a large
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dynamic range can be achieved to avoid pixel saturation (at the expense of
sensitivity) using high Gm,n, while under dark conditions, high sensitivity
can be enabled for faint signal detection (at the expense of dynamic range)
using small Gm,n.

In our toy demonstration, a pixel is comprised by isolated components:
a protoytype circuit board that hosts the phototransistor circuitry, and a
silicon chip containing isolated PCM devices (in supporting information
section S1, the setup and a SPICE simulation of the circuity is shown). The

Fig. 1 | Computational sensor concept. a An illustration of various on-system
sensors in an autonomous vehicle. The sensors, including the vision cameras provide
a means for the vehicle to perceive the surrounding environment. The camera
comprises an active pixel array arranged in a crossbar topology. The pixels convert
photons into an analog electrical signal. In the contemporary digital engine, the
signal is then converted into binary streams and transferred to a digital von-
Neumann unit where it is processed and recorded. In the proposed analog in-sensor
engine, the pixels comprise non-volatile phase change memory devices. The output
of the array evolves in accordance with the conductance states of the memory
devices. A select configuration of the conductance states provides a means to per-
form a select computation directly on the input sensory signal. This signal can then
be input seamlessly to a computational memory unit comprised of phase change

memory devices for downstream in-memory processing. Symbols used in the dia-
gram follow standard conventions for components. For example, the triangle
represents the on-chip amplifier, the trapezoidal shape denotes the ADCs, and
rectangles with arrows indicate the PCM devices. b A schematic showing an n × 4
pixel array. To perform 2 × 2 convolutions, as indicated by the blue-colored boxes,
the select pixels are engaged (i.e., closed switches) to the bit lines and word lines,
alongside select phase-change memory devices. The output representing multiply
and accumulate operation is accumulated and passed on as activations for further
processing to a multi-tile phase change computational memory. In effect, the sensor
unit acts as an additional compute unit (that performs in-sensor compute, ISC) for
the computational memory (that performs in-memory compute, IMC).

Fig. 2 | Pixel Characteristics. a (i) A sketch illustrating the operation of a single pixel.
The pixel is connected to mushroom-type phase-change memory cells. Control
signals are instructions for selecting and programming the memory devices. A
selected device modulates the pixel depending on its conductance state. (ii) Calcu-
lated current-voltage traces of a photodiode to illustrate that the memory devices
provide a means to constructing reconfigurable and virtual load lines (RLn) that
affect the pixel’s dynamic range and selectivity under varying illumination (ϕi)
conditions. Each load line state encodes a unique non-volatile phase configuration of

memory device as conceptually sketched in the insets. b A plot illustrating the
characteristic curve of a computational sensor pixel. The graphs show the variation
in the pixel output in accordance with the conductance state of the memory device,
under a constant illumination condition. The inset is a histogram plot highlighting a
pixel’s output for three programmed non-volatile conductance states. c A plot
illustrating the pixel’s output for a constant conductance state under increasing
illumination. The inset shows a pixel’s output vs time plot under constant illumi-
nation conditions.
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PCMdevice is of the contemporarymushroom-type andutilizes 80 nm thin
film of Ge2Sb2Te5 (or GST) phase-change material. During read-out under
illumination, the state of the PCM device modulates the output. Program-
ming the state involves write operations, specifically electrical current pulses
that induce Joule heating for the amorphization (RESET) and crystallization
(SET) of the phase-change material within the PCM device. A PCM device
can be programmed to various non-volatile conductance states by adjusting
the amplitude of the programming pulses. Figure 2b demonstrates the
dependency of the output signal of a pixel on the conductance state of the
PCMdevice. The experiment is conductedunder constant illumination, and
the measurement is repeated 10 times in this plot. The plot validates the
configurable sensitivities of the phototransistor through the phase config-
uration of the PCM device. The diode can be persistently tuned to high
sensitivity (HS) by programming to the RESET states within a PCM device
and to low sensitivity (LS) by programming to the SET states. Furthermore,
the extent of this tunability can be significant, constrained only by the
memorywindow (GSet−GReset) of the PCMdevice (in ourmeasurements, a
conductance compliance of 10 μS reduces this range by an order of mag-
nitude, to ~ 30x).

