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Two-dimensional material-based devices
for in-sensor computing
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Jinli Chen1, Weigang Wang2 & Xiaodong Yan1,3,4

In-sensor computing (ISC) integrates sensing, memory, and processing at the point of data
acquisition, enabling real-time, low-power operation. Two-dimensional (2D) materials offer unique
advantages for ISCdue to their atomic thickness andmultifunctional properties. This review highlights
2D material-based ISC devices, covering mechanisms, performance, and architectures, and
discusses challenges and solutions toward scalable fabrication and practical deployment in emerging
technologies like Internet of Things (IoT), analog computing, and motion detection.

Background and motivation for 2D in-sensor
computing
Due to the explosive growth of the IoT1,2 and artificial intelligence (AI)3,4,
novel computing schemes capable of efficiently handling massive data are
crucially needed5,6. By 2025, a total of 80 zettabytes of data will be collected
and processed by global IoT devices7. Traditional computing schemes
relying on von Neumann architectures, which separate memory, sensing
and computing hardware, result in frequent data transfer with undesirable
latency and power consumption8,9. ISC is an emerging solution to the von
Neumann bottleneck, incorporating both processing and memory within
sensors to facilitate real-time decision-making with low power
consumption5,10–12 (Fig. 1).

2D material-based ISC devices distinguish themselves from other ISC
technologies by offering unparalleled properties such as high sensing
sensitivity13, high-density memory states14, and good compatibility with
materials in various dimensions15–17. 2Dmaterials enable efficient sensing of
light, temperature, magnetic fields and mechanical stress with strong
optoelectronic responses18, rapid temperature-dependent phase
transitions19, intrinsic spin alignment20, and strong piezoelectric effects21. 2D
material-basedmemory devices exhibit up to 1280memory states14, leading
to high-resolution information storage. Mixed-dimensional integrating 2D
materials onto complementary metal-oxide-semiconductor (CMOS)
circuits15 or flexible substrates22,23 lead to the discovery of 2D devices with
unprecedent functionality and enhanced wearability. 2D ISC devices offer
strong potential in biomedical fields where real-time, on-device processing
of multiple input signals is critical24, including brain-machine interfaces25,26,
seizure detection systems27,28, and health monitoring platforms29,30. With
more 2D material properties being unveiled, the ISC capabilities of 2D
material-based devices continue to evolve rapidly31.

Many 2D ISC applications such as adaptive behavior32,33, associative
learning33–35, pattern recognition36,37, and edge detection38,39 have been

demonstrated. These applications are realized through three distinct ways:
using single multifunctional device35, deploying arrays of ISC devices38,40,
and heterogeneously integrating sensing and memory devices41. A multi-
functional single device, which integrates sensing and computationwithin a
single 2D platform, offers a compact and cost-effective approach to ISC.
Scaling individual devices into array-based ISC configuration enhances
parallel processing speed and sensing resolution. It requires complex fab-
rication techniques to minimize device-to-device variation19. Alternatively,
hybrid integration systems, combining top-tier sensors andmemorydevices
of cross-species in a modular manner42, merge their complementary
strengths for enhanced functionality. It requires optimized coupling and
interconnection strategies to maximize efficiency41.

This review begins by exploring state-of-the-art 2Dmaterial-based ISC
devices. In Sections “Ferroelectric devices” and “Memristor andMemristive
devices”, we discuss ferroelectric (FE) and memristive devices, analyzing
their operational mechanisms, performance metrics, and ISC applications.
We then explore the potential of utilizing the unique spatially modulated
electronic phases in 2D materials for next-generation ISC devices. Section
“Charge density wave devices” delves into charge-density-wave-based
devices, while Section “Spintronic devices” examines spin-based devices.
Thesedevicesholdpromise for ISCdue to theirultrafast switchingdynamics
and high sensitivity to optical and magnetic stimuli. Key challenges and
future directions in 2D devices-based ISC research are elaborated in Section
“Summary andOutlook”, wherewediscuss the strategies for advancing real-
time multimodal ISC applications, the development of emerging 2D
topological insulators with unique sensing capabilities, and approaches
toward wafer-scale integrations.

