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Advanced AI computing enabled by 2D
material-based neuromorphic devices
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Neuromorphic systems are emerging as a promising alternative to revolutionize silicon-based
computing devices. Two-dimensional materials are considered promising candidates for active
materials due to their unique advantages. This review provides a comprehensive overview of
neuromorphic computing based on 2D materials, encompassing the development from the synaptic
devicesbasedon2Dmaterials to theneuromorphic systemdemonstration.Besides,we further outline
various applications of neuromorphic computing in the emerging applications of neuromorphic
computing

Classical computing relying on Neumann architecture features sequential
processing, where the separation of memory and logic units are inter-
connected via a bus structure1–3. This architecture, combined with the
miniaturization of electronics predicted by Moore’s Law, has enabled
exponential growth in computational power over the past several decades4,5.
However, the vonNeumann bottleneck is manifesting over time, due to the
increasing load of data transfer between memory and processing units,
significantly hindering performance by consuming up to 60% of computing
energy in this process and also limiting device integration density6–9.
Moreover, the explosive growth of data exacerbates the imbalance between
data volume and bus capacity. A phenomenon thus emerged as the
“memory wall,” which restricts the speed and efficiency of modern com-
puting systems, especially in data-intensive applications such as artificial
intelligence (AI), machine learning, and big data analytics10,11.

Inspired by the human brain, neuromorphic computing has garnered
significant attention for its excellent potential to mimic the brain’s excellent
energy efficiency and computational capability. Distinctive from conven-
tional digital systems that rely on binary logic, neuromorphic systems utilize
analog and event-driven processing through dynamic interactions of neu-
rons and synapses, offering advantages in power efficiency and handling
unstructureddata.To this end, two-dimensional (2D)materials offer several
unique characteristics that allow them to overcome the limitations
encountered by traditional two-dimensional (3D) bulk materials in neu-
romorphic computing12–14. Thanks to their atomically thin thickness, 2D

materials exhibit excellent electrical properties, such as high carriermobility
and low power consumption, which are crucial for reducing the power
consumption of neuromorphic devices. Additionally, 2Dmaterials serve as
promising building blocks due to their excellent electronic properties, and
high mechanical flexibility rising from thin thickness, enabling the van der
Waals (vdW) stacking of different materials to form vdW heterojunctions
that retain individual material properties while introducing new
functionalities13,15,16. This atomically thin thickness also facilitates mono-
lithic 3D integration (M3D)with great potential for high vertical integration
density, enabling the development of densely packed, scalable neuro-
morphic circuits that can mimic the complex connectivity of biological
neural networks17. Moreover, the excellent tunability of 2D materials also
allows for more precise control over synaptic weights that are essential for
the reliable and efficient emulation of short-term plasticity (STP) and long-
term plasticity (LTP) in artificial neural networks (ANNs)18,19. These
properties collectively enable 2D materials to address the challenges of
scalability, power efficiency, analog computation, and synaptic plasticity
that hinder conventional neuromorphic systems.

Here, we catalog the device architectures that have been proposed and
realized using 2Dmaterials from 2D to 3Dmemory devices as well as their
advanced configurations. System-level implications of integrated 2D
materials into neuromorphic circuits have also been discussed with the
advanced approaches that can enhance the performance and efficiency of
neuromorphic computing. Moreover, we review the potential applications
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of the neuromorphic systems connected with various industries. Practical
challenges, emerging opportunities, and perspectives for the advanced 2D
neuromorphic computing system are outlined as well in the conclusion
section.

Synaptic devices based on 2D materials
Neuromorphic synaptic devices are capable of retaining their electrical state
after being deactivated, and the ones composed of 2D materials have
emerged as a promising area of research. The devices can be generally
categorized into two types: two-terminal (2 T) memory device and three-
terminal (3 T) memory device, where 2D materials are predominantly
utilized as dielectric orworking layers in 2 Tdevice and dielectric or channel
layers in 3 T device. Additionally, hybrid structures of 2 T and 3 T synaptic
devices and multi-terminal devices have been developed to enhance
memory device functionalities20–22. Memristors using 2D materials are
commonly arranged in a cross-bar array structure23 and are categorized into
four configurations: 1 memristor (1M)24, 1 diode 1 memristor (1D1M)25, 1
selector 1memristor (1S1M)26, and 1 transistor 1memristor (1T1M)17. Each
configuration exhibits unique characteristics that improve current direc-
tionality and overall memristor functionality.

2 T synapticmemristor has a simple structure consistingmainly of two
conductive electrodes and an active layer material in between. The active
layer-based 2D material enables the construction of large crossbar arrays
with low energy consumption and space. The fundamental concept of a
memristor is based on switching the device between two different states: a
high resistance or low polarized state (HRS) and a low resistance or high
polarized state (LRS)27. In a resistive memory, the process of moving from
HRS to LRS close to the conductor is known as a ‘SET’ operation, while the
reverse process is known as a ‘RESET’ operation. These states can be
represented as binary values of ‘0’ and ‘1’, where the low resistance state (on
state) and the high resistance state (off state). Leveraging this mechanism,

various synaptic functions can be emulated, including excitatory post-
synaptic current (EPSC), spike-timing-dependent plasticity (STDP),
paired-pulse facilitation (PPF), and spike rate-dependent plasticity
(SRDP)28.