Thus, a computational sensor unit enables optimal detection of
changing environmental conditions via non-volatile modulations of the
conductance states of the PCM devices, as is highlighted in the inset of Fig.
2b. In this experiment, we performed pixel reads 1800 times for three
conductance states of the PCM device (SET, partial RESET, RESET) to
demonstrate the sensor’s adaptability in responding to varying brightness
conditions. In Fig. 2c, we showcase the scalability of the sensor’s output
under different illumination conditions. In this measurement, the PCM
device is configured to the SET state. The output exhibits a proportional
increase with illumination intensity, attributed to the rising photocurrent
generated in the diode (the measurement is repeated 10 times). Given the
expected low noise in the SET state of PCM devices, this measurement
suggests that the spread in the output is primarily influenced by peripheral
components on the circuit board. In the inset of Fig. 2c, we plot the sensor’s
output immediately after programming its PCM device to a partial RESET
state. Themeasurement extends over 1500 s and illustrates the stable nature
of the output signal. This stability is attributed to two factors: the signal
divider read-out scheme (as opposed to the standard current read-out in
which conductance drift becomes prominent) and the pseudo-projection28

rendered by the conductance-limiting component in the pixel.

In-sensor convolutions
A prominent class of computational models that stands to gain from in-
sensor computations are convolutional operations. Images can be blurred,
sharpened, or embossed for standalone use cases with convolutions or
prepared in real-time as formatted/pre-processed inputs for deep com-
puting networks (see Fig. 3a), such as in convolutional neural networks
(CNNs). In a convolution operation between an image of dimension n × n
and a filter of dimension k × k, the number of MAC (multiply and accu-
mulate) operations required to process the image, scales as (n−k)2. When
n > > k, which is a typical case (e.g., 1280 × 1024 pixels sensor using 16 × 16
canonical filters29), the compute becomes very expensive. Therefore, one
approach toward an efficient hardware can be to divide the computational
effort between the sensor and the processor (see Fig. 3a–b). That is, by
performing convolutions as when the data is captured using in-sensor
computing, convolution operations of the first layer can be offloaded from
the processor. As an example, with data gathered from our experimental
setup, in Fig. 3c we simulate in-sensor convolutions for an image blurring
operation. Image blurring (or smoothing), provides a point-spread capacity
by reducing the amount of noise and speckles in the input, and is a common
pre-processing task.

Additionally, depending on the circuit design, the accumulations can
be made either on the image sensor array (MACSensor), which is the mode
discussed so far, or on the word lines of a PCM computational memory
array (MACPCM-tile) (in supporting information section S2, illustrations of
these configurations are shown). In either case, we note that the most

optimal scenario for in-sensor convolutions is when s ≥ k, where s is the
fixed stride that defines the number of pixel shifts of the kernel between
subsequent MAC operations. This constraint has two benefits: (i) con-
volutional operations on all pixels in select rows can be carried out in
parallel, reducing the computational complexity to O(c) (or O(fc) with f
filters) under MACSensor where c(k, s) < m, and (ii) the number of PCM
devices can be kept to a minimum within each pixel. For the case s = k, the
number of PCM devices in a pixel scales with f, thus simplifying the inte-
gration and arbitration schemes. In contrast, when s< k, the kernels overlap,
leading to the loss of parallelization (owing to requirement to toggle between
different kernel values in the overlapping regions). Such overlaps also create
disproportionate number of PCM devices per pixel. For example, con-
sidering s = 1, the number of PCMdevices in anmth, nth pixel follow f ⋅ k2 for
mth ≥ k − 1 and nth ≤ n − k − 1. Nonetheless, it is worth noting that since
n > > k is a typical condition, the constraint s = kmay not be a limitation—
the resolutionof theoutputor thequality of the image transformationcanbe
reasonably preserved.