Ferroelectric devices
Ferroelectricity originates from non-centrosymmetric crystal structures,
where polarization emerges via subtle ionic displacements43,44. This
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polarization can be reversibly switched by electric fields, allowing for non-
volatile data storage, erasure, and reprogramming45. Depending on the
origin of ferroelectricity, 2D FE devices are categorized into three types:
intrinsic FE devices, interfacial FE devices, and interlayer FE devices.
Intrinsic FEdevices utilize 2Dmaterials with inherent FEproperties, such as
In2Se3

46, SnS47, SnSe48 and CuInP2S6 (CIPS)
49, as the active channels or gate

dielectrics (Fig. 2a). Interfacial FE devices employ non-ferroelectric 2D
materials (e.g., MoS2, WSe2) as channels, paired with traditional 3D FE
materials (e.g., barium titanate (BTO)50 and poly(vinylidenefluoride-tri-
fluoroethylene) P(VDF-TrFE)38) as gate-dielectric to modulate charge
transport (Fig. 2b). Interlayer FE devices exploit the non-centrosymmetric
polarization induced by sliding51 or rotating52 between 2D materials
(Fig. 2c, d).

Two widely studied intrinsic FE materials for 2D ISC devices are α-
In2Se3 and CIPS. The α-In2Se3 exhibits two distinct ground polar states
driven by the motion of the middle Se atom, resulting in interlocked in-
plane (IP) and OOP polarizations43. This interlocking effect stabilizes fer-
roelectricity even at the monolayer limit53. The FE polarization in α-In2Se3
can be further controlled by illumination in a non-destructive manner,
leading to applications including photon detectors and optoelectrical
memory54. These properties positions α-In2Se3 as a workforce material for
2D FE ISC devices (Fig. 2e)35,55–57. For example, α-In2Se3/SnSe based p-n
junctions emulate synaptic behaviors, including short-term/long-term
plasticity (STP/LTP) and excitatory/inhibitory functions, achieving a ultra-
high paired-pulse facilitation (PPF) index of 457% which is crucial for
promoting the development of artificial vision35 (Fig. 2f). The p-n junctions
implement Pavlovian associative learning: an initial conditioned stimulus
(CS, +2 V electrical pulse) induces a subthreshold current
(0.12 nA < Ith = 0.14 nA), failing to trigger a response. After five co-

stimulation cycles with an unconditioned stimulus (US, 0.69mWcm−2

light), the current surges to≈1.68 nA, establishing a strong associative reflex.
Subsequent CS stimuli alone generate suprathreshold currents (0.16 nA),
confirming the circuit’s ability to retain and execute the learned CS-US
association.

CIPS exhibits spontaneous OOP polarization due to the displacement
of Cu atoms from their lattice centers and the cation displacement in the In
lattice49,58. Its insulating nature (bandgap ~ 2.9 eV), high tunneling
electroresistance59, and dangling-bond-free surface60 support robust non-
volatile FE memory functionality. While recent studies demonstrate light-
induced polarization switching inCIPS61,62, its role in ISC remains limited to
gate modulation rather than direct light-sensing channels. For instance,
SnS2/hexagonal boron nitride (h-BN)/CIPS-based ferroelectric field-effect
transistors (Fe-FETs) utilize the optoelectrical properties of SnS2 and the
ferroelectricity of CIPS to emulate optoelectrical synaptic behaviors34. These
Fe-FETs form a fully FET-driven reservoir computing (RC) system with a
reservoir layer and a fully connected layer. In the reservoir layer, Fe-FETs
with optical STP process stimulus-dependent current relaxation. In the
fully connected layer, Fe-FETswith electrical LTPand long-termdepression
serve as tunable synaptic weights for training and classification. This
RC system achieves 93.62% accuracy in MNIST image recognition, show-
casing a streamlined approach to ISC. CIPS can integrate with telecom-
wavelength materials, as shown in CIPS/graphene/h-BN/Te FE-FETs37,
where the thickness-tunable bandgap of Te enables efficient 1550 nm (tel-
ecom-band) photoresponse. When integrated into an RC system, these Fe-
FETs directly process optical fiber signals, achieving ~80% accuracy in digit
recognition.