Resistive switching memory (RSM) (2 T) devices are promising
synaptic devices with fast switching speed and scalability. The electrode
materials forRSMtypically consist of either activemetalmaterials (such as
Ag andCu), whichparticipate in the formation of conductivefilaments, or
inert metal materials (like Au and Pt) serving as stable counter
electrodes29,30. Additionally, various transition metal dichalcogenide
(TMD) semiconductormaterials, including h-BN,MoS2,WS2,WSe2, and
MoSe2, have been demonstrated as active layermaterials that can enhance
switching performance and mitigate device degradation even under
repetitive stress31. There are two primary mechanisms for resistive
switching based on the formation of conductive filaments: electro-
chemical metallization (ECM), and valence change mechanism (VCM).
ECM devices consist of a dielectric layer positioned between an upper
electrode made of an active metal and a lower electrode made from an
inert metal for ion migration for the formation and dissolution of metal
filaments32,33. VCM devices have electrodes made from inert metals and
the dielectric layer is a TMD34,35. When a voltage is applied to the elec-
trodes, an electric field is generated, which induces reversible oxidation
and reduction reactions, leading to the formation of conductive filaments.
For instance, a novel multilevel electronic synaptic device was proposed
based on a MoS2 memristor array (Fig. 1a, b)36. The device utilizes a 4 × 4
crossbar architecture with a highly crystalline MoS2 film. The thin MoS2
layer ( ~ 2.1 nm) enables low voltage switching and demonstrates excel-
lentmemory performancewith an enduranceof over 500 sweep cycles and
a retention time of approximately 104 s (Fig. 1c, d). The proposed MoS2
memristor array achieves high recognition accuracy in deep neural net-
work (DNN), with an accuracy of 98.55% (Fig. 1e).

Fig. 1 | Multilevel electronic synaptic device based on a MoS₂memristor array.
a Architectural schematic layout of the proposed 4 × 4 crossbar memristor array
based on large-area direct grown MoS2 with 3D section view of the single
memristor36. b Bipolar memory switching curve of the MoS2 memristor devices

under voltages between −2.5 V and 2 V. cMemory operations of proposed mem-
ristor device in terms of endurance up to 500 sweep cycles at a read voltage of−1 V
and d retention, measured up to 104 s at a read voltage of −1 V. e Recognition
accuracy graph of SW-NN and HW-NN for each training epoch.
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Phase change memory (PCM) (2 T) is a non-volatile memory (NVM)
technology utilizing the reversible phase change properties of materials to
store data by applying electrical pulses. Compared to bulk PCM, 2D
materials are more sensitive to external stimuli thanks to their atomic-level
thickness.As a result, phase transitions in2Dmaterials canbe easily induced
by various external stimuli such as strain, ion insertion, or electrostatic
doping37. Unlike conventional phase change materials that switch between
amorphous and crystalline states, TMDs with various polymorphs exhibit
structural phase transitions. In particular, MoS2 undergoes a phase transi-
tion between a hexagonal structure (2H phase) and a distorted octahedral
structure (1 T or 1 T′ phase)21,35. Furthermore, Electric-field-induced
reversible phase transitions in 2D potassium-intercalated manganese
dioxide are proposed (K-MnO₂)37. These crystals were as thin as 5 nm with
atomic layer thicknesses of 0.7 nm, and potassium ions spontaneously
intercalated into theMnO2 structure during synthesis, contributing to ionic
conduction (Fig. 2a, b). Under moderate bias conditions of around 10 V,
distinct phase transitions were observed, where the material switched
between a layered and spinel structure (Fig. 2c–e). The voltage decay time
constant (λ) for devices was found to be 81 ± 10 s/μm² and the devices
maintained their performance over more than 5,600 cycles of potentiation
and depression.

A typical 3 T transistor device consists of a structure that includes
electrodes, a dielectric layer, and a channel layer. The gate electrode serves as
the presynaptic node, while the source and drain electrodes act as the
postsynaptic nodes. Distinctive from2 Tmemristors, 3 T transistors feature
a gate terminal, which allows for themodulation of channel conductance via
dynamic resistive switching, thereby enabling multi-level data storage.
Superior synaptic weight updates can be achieved through multi-gate
modulation, making the device suitable for learning in neuromorphic
computing systems. Additionally, transistor-based structures are capable of
minimizing sneak currents, reducing power consumption, supporting
analog computing, and enabling massively parallel processing38.

First, synapse-mimicking devices in floating-gate memory or charge
trapping-basedmemory structures typically consist of a sandwich structure
for memory including a tunnel oxide insulating layer, a charge trapping
layer, and a control gate39. The charge trapping layer is inserted between the
gate and channel regions to store charge40. The advantage of this device lies
in its technical maturity, inherited from transitional transistors, and the
presence of a tunneling layer ensures long-term data retention without
charge loss. Themechanismworks by applying a voltage to the control gate
that creates an electric field allowing electrons to tunnel into the charge

trapping layer41. Once the electrons tunnel, they become trapped in this
layer, which is typically engineered with traps or defects that can store
electrons for extended periods. Heterojunctions of 2D materials act as
carrier traps, as the energy band alignment of the heterojunction and defects
in the material coexist to modulate the conductivity of the channel. An
ultrafast bipolar flash memory was proposed based on 2D semiconductor
materials, enabling self-activated in-memory computing42. The key struc-
ture consists of layers of Al₂O₃, HfO₂, h-BN, and WSe₂, serving as the
blockingoxide, charge-trapping layer, tunnelingbarrier, and semiconductor
channel, respectively (Fig. 3a). When a gate voltage is applied, electrons
tunnel into the HfO2 layer and are stored there, turning the channel into
n-type.Oncecharges are trapped in theHfO2 layer, theymodulate theFermi
level of the WSe2 channel, determining whether the channel behaves as an
n-type or p-type (Fig. 3b). The programming speed of the bipolar flash
memory is around 20 ~ 30 ns, which is three times faster than that of
conventional flash memory (Fig. 3c). Besides, it also demonstrates an
endurance of over 8million cycles, consuming only 5 fJ of energy perMAC
operation, showcasing extremely low power consumption (Fig. 3d).