Model-based learning
Beyond contemporary CNNs, convolutional operations remain crucial in
model-based vision. An instance of this need arises in tasks like model-
based object recognition,where the types and instances of a set of objects in
a given scene are known beforehand. As an illustration, we delve into the
example of lane/line detection in an image using Hough transformation30.
The computational workflow involves image preprocessing (conducted
through in-sensor convolutions, using the framework discussed earlier)
followed by the downstream task of Hough transformation performed in
the computational memory (see Fig. 3d). To showcase this, we utilize the
IBM HERMES Project Chip, fabricated using 14 nm complementary
metal-oxide-semiconductor technology31, featuring a 256 × 256 crossbar
array of PCM unit cells.

The transformation converts each point (x, y) in the image to the
parameter space coordinate (r, θ) using the expression
r!¼ x cosðθÞ þ y sinðθÞ, where r is the distance from the origin to the
closest point on the straight line, and θ is the quantized angle between the x
axis and r!, representing the line in the image. This operation is succeeded
by a voting procedure in the accumulator space. The coordinates (cells)with
the highest counts in the parameter space signify themost likely parameters
describing a shape (in supporting information section S3 a more compre-
hensive discussion about implementation of Hough transformation is dis-
cussed). As an initial step, we adapt these transformations for in-memory
computations. This can be accomplished using in-memory matrix-vector
multiplications (MVMs) for the parametric space and conductance accu-
mulations to implement the accumulator space. Interestingly, the same task
utilizes the two—and otherwise disparately used- computational primitives
for PCM devices: scalar multiplication computations from the multilevel
conductance values and the accumulative behavior arising from crystal-
lization dynamics32,33. In the MVM, columns of the crossbar array are
assigned θn values, such thatm× nPCMdevices can encode fixed values for
cos(θn) and sin(θn). This way, parallel Multiply and Accumulate (MAC)
operations are performed on the inputs, and the outputs represent the r(θ)
values. The accumulator operation is then performed in a computational
memory array whose elements are represented by the (θ, r) tuples. In this
accumulation scheme, all cells are initialized in the RESET state. The cell’s
conductance evolves according to the number of constant amplitude crys-
tallization pulses, and the computation result is stored in place due toPCM’s
non-volatility. By reading out the PCM devices with the highest con-
ductance valuesusing a threshold scheme, themost likely lines are extracted,
and their approximate geometric definitions are determined. In Fig. 3e,
these operations are illustrated. Both MVM and accumulation operations
are carried out in the same computational memory array, leveraging non-
overlapping areas. Figure 3f(i) illustrates the matrix encoding the trigono-
metric values, and Fig. 3f(ii) shows an example of conductance change from
pulse accumulations. Figure 3g showsMVMresults performed for 82points
in an input image. The results ofMVMare thenused to locate the (θ, r) pairs
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for the accumulation operations, as illustrated in Fig. 3h. Starting in the
RESET state, different devices attain different conductance values after
processing the entire image. Themost conductive devices encode the correct
angles the lines subtend.

Discussion
Processing data, quasi-locally, i.e., in the edge, has traditionally required
substantial processing power, memory, and communication bandwidth.
One of the key ideas we propose is to implement the convolutional opera-
tions within the sensor: in particular, the initial layer of the computing
networks. Under the typical rolling shutter scheme, when performing the
convolutional operations, k rows in the sensor are read-out in parallel. For s
= k, the read-out time of a single frame becomes TR ¼ tR

m× s, where tR is the
digitization of a single row. Therefore, larger-sized kernels inherently
improve the frame rate of the sensor. However, it appears that this
improvement is only valid for the case f ≤ s. Since f depends on the appli-
cation, this improvementmetricmust be consideredapplication specific.An
added gain also appears from the reduction in the data volume that must
transferred to the memory or processor. This is because an image of
dimensionm×n, undergoesdimension reduction (m−k+1) × (n−k+1)

from convolutions. We also discuss approaches to speed-up model based
approaches, all the while by leveraging the crossbar topologies of the sensor
and computational memory units. As an exemplar problem, we discuss
Hough transformation based object detection model. We discuss how, by
embedding this model, into the proposed approach, the time complexity34

(O(N4)) can be reduced to a constant O(c), where c < < N (in supporting
information section S3 we estimate the time complexities). It is also worth
noting that in-sensor computations can benefit standalone imaging sensors,
by providing the pixel’s a means to adapt to varying lighting conditions.
Since this occurs at low power expense owing to the non-volatility of the
PCM devices, the battery lives of sensors, such as hand-held devices can be
extended. Although our concept can be applied to other non-volatile
memory technologies, we believe PCM holds the most promise for com-
putational sensors. PCM is at a very highmaturity level of development and
has been commercialized as both standalone memory and embedded
memory8,35,36. This fact, together with the ease of embedding PCM on logic
platforms make this technology of unique interest31,37.