2D Janus MoSSe exhibits spontaneous OOP polarization due to its
asymmetric structure,whichbreaks theOOPstructural symmetryofMoS2

63.
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Fig. 1 | Conceptual illustration of in-sensor computing. a In conventional com-
puting, sensors, memory, and processing are physically separated. Signals from
sensors undergo analog-to-digital conversion before being processed. b In in-
memory computing, data processing occurs directly within memory arrays, but
sensors remain separate. c In in-sensor computing, sensors, memory, and com-
puting are physically integrated into a single platform. The bottom-left panel

illustrates multimodal inputs, including visual scenes (e.g., cactus, javelina, tortoise,
and roadrunner) and physical stimuli (e.g., light, temperature, strain, and magnetic
fields). These inputs are encoded and processed in a distributed resistive network,
leading to applications such as edge hardware, space computing, health monitoring,
and robot control.
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Its direct bandgap (2.14 eV), high carrier mobilities (157 cm2V−1 s−1 for
holes, 74 cm2V−1 s−1 for electrons), and efficient visible-light absorption
underpin robust optoelectronic functionality63,64. For example, ion-liquid-
gated MoSSe FETs demonstrate optoelectronic synaptic behaviors, achiev-
ing a PPF index of 190%32. This device mimics the human visual system’s
light adaptation: under mild illumination (450 nm, 1 s, 0.040mW/cm²), its
current remains sub-threshold (<1.3 nA), while stronger light (450 nm, 1 s,
0.061mW/cm²) triggers overstimulation (1.44 nA), akin to retinal respon-
ses. Applying a −1 V pulse modulates synaptic weight by redistributing Li⁺
ions in the electrolyte, reducing the current to 1.2 nA to restore stable vision.
A10-by-10 array of these devices is used to preprocess optical inputs in three
steps. The array converts light stimuli into electrical signals throughMoSSe’s
visible-light absorption. A thresholding mechanism (1.09 nA) filters out
noise by suppressing weak signals, akin to retinal neurons discarding sub-
critical inputs. The retained signals undergo contrast enhancement, shar-
pening edges and improving feature resolution. By integrating transduction,

noise filtering, and contrast amplification, the system enhances data quality,
boosting digit recognition accuracy from 77.6% to 83.3%.

2D interfacial FEdevices combine 2Dmaterials as channelswith 3DFE
materials as gate dielectrics, integrating high optoelectronic sensitivity,
robust non-volatile memory, and long-term retention (>90,000 s) for
energy-efficient ISC38,50,65. For instance, graphene/MoTe2/P(VDF-TrFE)
homojunctions employ split gates beneath the FE dielectric to indepen-
dently control ferroelectric domains on either side of the devices38 (Fig. 2g).
Bymodulating these domains, the potential profile of homojunction can be
reversibly tuned from p–n (negative photoresponsivity) to n-p (positive
photoresponsivity), enabling multi-level synaptic weight tuning and pho-
toresponsivity reversal. This functionality enables applications like recon-
figurable convolutional kernels for edge detection. The devices demonstrate
exceptional endurance (>106 cycles) and scalability into functional arrays. A
3-by-3 array of these devices operates as an artificial neural network (ANN),
performing energy-efficient pattern recognition (10-13 J per operation) and
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Fig. 2 | 2D FE devices for in-sensor computing. a Schematic of intrinsic ferroe-
lectricity in In2Se3, where the displacement of the central Se atom induces inter-
locked in-plane and out-of-plane polarizations. b Schematic of interfacial
ferroelectricity, where 3D ferroelectric materials modulate charge carrier con-
centration in 2D materials, leading to resistance changes. c OOP sliding ferroelec-
tricity in bilayer MoS2 due to charge center displacement. d Schematic of excitonic
ferroelectricity arising from asymmetric moiré structure. e The three-terminal
In2Se3 FE FETs mimicking synaptic behavior. The gate can be excited with optical
stimuli. f Paired-pulse facilitation index of α- In2Se3/SnSe based p–n junctions as a
function of optical pulse interval time (Δt). The fitted curve shows that PPF decreases
exponentially with the increase of Δt. The inset displays postsynaptic current trig-
gered by two consecutive optical pulses. g Schematic of reconfigurable graphene/
MoTe2/P(VDF-TrFE) homojunctions. The P(VDF-TrFE) layer independently
controls ferroelectric domains, resulting in reversible p-n and n-p transitions.