Electrolyte-layer-based synaptic devices use electrolytes as gate insula-
tors. They can be broadly divided into two types: electrostatic modulation
and electrochemical doping. In the case of electrostatic modulation, the
semiconductor layer is composed of a material that is impermeable to the
ions from the electrolyte layer.When a gate voltage is applied, themovement
of ions is influenced, and the resulting electricfield causes ions to accumulate
at the interface between the semiconductor and electrolyte layers, forming an
electric double layer (EDL) that modulates the conductivity state of the
device43,44. In contrast, electrochemical methods also form an electric double
layer, but the ions from the electrolyte layer can permeate into the semi-
conductor layer, resulting in further modulation of the channel
conductance45,46. Electrolyte-layer-based synaptic devices exhibit advantages
in linear and symmetric updates to the conductance states. However, since
their operation relies on the physical movement of ions, they suffer from
slower conductance state updates and aremore vulnerable to thermal effects.

Ferroelectric field-effect transistors (Fe-FETs) are being developed by
integrating insulators with ferroelectric properties into conventional thin-
film transistor (TFT) structures47. Ferroelectric materials exhibit sponta-
neous polarization which used for memory function. Their high dielectric
properties help to increase layer thickness to prevent current leakage and
polarized layer shouldbe carefully designed toaccommodate various 2D/3D
structures48. The direction of polarization in these materials can be con-
trolled by an external electric field, which in turn affects their conductivity49.

Fig. 2 | Electric field-driven reversible phase transitions in two-dimensional (2D)
materials. a Representative schematic of layered and tunnel polymorphs of MnO2

and, Mn3O4. b Optical microscope image of 2D K-MnO2 crystals on a sapphire

substrate37. c I–V cycle from a graphite/K-MnO2/graphite memristive device.
d Schematics depict the condition when panel i with no bias is applied and panel ii
when bias is applied.
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Fig. 3 | An ultrafast bipolar flash memory based on two-dimensional (2D)
semiconductor materials. a Illustration of the bipolar flash array, containing 4 × 8
devices42.bBanddiagramsof a devicewith different charges stored. Left: storedholes
in the trapping layer after a negative pulse. Right: stored electrons in the trapping

layer after a positive pulse. c The electron and hole current double-sweep transfer
characteristic (IDS versus VG) of n-type (− 19 V/50ms programmed). d Device
endurance test. e The test accuracy with self-activated CNN model.
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2D ferroelectric materials can serve as the channel material, offering
potential improvements indeviceperformance.Yeonsu Jeong et al. reported
the development and application of MoSe₂/MoS₂ heterojunction-based
FETs for multilevel memory, multiscale display, and synaptic functions50.
TheMoSe₂/MoS₂ heterojunction FETs are constructed using a bottom-gate
metal-ferroelectric-metal-insulator-semiconductor (MFMIS) architecture
(Fig. 4a, c). The device consists of a MoSe₂/MoS₂ heterojunction as the
channel layer, a HfO₂ ferroelectric layer, and a metal gate electrode. This
structure is designed to leverage the strong charge trapping capabilities and
polarization properties of the HfO₂ layer, enabling precise control over the
channel’s conductance (Fig. 4d, e). TheMoSe₂/MoS₂ FETs exhibit excellent
electrical properties, such as ahighon/off current ratio exceeding 10⁷, robust
endurance over 10¹² cycles, and a minimal device-to-device variation of
approximately 0.5% (Fig. 4b). Table 1 provides a summary of neuromorphic
computing synaptic devices for comprehensive understanding.

Neuromorphic system demonstration
Asmemristors have been widely studied and proven to be promising as
synaptic devices, research on neuromorphic systems has also acceler-
ated. Biological neural networks involve twomajor phases: learning and
inference. Neuromorphic systems aim to mimic these phases. To

implement these functionalities in neuromorphic systems, it is essential
to design systems capable of accurately storing weights and processing
input/output operations. The implementation of neuromorphic sys-
tems requires three key components: synapses, neurons, and peripheral
circuits.
1. Synapses are responsible for information storage and processing. They

emulate the learning and memory functions of biological synapses by
regulating the strength of signals (i.e., synaptic weights) transmitted
betweenneurons. This canbe realized using various emergingmemory
technologies such asmemristors ormemtransistors, which adjust their
electrical properties dynamically based on prior signals, enabling the
system to learn and adapt.

2. Neurons receive input from synapses, integrate these signals, and
generate outputs based on the inputs. For instance, in systems that
mimic spiking neural networks (SNNs), neurons accumulate input
signals and generate spikes once a threshold is exceeded, emulating the
behavior of biological neurons (e.g., Leaky integrate-and-fire (LIF)
model). These processed signals are then transmitted to other neurons
or synapses, facilitating communication across the network.

3. Peripheral circuits manage the interactions between neurons and
synapses, facilitating learning and inference, and ensuring the smooth

Fig. 4 | Ferroelectric gate using a bottom-gate MFMIS structure. a Schematic
illustration of a biological synapse in a neuron system and our synaptic stack channel
FET for neuromorphic function. b Transfer curves of MoSe2/MoS2 stack channel
memoryFET, showing asymmetricmemoryhysteresis behavior asmeasuredunder the

double sweep of VGS. cOM image of aMoSe2/MoS2 stack channel memory FET. d 2D
schematic structures of our MoSe2/MoS2 stack channel FET to describe electron traps
at the MoSe2/MoS2 heterojunction interface e. Band diagram of MoSe2/MoS2 hetero-
junction and analytical energy band diagrams of channel FETunder correspondingd84.
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operation of the implemented neuromorphic system. For inputs, it is
necessary to amplify electrical signals obtained from sensors or artifi-
cially created inputs to provide sufficient voltage required for the
fabricated neurons and synapses. Additional circuits such as feedback
circuits and activation functions are also necessary to implement the
operation of fabricated neurons and synapses.