We identify the following limiting cases in which in-sensor compu-
tations are expected to accelerate processing. When applied to shallower
networks (eg. single or few user-defined filters), when applied to

Fig. 3 | In-sensor-in-memory operations. a An illustration of a computer vision
model. An image is processed by this model which comprises preprocessing and
subsequent feature extraction steps. The number of operations scales with the depth
of the network as is shown for a LeNet-5 model, i.e., the first layer that computes
directly on the input image is computationally most demanding. b An illustration
showing the direct computation of the convolutions during image sensing by
leveraging the crossbar topology of the active pixel array. c An illustration of
emulated Gaussian blurring of an input image as a preprocessing step. d The Hough
transformation pipeline is illustrated, where in-sensor computations preprocess
images to generate inputs for computational memory tiles. Computational memory
performs MVM and accumulation operations to detect lines in the images. e In the
first operation, the input image is converted into a vector that is multiplied by a
matrix encoding the parametric space transformation. The resulting output becomes

the input for the accumulator space. In this space, select PCM devices experience an
increase in their conductance values based on the number of times they are pro-
grammed by the input. fThe experimental plot depicts a computationalmemory tile,
showcasing the encoded regions forMVMand accumulation operations. TheMVM
region is programmed only once, while the accumulation operation involves all
devices being reset. Over time, the mapping in the accumulation operation evolves
based on the number of input pulses they receive. ADCu stands for analog-to-digital
conversion units. gAn experimental MVMplot displays the measured output of the
computational memory. The black trace represents the ideal result from floating-
point MVM. hA 3D plot illustrating the accumulator space after the computational
memory has preprocessed an input image. Two unit-cells, representing a unique (r,
θ) tuple, underwent the largest increase in conductance.
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downsampled images (smallerm values) in deep networks, when s number
of filters are offloaded from the processor to the sensor, andwhen applied to
certainpreprocessing tasks formachine learning. In supporting information
section S4, we have estimated the performance gains (areal, energy and
latency gains) by emulating the implementation of convolutions on ISC-
IMC. Some important challenges, however, must be pointed out. To avoid
read disturbance of PCM devices, the output voltage range must be kept
below the threshold voltages of the phase configurations.When considering
scaling up, that is the integration of PCMwith stacked CMOS sensor chips,
interconnects and their connectivity will become an important factor. This
could, altogether, necessitate novel integration methods, including hybrid
bonding38 (i.e, physical stackingofwafers). In summary,wemake aproposal
for a computational sensor that combines the contemporary phase-change
memory technology with contemporary sensors to enable in-sensor-in-
memory computing for edge intelligence.

Methods
Electrical characterization
The devices for optoelectronic measurements comprised an 80 nm thick
film of a GST phase-change material, sandwiched between bottom and top
metal-nitride electrodes, where the bottom electrode radius was 20 nm. The
IBMHERMESProject Chip comprised similarmushroom-type devices but
with doped-GST phase-change material. See reference31 for more infor-
mation about the chip. The electrical measurements were performed in a
custom-built probe station. DC measurements of the device state and
biasing of the optoelectronic circuitry were performed with a Keithley 2600
System SourceMeter. AC signals were applied to the device and the white
LED for illumination with an Agilent 81150 A pulse function arbitrary
generator. ATektronix oscilloscope (DPO5104) recorded the voltage pulses
applied to and transmitted by the device and the LED. For read-out and
programmingof the pixel unit, switchingbetween the circuit forDCandAC
measurements was achieved with mechanical relays. See Supporting
Information Section 1 for more information about the measurement
circuitry.

Data availability
No datasets were generated or analysed during the current study.

Code availability
The data and code that support the findings of this study are available from
the corresponding author upon reasonable request.
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