h Schematic of 3R MoS2 sliding-ferroelectric FETs, where shear-transformation in
3R MoS2 epilayers induces polarization switching. i Schematic of bilayer graphene/
h-BN based moiré synapse transistors, which exploit electronic ratcheting states
generated by moiré potential to enable non-volatile conductance modulation.
j Retention characteristics of In2Se3 FE FETs, showing high- and low-resistance
states (HRS/LRS) under ±10 V write/erase pulses for 30 s, with readout at Vgs = 0 V,
Vds = 1 V. k Schematic of a lane-keeping task, where a laser sensor observes obstacle
distance and inputs data into a reservoir computing network. The network output
adjusts the vehicle’s steering angle. Benchmark comparison of the 2D FE devices for
ISC applications: l Energy consumption vs. retention time, m Sensing optical
wavelength vs. operating voltage. Reproduced with permission from: e, j, k ref. 56,
2024 American Chemical Society; f ref. 35, John Wiley & Sons; g ref. 38, Springer
Nature; h ref. 75, Springer Nature; i ref. 77, Springer Nature.
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enabling real-time robotic control, such as directing a robotic dog to execute
assigned tasks.

In addition to traditional 3D ferroelectrics such as BTO and P(VDF-
TrFE), recently developed ferroelectric thin films like HfO2 andHfxZr1-xO2

(HZO) have gained prominence due to their intrinsic scalability, CMOS
compatibility66,67 and robust ferroelectric behavior down to sub-10 nm
thicknesses68. When integrated with 2D semiconductors such as MoS2 and
WSe2, thesefilms enable the realizationof steep-slopeFE-FETs for in-sensor
memory and neuromorphic operations69,70. MoS2/HZO-based FE-FETs
showpotential in ISC by demonstrating subthreshold swings below 60mV/
dec and energy-efficient synaptic behavior with sub-picojoule consumption
per spike, along with fast switching (∼4.8 ns), high retention (>10 years),
and exceptional endurance (>1013 cycles)71.

2D interlayer ferroelectricity originates from charge redistribution via
the hybridization of occupied and unoccupied states or net charge transfer
across vanderWaals (vdW) interfaces, as observed inbilayers of h-BN72 and
transition metal dichalcogenides (TMDCs)73,74. 2D interlayer FE devices
utilize emergent ferroelectricity phases formed by stacking 2D materials
together. These new phases offer exceptional properties such as fast
switching speeds, high endurance and low energy consumption at room
temperature75. For example, h-BN/MoS2/graphene transistors use shear
transformation to induce polarity switching in 3R MoS2 epilayers, meeting
the sub-3 nm node requirement for future CMOS technologies (Fig. 2h).
Graphene/bilayer h-BN based Fe-FETs employ ferroelectricity arising from
parallel-stacked bilayer h-BN, demonstrating nanosecond switching speed
and endurance exceeding 1011 cycles76. Bilayer graphene/h-BN moiré
synapse transistors77 (Fig. 2i) utilize excitonic ferroelectricity52,78 arising from
asymmetric moiré structure, operating at low-power (20 pW) while
enabling diverse neuromorphic computing functionalities such as reconfi-
gurable synaptic responses and input-specific adaptation. The moiré
synapse transistors exploit electronic ratcheting states generated by moiré
potential to enable non-volatile conductancemodulation. In addition to the
memory functionality, Moiré structures demonstrate intelligent light sen-
sing capabilities. The photodetectors based on 1.2° twisted double bilayer
graphene demonstrate bulk photovoltaic effect (3.7 VW–1) at mid-infrared
wavelengths (5 μm and 7.5 μm), due to symmetry breaking and quantum
geometry contributions79. The bulk photovoltaic effect is electrically tunable
and enables detection of light polarization, power and wavelength. By
integrating memory, computing and sensing functionalities, 2D interlayer
FE devices hold promise for ISC applications.