For hardware implementations of ANNs, including SNNs and DNNs,
it is crucial to integrate synapses, neurons, and peripheral circuits into
interconnected systems at large array scales. When these components are
seamlessly integrated, the system closely emulates biological neural net-
works, replicating core functionalities such as learning, memory, and cog-
nition. This complete integration is essential for achieving adaptive and
efficient processing observed in the human brain for tasks like pattern
recognition, decision-making, and sensory processing. Yooyeon Jo et al.
reported a configuration for an SNN System by integrating synapses and
neurons51. Figure 5a illustrates a schematic of a small-scale SNN system
constructed on a breadboard using RRAM and passive components to
mimic a human neural network. In this system, volatile RRAM functions as
neurons that send and receive signals, while non-volatile RRAM acts as
synapses that determine signal strength and transmission. Input signals
charge capacitor C1 in an RC circuit, and when a specific threshold is
exceeded, the volatile RRAM switches on, transmitting the signal to the
post-neuron via the synapse. Like the pre-neuron, the post-neuron activates
and generates output signals when the RC circuit exceeds a specific
threshold. To realistically emulate LIF behavior seen in human neural
transmission, resistors were connected in parallel with capacitors. Addi-
tionally, diodes and amplifiers were placed between synapses and post-
neurons to prevent reverse leakage and ensure sufficient signal transmission
to the post-neuron. By observing the voltage at each node in response to a
same input pulse, we show that the output spike frequency of a post-neuron
depends on the synaptic conductance in Fig. 5b. Furthermore, the number
of output spikes is influenced not only by synaptic conductance but also by
RC delay (Rs × Cmem) and input voltage pulse conditions configured on the
breadboard. Therefore, finding optimal parameters is crucial for neuro-
morphic system applications. The proposed SNN system performed

simulations on the MNIST dataset using experimentally obtained data for
neurons and synapses in a network architecture of 784 × 100 × 10. Input
data were converted into Poisson spike trains, and the firing rates of each
neuron were adjusted based on pixel values. The simulation achieved an
accuracy of 83.45%, which is comparable to the ideal accuracy of 90.65%.
Ensuring adequate device performance is essential for successful neuro-
morphic system implementation.

KaichenZhu et al. presented aneuromorphic systemhybrid-integrated
with CMOS systems and 2D-based RRAM52. They demonstrated a single
cell of a 1T1Marray fabricatedby transferringh-BNnanosheets via aCMOS
back-end-of-line (BEOL) process in Fig. 5c. The resulting device exhibited
improved electrical characteristics compared to passive memristor devices,
making it suitable for neuromorphic system implementation53. Based on
these properties, unsupervised learning simulations were performed using
an SNN on the MNIST dataset, achieving an average accuracy of 90%. The
proposed system’s network architecture, as shown in Fig. 5d, consisted of
784 input neurons, 400 excitatory neurons, 400 inhibitory neurons, and 10
output neurons. Furthermore, Fig. 5e illustrates a proposed CMOS circuit
for hardware implementation of electronic neurons, which was verified
through SPICE simulations. The proposed system used a hybrid config-
uration, integrating 2D-material-based RRAM technology with CMOS
technology in a 1T1R structure for synapses, while a CMOS circuit was
proposed to emulate the LIF behavior of biological neurons. A differential
pair was included in the circuit to compute negative weights, and vector-
matrix multiplication (VMM) operations occurred simultaneously in the
neuromorphic array. To determine differential pair inputs, an input selec-
tion circuit was placed at the beginning, while an inverter amplifier at the
end ensured spike generation when the membrane potential of the output
neuron exceeded a threshold. SPICE simulation results confirmed that the
frequency of post-spike generation varied depending on pre-spike timing as
weights were adjusted according to the STDP learning rule in the SNN. The
amount by which the membrane potential increases from the same input
spike is changed according to the weight. The operation of the inverter
amplifier demonstrated the Fire behavior of LIF by generating a post-spike
when the voltage at a specific node exceeds the threshold. This study
highlights the importance of integrating synaptic devices into large-scale

Table 1 | Summary of 2 T and 3 T memory devices based on 2D materials

Memory Type Device Structure 2D Material On/
Off Ratio

Operation
Voltage (V)

Endurance (Cycle) Retention(s) Ref

2 T ECM Ag/MoS2/Pt MoS2 103 0.8/−0.6 106 105 85

ECM Ag/Mxene/SiO2/Pt MXene 103 0.18/−1 100 104 86

ECM Ag/V2C/TiO2/W Mxene (V2C) 102 0.6/−0.2 40 103 87

ECM Ag/MoS2 MoS2 104 <1 300 0.1 s 88

ECM ITO/CdPS3/Ag CdPS3 102 −0.93 100 - 89

VCM Ta/Ta2O5/AiN/G Graphene 10 ±4 104 - 90

VCM TiN/AIN/G/Pd Graphene 10 0.16/−0.32 500 104 91

VCM Au/h-BN/Au h-BN 105 0.75/−0.4 50 106 92

PCM rGO/FE-Mxene/rGO rGO/FE-Mxene 103 −3.29/−1.65 103 4000 93

3 T Charge
Trapping Gate

(Cr/Au)/WSe2/SiO2/Si WSe2 103 30 100 600 41

Floating Gate (Cr/Au)/MoS2/h-BN/Graphene MoS2/Graphene 104 ±6 105 104 94

Floating Gate (Cr/Au)/WSe2/ MoS2, h-BN/
HfS2/ Al2O3/Si

WSe2/MoS2, h-
BN/HfS2

103 ±20 100 100 95

EDLT ITO/Mxene/Ag Mxene (Ti2C2Tx) 103 +5/−2 50 20 96

ECT Graphene/LFP/PEO/Cu Graphene 20 - 500 104 97

FeFET Au/Cr /α-In2Se3/Al2O3/Si α-In2Se3 106 2 2000 104 98

FeFET Au/Pd /α-In2Se3/Pd/Au α-In2Se3 103 2 300 - 99

FeFET Electrode/h-BN /α-In2Se3 /h-
BN/Al2O3/Si

α-In₂Se₃ 103 ±8 500 500 100
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arrays for neuromorphic system implementation. It also emphasizes that
successful neuromorphic systems require not only improvements in the
electrical characteristics of synapses but also concurrent research on neuron
implementation.