2D FE devices have demonstrated a broad range of ISC applications,
including sociative learning34,35, light adaptation32, digit recognition36,57 and
edge detection39. These applications are achieved through individual ISC
devices35 or array-based configurations implementing computing archi-
tectures such as ANN33, spiking neural networks80 and RC systems34. For
instance, in RC systems, In2Se3-based Fe-FETs, which exhibit a retention
time exceeding 48 h (Fig. 2j), are employed to control the motion of robotic
vehicles56. The vehicles are equipped with lidars to detect the obstacles,
which serve as the input to network. The RC system processes input and
dynamically adjust steer angle of the vehicles, leading to smooth lane
navigation and temporal signal processing (Fig. 2k). The approach operates
at 104 times lower power and achieves 25% higher data throughput
per second compared to conventional GPU-based systems.

Webenchmarkedvarious 2DFEdevices for ISCapplications, as shown
in Fig. 2l, m, evaluating key metrics such as energy consumption, retention
time, sensingwavelength, and operating voltage. Energy per switching event
was calculated using E =V⋅I⋅t, based on reported voltage, current, and pulse
duration, unless the original study provided a measured value directly.
Retention, wavelength, and voltage values were extracted from published
data; where precise values were unavailable, we estimated typical values
from average data or figure interpretations. Variations across studies are
expected due to differences in device architecture, material quality, fabri-
cationprocesses, andmeasurement setups. These benchmarks show that 2D
ferroelectric ISC devices generally exhibit low operating voltages and
excellent retention times, although switching energy can be relatively high

due to polarization thresholds. The data also reveal clear trade-offs: devices
such as Gr/MoTe2/P(VDF-TrFE) achieve ultralow energy consumption
(~10−13 J) with solid retention but require higher voltages (>10 V), while
systems like WSe2/In2Se3 offer broad spectral sensitivity (~600–1900 nm)
but show limit retention time (~102 s). Overall, low-power-optimized
platforms tend to operate at higher voltage costs, while broadband or high-
retention systems may sacrifice endurance.

Memristor and memristive devices
Memristors and memristive devices are components whose resistance
depends on the history of applied voltage or current, allowing them to store
information as resistance states81. 2D memristor and memristive devices82

enable multimodal and energy-efficient ISC by achieving non-volatile
multiplememory states in response to external stimuli such as voltage, light,
temperature, or mechanical stress83. Based on the resistance switching (RS)
mechanisms, 2D memristor and memristive ISC devices are classified into
three types: conductive filament, charge trapping and phase transition84.