Input considerations are also critical for practical neuromorphic system
demonstrations. While most studies control inputs using semiconductor
analyzers such as the B1500, edge computing applications could acquire
inputs directly from sensors. Xiao Fu et al. reported an integrated sensor and

Fig. 5 | Neuromorphic System implementation. a Schematic design of circuit
diagram51. b Transient electrical measurement of the ANN with three different con-
ductance of the synaptic device. c cross-sectional scanning transmission electron
microscope image of a 1T1M cell in the crossbar array52. d Structure of the considered
SNN. EachMNIST image is reshaped as a 784 × 1 column vector, and the intensity of
the pixels is encoded in terms of the firing frequency of the input neurons. The only
trainable synapses are those connecting the input layer with the excitatory layer, and
they are modeled with the STDP characteristic of the CMOS–h-BN based 1T1M cells.

e Circuit schematic of the proposed neuron–synapse–neuron block combining h-BN
based 1T1M cells and CMOS circuitry. The colors indicate the complete neuron (gray
surrounding box), the core block (light-blue box) and the individual building blocks
(light-red boxes). f Schematic representation of the MoS2-xOx structure with CVD-
growngraphene electrodes54. gFeature extractionoperation of opto-memristor sensor.
h Schematic illustration of the single-layer perceptron photo memristors array for
classifier emulation. Opto-memristors of the same class (color) are interconnected in
parallel to generate the output current for the activation function.
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neuromorphic system using a nonvolatile opto-memristor array54. Figure 5f
shows the structure of a non-volatile opto-memristor based on Graphene/
MoS2-xOx/Graphene (Graphene/M/Graphene), used to mimic the human
visual system. The human visual system performs two important roles: first,
it organizes pre-processed images through feature extraction, and second, it
classifies data obtained through the eyes. The preprocessing task is emulated
by theCNNoperation, and theopto-memristor array is usedas afixedkernel
to extract the features of the input, as shown in Fig. 5g. This pre-processing
reduces the computational complexity of subsequent operations by
extracting features from analog images. Figure 5h also illustrates the classi-
fication functionality of the eye, implemented using a neural network. By
pre-tuning the weights of the opto-memristor array, it acts as a single-layer
perceptron withM×N inputs and 5 outputs. Consequently, the non-volatile
opto-memristor array plays a key role in reducing latency between input and
processing stages, mimicking the human visual system. In conclusion,
although research on implementing large-scale neuromorphic systems
based on 2D materials is still limited, research on small-scale systems is
steadily progressing, paving the way for the implementation of true neuro-
morphic computing in the future.

Emerging applications of neuromorphic computing
Both 2D materials and neuromorphic computing have made significant
advances in recent years. The combination of 2D materials like graphene
with neuromorphic architectures brings unique advantages, such as
enhanced conductivity, scalability, and the ability to mimic brain-like
functionality through SNNs. These systems have the potential to revolu-
tionize various fields by offering real-time adaptive learning, parallel pro-
cessing, and significant energy efficiency. Applications span diverse
domains, including autonomous systems, robotics, and healthcare, where
neuromorphic systems can bridge the gap between human sensory cap-
abilities and machine intelligence.

Neuromorphic systems in autonomous driving: enhancing vision
Neuromorphic vision systems are transforming autonomous technologies
by addressing key challenges in real-time decision-making, adaptive navi-
gation, and low-light imaging. Central to this transformation are photo-
memristors, which represent a significant advancement in neuromorphic
vision by integrating sensing, memory, and computation into a single
device.

Inparticular,VO₂-basedphotomemristors further extend thepotential
of neuromorphic systems by incorporating synaptic plasticity, a core feature
of biological neural networks. Their unique phase transition properties
allow for adaptive preprocessing, noise reduction, and enhanced object
classification in UV-sensitive imaging scenarios. Li et al. showed that these
devices improved image classification accuracy from 24% to 93%, illus-
trating their transformative impact on autonomous navigation and envir-
onmental monitoring55. These photomemristor technologies enable
neuromorphic systems to achieve high-resolution imaging and adaptive
decision-making, particularly in variable lighting conditions such as urban
nightscapes and rural highways. By integrating these advancements, pho-
tomemristors serve as critical components in intelligent autonomous vision
systems.