2D conductive filament devices leverage 2D materials as switching
layers to achieve multiple resistance states by dynamically modulating the
dimension of filaments85. The filaments are formed via metal ion migration
(e.g., Ag+, Cu2+), or oxygen vacancy redistribution. Emerging 2Dmaterials
such as MXene-ZnO composites86 and oxidized black phosphorus (BP)87

enable multimodal ISC applications by integrating memristive switching
with multimodal sensing capabilities of light, humidity, and strain. For
instance, MXene-ZnOmemristors (Fig. 3a) utilize UV light to tune oxygen
vacancies and humidity to alter proton coupling (Fig. 3b), facilitating noise-
reduced, environment-adaptive neuromorphic data preprocesses that
accelerate training processes by 5 times86. Similarly, MXene-based piezo-
resistive memristors detect mechanical stress with high sensitivity
(23.9 kPa−1) and broad range (>100 kPa), where pressure adjusts filament
dimensions formultilevel switching23. These devices enable real-timeMorse
code recognition by encoding “dots” and “dashes” through dynamic and
static pressures, respectively. The pressure signals alter the resistance states
of the memristors, which store and process the signals. Excitatory post-
synaptic currents decode the changes in resistance into alphanumeric out-
puts, facilitating Morse code interpretation without external conversion
circuits.

2D charge trapping devices achieve multilevel non-volatile resistance
states by modulating charge trapping at defect sites, 2D-2D/dielectric
interfaces, or gate dielectrics, while leveraging the optoelectronic properties
of 2D materials for high-sensitivity, high-endurance ISC applications88–91.
For example,MoS2-basedmemtransistors detect light at ultralow intensities
(0.001mW/cm2) and endure >5 × 108 cycles, enabling secure data encryp-
tion via wafer-scale arrays ofMoS2memtransistor92 (Fig. 3c). These systems
encode light signals into encrypted data through photosensitive analog
programming, resisting eavesdropping and brute-force attacks while
operating at ultra-low energy (~100 pJ/operation). An integrated 2D SnS-
based memristor circuit demonstrates optoelectronic RC, where spatio-
temporal electrical and optical inputs generate high-dimensional reservoir
states. The optoelectronic RC maps complex temporal inputs into high-
dimensional reservoir states, achieving 91% accuracy in classifying practical
sentences with minor natural errors. The 2D h-BN/WSe2 heterostructure
offers enhanced properties for optical synapses41. The integrated optical
sensor detects light in the 405–655 nm range, while the charge-trapping
memristor controls synaptic weight. Light reduces the resistance of sensors,
increasing carrier density in WSe2 and enhancing charge trapping in the
weight control layer to tune synaptic dynamics.The synapsedevices forman
ANN architecture which is capable of >90% accuracy in colored and color-
mixed pattern recognition.

2D phase transition devices utilize resistance variations between dis-
tinct material phases to achieve multilevel non-volatile memory states,
offering gigahertz response, multimodal sensing, and ultrahigh endurance
for ISC19. For instance, VO2-based memtransistors sensor both UV and
visible light (Fig. 3d), inducing RS with long retention (>4000 s)93. Their
distinct responses to UV and visible light enable RGB noise reduction in
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digit imagepreprocessing. Initially, the recognition accuracywas 24%due to
noise fromrandomGaussian interference,whichmasked key features. After
preprocessing with VO2 memtransistors, which emphasize UV-specific
information, the systemfilteredout the noise and extracted relevant features
more effectively, boosting the accuracy to 93%.Additionally, atomically thin
VO2 films—which undergo light- and temperature-driven metal-to-
insulator transitions—enable cross-modal spiking sensory neurons19 with
high endurance over 1012 cycles (Fig. 3e). These devices integrate VO2

memristors with pressure sensors to encode pressure and temperature
signals, enabling robotic hands to dynamically grasp or release objects (e.g.,
balls, hot water cups) with low latency (<30 ns).

2Dmemristors andmemristive devices enable diverse ISC applications
—such as associative learning89, pattern recognition94, data encryption92,
language learning95, and human-machine interaction19—by leveraging
multimodal sensing andultralowenergy consumption.Anotable example is
MoS2 memtransistor-based optoelectronic graded neurons deployed in a
two-stream neural network for motion detection and action recognition96

(Fig. 3f). The spatial stream processes static frames for image recognition,
while the temporal stream analyzes motion information to perceive object
direction and visual saliency. This dual architecture achieves 99.2% recog-
nition accuracy with a temporal resolution spanning 101–106 milliseconds,
enabling real-time tracking of dynamic environments.