Complementing photomemristors, spiking neurons constructed with
2D subthreshold transistors (2D-ST) have emerged as a pivotal innovation
in neuromorphic vision, particularly for enhancing real-time obstacle
detection in autonomous vehicles. These systems effectively process data
from sensors and cameras, enabling vehicles to respond dynamically to
changing road conditions, obstacles, and traffic. This capability is critical for
ensuring both energy efficiency and safety in self-driving cars, where rapid
decision-making is essential. Thakar et al. demonstrated that 2D-ST neu-
rons mimic the behavior of biological neurons, such as the lobula giant
movement detector (LGMD) found in locusts, which specialize in detecting
looming objects (Fig. 6a)56. The biomimetic design allows the system to
register spikes efficiently as stimulus intensity increases, which mirrors the
natural neural response to approaching objects (Fig. 6b). These spikes

increase in frequency as objects approach, peaking just before potential
collision, ensuring a fast response time crucial for navigation (Fig. 6c).
Moreover, the 2D-ST system exhibits exceptional energy efficiency, con-
suming as little as 3.5 pJ per spike for obstacle detection in real-time sce-
narios, and less than 100 pJ per detection event overall. Such efficiency,
combined with rapid response times, makes it an ideal solution for energy-
constrained applications like autonomous vehicles. Additionally, as shown
in Fig. 6d, the system generates more spikes for inputs representing higher
threat levels. For receding stimuli, it maintains efficient spike activity and
reduces energy usage, which demonstrates its adaptability to varying
environmental conditions (Fig. 6e-g). This precisely synchronized biomi-
metic approach facilitates seamless interaction between neuromorphic
cores and external components. By utilizing real-time spike sensor data,
these systems enhance autonomous vehicles’ ability to detect collisions and
respond rapidly to dynamic challenges.

Low-light traffic sensing, apersistent challenge for autonomous systems,
has been significantly advanced through the integration of MAPbI₃/Bi₂O₂Se
heterostructures into neuromorphic vision architectures (Fig. 6h, i)57. These
materials exhibit exceptional photoresponsivity, surpassing 10³ A/W under
low-light conditions (Fig. 6j). This capability allows them to capture detailed
visual information even in dim environments. Their high detectivity,
exceeding 10¹² Jones, ensures the accurate identification of subtle visual
features, while their rapid photoelectric response times (less than 50 ms)
minimize latency during visual processing. These heterostructures operate
synergistically within neuromorphic frameworks, where their multi-state
optoelectronic properties enable on-devicememory and adaptive processing
of visual inputs. For instance, their ability to encode light intensity into
variable resistance states mimics the dynamic synaptic behavior of biological
neural networks, facilitating real-time learning and decision-making. Addi-
tionally, the heterostructures’ broad spectral sensitivity, from visible to near-
infrared, enhances adaptability in diverse environments, such as detecting
pedestrians in poorly lit urban areas or identifying obstacles in adverse
weather conditions. Integrated into neuromorphic systems, their in-sensor
computing capabilities reduce data transfer overhead, enabling low-power,
high-speed image analysis directly within the device. This integration is
pivotal for autonomous systems requiring energy-efficient operation, as it
significantly reduces the reliance on external processors while maintaining
high accuracy and responsiveness.

By integrating photomemristors, spiking neurons, and advanced het-
erostructures, neuromorphic vision systems are redefining the possibilities
for autonomous navigation. These technologies collectively enhance energy
efficiency, scalability, and adaptability, paving the way for safer and more
efficient autonomousvehicles. Their critical role inbridging the gapbetween
human-like perception and machine intelligence underscores the trans-
formative impact of 2D materials in the field of neuromorphic vision.

Neuromorphic robotics systems: advancing interaction with 2D
materials
2Dmaterials have emerged as transformative components inneuromorphic
tactile systems, particularly in robotics applications where precise interac-
tion with dynamic environments is essential. By combining the ability to
detect pressure, temperature, and texture with advanced computational
features, 2D material-based devices address critical challenges such as
scalability, efficiency, and adaptability in robotic systems, prosthetics, and
wearable technologies. For instance, MoS₂-based electronic skin systems
exemplify this innovation by integrating multimodal tactile sensing into a
unified platform (Fig. 7a)58. These sensors detect pressure with a sensitivity
of 0.5 kPa⁻¹ in the low-pressure regime ( < 100 kPa) and respond within 20
ms, providing the real-time feedback necessary for adaptive robotic
manipulation. Additionally, the system demonstrated nociceptive behavior,
as shown in Fig. 7b, where the output current increases with both rising
pulse amplitudes (0.6 V to 1.2 V) and varying pulse widths (10 μs to 2ms).
Moreover, they simultaneously measure strain and temperature variations,
processing these signals to emulate the comprehensive sensory feedback
mechanisms of human skin (Fig. 7c). Such capabilities allow robots to
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performcomplex tasks like handlingdelicate objects or navigatinguncertain
terrains with greater precision and adaptability.

In addition to enhancing tactile sensing, 2Dmaterials play apivotal role
in advancing neuromorphic functionalities for robotics. Quin et al. intro-
duced SnSe-based TSMs as advanced devices that seamlessly integrate
sensory detection with memory and computation (Fig. 7d)59. Operating
with volatile resistance switching, the TSM achieves a low threshold voltage
( < 0.6 V) and an ON-OFF ratio of 10⁴, enabling precise encoding and
processing of tactile inputs. Beyond their sensory capabilities, the compu-
tational properties of SnSe-based TSMs significantly enhance their utility.
Their stochastic behavior facilitates integration into neuromorphic com-
puting architectures, particularly in constructing stochastic LIF neuron
models (Fig. 7e, f). These models are essential for implementing energy-
efficient neuromorphic systems capable of real-time decision-making.
When tested on the MNIST dataset, the TSM-based architecture demon-
strated a classification accuracy of 93% (Fig. 7g). This dual capability of
combining tactile sensing with neuromorphic computation provides a
streamlined approach to tactile data processing, empowering robots to
dynamically adapt to varying environmental conditions.