In comparison with conventional memristive technologies, 2D-
material-based devices exhibit unique functional advantages but also face

maturity-related challenges. Metal-oxide memristors, such as those based
on TiO2 and HfO2, are well-established and offer high endurance (>109

cycles), fast switching (<10 ns), and robust integration with CMOS plat-
forms, making them commercially viable for resistive memory and neu-
romorphic arrays 97,98. Yet, these systems typically operate as isolated
memory elements and are limited to electrical input99. Organic memristors,
in contrast, feature mechanical flexibility, solution-processability, and low
switching energy (<1 pJ), which are attractive for wearable computing and
bioelectronics100. Yet, their limited environmental stability and short
retention time restrict long-term deployment 101. Compared to both, 2D
memristors strike a compelling balance: they combine atomic-scale thick-
ness and tunability via external stimuli making them promise for ISC.
Nevertheless, their current limitations, including device-to-device varia-
bility, scalability, and endurance, must be addressed before they reach
technological maturity.

We benchmarked various 2D memristor and memristive devices for
ISC applications, as shown in Fig. 3g, h, assessing the same critical perfor-
mance metrics such as energy consumption, retention time, sensing
wavelength, and operating voltage as in Section “Ferroelectric devices”.
Variations reflect differences in switching mechanisms, material quality,
and device structure. The results show clear trade-offs. Ti3C2Tx MXene
achieves the lowest energy consumption (~10−15 J), withmoderate retention
(~102 s), suitable for low-power sensing. MXene-ZnO shows much higher
energy (~10-3 J) but long retention (>104 s), favoring memory stability.
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based neuromorphic transistor stimulated by 375 nm UV light, where the VO2 film
serves as a channel between source (S) and drain (D) electrodes, with ionic liquid as

the gating medium93. e Endurance characteristics of a VO2-based memristor,
showing no signal degradation over 1012 cycles, using 3.0 V/1 μs write pulses and
0.5 V/1 μs erase pulses. f Schematic of MoS₂ phototransistor arrays for spatio-
temporal vision sensing, visualizing motion through a sequence of temporal frames.
Pixels from specific columns form a temporal vision sequence s(t), which is pro-
cessed into temporal compressive states x(t), mimicking bioinspired vision sensors.
Benchmark comparison of the 2D memristors and memristive devices for ISC
applications: g Energy consumption vs. retention time, h Sensing optical wavelength
vs. operating voltage. Reproduced with permission from: b ref. 86, John Wiley &
Sons; e ref. 19, Springer Nature; f ref. 96, Springer Nature.
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MoS2-based heterostructures offer balanced performance. In Fig. 3h, most
devices sense in the 300–900 nm range. TiNxO2-x/MoS2/ITO and SnS
provide broad spectral coverage but operate at higher voltages (>1 V), while
Black Phosphorus and Ti3C2Tx MXene achieve similar response under
<1 V. Overall, devices with broader wavelength sensitivity tend to require
higher voltages, while low-voltage systems offer narrower spectral windows.

Charge density wave devices
CDWsare collective electronic states characterizedby periodicmodulations
in electron density, often coupled with lattice distortions, forming phases
distinct from conventional metals or insulators102,103. These phenomena are
observed in 2D TMDCs such as 1T-TaS2

104, 1T-TaSe2
105, 2H-NbSe2

106, and
1T-VSe2

107. As temperature increases, CDWs transition between phases—
commensurate (C-CDW), nearly commensurate (NC-CDW), and
incommensurate (I-CDW)—each with distinct electronic ordering108

(Fig. 4a). CDW phase transitions induce RS, enabling their use in ultrafast
memory devices with picosecond-scale switching speeds and ultralow
energy consumption (few femtojoules per operation)109.