The integration of neuromorphic systems into robotics is further
advanced by multisensory devices capable of cross-modal perception.
Inspired by the biological principles of multisensory integration, such as
those observed inmacaques’ ocular-vestibular systems, bioinspiredmotion-

cognition systems emulate the ability to combine visual and inertial cues for
enhanced spatial awareness. Jiang et al. showed the use of dual-gate flexible
synaptic transistors fabricated from 2D-nanoflake thin films (Fig. 7h)60.
These devices exhibit spatiotemporal integration and history-dependent
plasticity, which allow them to process multimodal sensory inputs in a
parallel and event-driven manner. In practical demonstrations, bimodal
signals from an accelerometer and gyroscope were encoded as spatio-
temporal spike trains. This enabled the synaptic transistor to differentiate
motion types such as human activities and drone flight modes. The neu-
romorphic system demonstrated high classification accuracy, with a 94%
success rate in human activity recognition and 95% in drone flight mode
recognition (Fig. 7i). By leveraging presynaptic and postsynaptic signal
outputs, the system surpasses traditional sensory-processing units in energy
efficiency and accuracy.

The integration of 2D materials and neuromorphic systems provides
significant advancements in robotics, addressingkeychallenges inprecision,
adaptability, and energy efficiency. By combining tactile sensing, memory,
and computation, these technologies enable robots to perform real-time
decision-making in dynamic environments. Applications range from
emulating biological sensory mechanisms to implementing multisensory
integration, supporting improved functionality in industrial automation.
These developments establish 2Dmaterial-based neuromorphic systems as
critical components for the next generation of intelligent robotics.

Fig. 6 | Neuromorphic systems in autonomous driving. a Schematic of the fab-
rication process for a 2D-ST with a multi-gate structure56. b Circuit response (VM
and raster plot) for an Isyn pulse (100–250 ms), simulating synaptic input into an
LGMDneuron for a looming stimulus. cGraph showing the instantaneous spike rate
(top) and spike timing (bottom) for various I/v inputs. dAs I/v decreases, peak inter-
spike interval (ISI) and the total number of spikes (and energy) increase, suggesting
that higher-threat inputs prompt a more intense response but at the cost of greater

energy consumption. e–g Similar data as (e-g) but for receding stimuli, showing an
increased leakage conductance (gL). h Schematic of the human retina’s photo-
receptor and bipolar cell structure for low-light traffic sensing57. i Interband pho-
toexcitation and hot-carrier transition in the MAPbI₃/Bi₂O₂Se heterostructure.
j Enhanced photoresponsivity (exceeding 10³ A/W) of MAPbI₃/Bi₂O₂Se hetero-
structures across the visible spectrum (400–800 nm), enabling low-light imaging.
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Neuromorphic systems in healthcare: from real-timemonitoring
to active intervention
Neuromorphic systems integrated with advanced 2D materials offer
transformative potential in healthcare applications, particularly in enhan-
cing real-timemonitoring and adaptive responses. By leveraging the unique
properties of 2D materials, these systems provide innovative solutions for
tracking vital signs, detecting abnormalities, and enabling early interven-
tions. Zhao et al. developed an artificial respiratory perception system
integrating sensing, memory, and computing functionalities on a single
polymer substrate61. At the heart of this system is a graphene oxide (GO)-
based humidity sensor, which binds exhaled water molecules using its large
surface area and oxygen-containing functional groups. These interactions
produce measurable resistance changes, converted into pulse-width mod-
ulation (PWM) signals by a microcontroller unit (MCU). The signals are
then processed by an organic electrochemical artificial synapse (OEAS),
which adjusts its conductance based on respiratory patterns (Fig. 8a–e). The

GO sensor demonstrates rapid response (0.34 s), efficient recovery (2.95 s at
77% relative humidity; Fig. 8f), and high sensitivity (0.041; Fig. 8g) enabling
precise real-time tracking of respiratory variations. The OEAS component
enhances neuromorphic functionality with over 100 conductance states,
mimicking short-term and long-term plasticity to differentiate subtle
respiratory behavior changes (Fig. 8h). This allows for the accurate detection
of abnormalities, such as variations in breathing intensity as small as 5%,
which could indicate early signs of respiratory disorders. Furthermore, this
integrated system eliminates the need for external computational resources,
resulting in a compact and energy-efficient design suitable for wearable
healthcare applications (Fig. 8i). These advancements underline the critical
role of neuromorphic systems in healthcare, offering innovative solutions
for real-time monitoring, early diagnosis, and personalized treatment.

In addition to health monitoring, neuromorphic electrostimulation
devices based on 2D materials show potential for applications in inflam-
mation management. MoS₂-based FGM devices exemplify this approach,

Fig. 7 | Neuromorphic robotics systems. a Schematic illustration of the Au/MoS2/
Ag threshold switching memristors (TSM) device (top) and an optical image of the
fabricated device (bottom)58. b Output current of the artificial nociceptor for
increasing pulse amplitudes (0.6 V to 1.2 V) at a fixed pulse width of 1 ms (top) and
output current of the artificial nociceptor for varying pulse widths (10 μs to 2 ms) at a
constant pulse amplitude of 1 V (bottom). c Schematic of biological nociceptor and
its key features (top) and block diagram illustrating the architecture of the MoS2
TFT-based artificial nociceptor (bottom).d Schematic illustration of theAg/SnSe/Au

TS device (top) and cross-sectional HRTEM image of the device (bottom)59.
eTemporal evolution of themembrane potential (black) of a LIF neuron in response
to a series of input spikes (green). The neuron fires when the membrane potential
exceeds the threshold, generating an output spike (red). f Stochastic LIF neuron
operation. gClassification accuracy of theTSM-based neural network on theMNIST
dataset. h Schematic and optical image of the flexible dual-gate synaptic transistor60.
i Confusion matrices for human activity recognition (left) and drone flight mode
classification (right) using SNN.
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utilizing programmable bionic spikes to achieve minimally invasive nerve
stimulation (Fig. 8j)39. Unlike conventional electrical stimulation techni-
ques, which risk nerve damage due to high currents, these neuromorphic
systems enable ultra-low current operation (as low as 0.175mA) while
effectively reducing inflammatory responses. For instance, the modulation
of sympathetic nerve activity using such devices has been shown to decrease

cytokine IL-6 levels by 73.5%, highlighting their efficacy in treating
inflammatory diseases (Fig. 8k). The programmable nature of these neu-
romorphic devices allows for real-time adaptation, mimicking synaptic
plasticity to deliver tailored stimulation patterns based on patient-specific
conditions (Fig. 8l–n). This feature is particularly valuable in clinical settings
for managing chronic inflammation or facilitating recovery from tendon

Fig. 8 | Neuromorphic Systems in Healthcare. a Schematic illustration of the
artificial respiratory perception system, integrating a GO humidity sensor and an
OEAS61. b Optical image of the flexible GO humidity sensor. c Response and
recovery characteristics of the GO humidity sensor. d System architecture, showing
the integration of the GO sensor with the OEAS and MCU. e Conductance mod-
ulation of the OEAS under various input pulse conditions. f The response and
recovery times of GO humidity sensor at 77% RH. g The GO humidity sensor
exhibits increased sensitivity to increasing humidity levels (20–90%RH). The sensor
exhibits a strong logarithmic relationship between resistance and relative humidity,
with a sensitivity (i.e., slope) of 0.041. h The device’s conductance increases with
pulse frequency and duration. Repeated pulses can induce a long-term memory
state, with shorter pulse intervals accelerating this process. i Demonstration of the

system integrated into a face mask for real-time respiratory monitoring. j Schematic
illustration of the MoS2-based floating-gate memory (FGM) device (top) and its
integration into a neuromorphic stimulation system (bottom)39. k 2D-based neu-
romorphic stimulation reduced IL-6 levels by 73.5% compared to traditional elec-
trical stimulation, while using significantly lower current levels (41.7% less). l The
device exhibits synaptic plasticity, with its conductance increasing or decreasing
based on the applied stimulus, mimicking the long-term potentiation and long-term
depression processes observed in biological synapses.m Enabling the programming
of specific conductance states, mimicking the long-term potentiation and long-term
depression observed in biological synapses. This allows for the delivery of precise
and personalized stimulation patterns. n Recorded sympathetic nerve signals (top)
and the delivered neuromorphic stimulation pulses (bottom).
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injuries, where traditional treatments often face limitations. Furthermore,
the biocompatible properties of 2Dmaterials, such as minimal cytotoxicity,
make them suitable for long-term implantation, ensuring both safety and
effectiveness in medical applications.

These innovations underscore the expanding role of neuromorphic
systems in healthcare,moving beyondmonitoring to active intervention. By
integrating sensing, processing, and therapeutic functions, 2D material-
based neuromorphic technologies offer a unified platform for addressing
complex medical challenges.

Outlook
The integration of 2D materials for AI hardware holds immense potential,
presenting both significant opportunities and challenges for future research.

First, the unique electrical properties of 2D materials, combined with
their scalability andmechanicalflexibility44,62,63, openupnewpossibilities for
use in flexible and wearable electronics and optoelectronics, particularly in
areas such as biomedical devices and soft robotics64. These materials can
maintain high performance even under deformation and are excellent
building blocks to realize heterogeneous structures, further enhancing their
potential in the development of more complex neuromorphic systems.

Thanks to these prominent characteristics, 2D materials have
showcased excellent resistive switching capabilities even at themonolayer
level, positioning them as a promising solution to overcome the vertical
scaling limitations of traditional 3D material-based memristors65,66. The
integration of 2D memristors into 3D architectures enables ultra-high-
density memory arrays and highly efficient neuromorphic systems,
leading to substantial advancements in parallel processing and compu-
tational efficiency67–69. By stacking various 2Dmaterials12,15,70–76, enhanced
synaptic functions such asmulti-state switching and tunable plasticity can
be achieved, both of which are crucial for implementing more advanced
neuromorphic architectures. Furthermore, their fast-switching speeds
and low-power operation have made them highly attractive for next-
generation neuromorphic devices, superior to the slow switching speeds
of commercialized 3Dmaterial-basedmemristors that has approximately
slower than conventional DRAM.

Despite remarkable progress, several key challengesmust be overcome
as well. One of the primary obstacles is the scalability and uniformity of 2D
materials applied in neuromorphic devices77,78. Albeit several advancements
in 2D synthesis techniques79,80, producing large-area, defect-free 2D mate-
rials remains a major hurdle19,36,81, which is essential for their future com-
mercialization in industries for flexible electronics and quantum
computing18,19,82,83. AI can also play a crucial role in this context by opti-
mizing synthesis processes and predicting the best conditions for material
growth, thus improving the quality and scalability of these materials.

Another significant challenge is integrating 2D materials into existing
technologies. As device structures become more complex, it is vital to
seamlessly integrate 2D materials into current manufacturing processes,
ensure compatibility with silicon-based technologies, and develop new
methods for multi-layered architectures84. Additionally, the environmental
stability of 2Dmaterials remains a concern, asmany of them are sensitive to
humidity, temperature, and oxidation. Future research must focus on
developing protective coatings or hybrid materials that can maintain the
advantageous properties of 2D materials while enhancing their durability.
AI can aid in discovering these protective strategies by rapidly screening
potential compounds and predicting their effectiveness.

In conclusion, despite that oxide-based memristor devices are still
widely used inneuromorphic computing, ongoing researchon 2Dmaterials
presents promising alternatives.Asprocessing technologies for 2Dmaterials
continue to advance, they may not only compete with oxide-based mem-
ristors in terms of performance, but also offer unique advantages in high
flexibility, scalability, and innovative features. These developments could be
expected to revolutionize the design and implementationof next-generation
neuromorphic systems toward more energy-efficient, large-scale, and flex-
ible computing architectures.
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