1T-TaS2, a prototypical 2D CDWmaterial, is widely studied for neu-
romorphic computing. 1T-TaS2 exhibits phase transitions fromNC-CDW
to C-CDW at room temperature through thermal or electric field
stimuli110,111. The phase transition leads to 1T-TaS2-based stochastic artifi-
cial neurons112 (Fig. 4b), where a Pearson-Anson oscillator circuit is used to
generate voltage-dependent oscillations ranging from500Hz to 5000Hz. In

the regular oscillation regime (Fig. 4c, blue region), increasing DC voltage
(Vdc) enhancesRCdynamics, elevatingfiring rates.Conversely, in stochastic
regimes (green/purple), firing rates exhibit abrupt sensitivity to Vdc shifts
(ΔV< 0.1 V) (Fig. 4d). Oscillation waveforms are tunable: low (2.21 V) and
high (2.56 V) Vdc stabilize NC-CDW or IC-CDW phases, while inter-
mediate voltages (2.40 V, cyan) induce stable oscillations (Fig. 4e), show-
casing 1T-TaS2’s potential for reconfigurable stochastic neuron circuits.
Additionally, optically tunable CDW domains in 1T-TaS₂ enable light-
responsive (Fig. 4f) and temperature-responsive sensors113,114 (Fig. 4g),
bridging CDW physics with adaptive optoelectronic properties for ISC.

Recent studies have expanded 1T-TaS2’s functionality across multiple
ISC-relevant domains. Optical excitation has been shown to induce a
metastable heterochiral CDW state with coexisting α and β domains. These
form a moiré superstructure with 43.7 Å periodicity and Kagome-like
symmetry, resulting in emergent metallicity and flat bands near EF—fea-
tures promising for ultrafast, light-reconfigurable memory115. In hetero-
structures, proximity-induced CDWs have been observed in graphene atop
1T-TaS2, accompanied by a ~31% reduction in the Mott gap and a ~0.3 eV
Dirac point shift, suggesting tunable hybrid electronic states116. At the sys-
tem level, coupled oscillator arrays based on CDW quantum oscillators
(CDW-QOs) have demonstrated second-harmonic injection locking and
Ising spin encoding. These networks solveMax-Cut optimization problems
in under 10 μs at room temperature, with low-voltage operation (~0.01V)
and frequency tunability from 195 to 537 kHz117.
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continuous oscillations are observed. f Reflectance spectra of 1T-TaS2 under
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of the experimental setup for photo-manipulation of the polar electronic state in
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detection. i Temperature dependence of second-harmonic generation (SHG)
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a ref. 216, 2024 IOP Publishing; b–e ref. 112, 2021 American Chemical Society;
f, g ref. 113, 2025 AIP Publishing LLC; h–j ref. 122, Springer Nature.
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EuTe4, an emerging quasi-2D CDW material118, exhibits improper
polarization enabled by its unique crystal structure119: planar Te-sheets
separated by insulating EuTe slabs. CDW formation breaks in-plane
inversion symmetry within the Te-sheets, inducing a polar order. The
material hosts a ~200meV CDW gap with incommensurate wave vectors
along multiple directions, and a primary modulation (q ≈ 0.643 b*) stable
up to 400 K120. Scattering and STM measurements reveal competing tri-
merized domains with opposite polarizations, contributing to a wide ther-
mal hysteresis between 50 K and 400 K and enabling domain-based
memory retention121.

Recent studies demonstrate that light pulses (800 nm) can non-
volatilelymanipulate the polar state and resistance of EuTe4, as shown inFig.
4h122. Pump-probe second harmonic generation (SHG) measurements
(400 nm) track structural changes, while electrical resistance (measured via
the four-electrode method) correlates with temperature-dependent SHG
intensity, both displaying thermal hysteresis (Fig. 4i). Under strong excita-
tion (~7.5mJ/cm2), EuTe4 transitions to a high-resistance phase, whereas
moderate pulses (~4.5mJ/cm2) fine-tune SHG intensity and restore resis-
tance. Thermal annealing fully reverses the transition, resetting the system to
its original state (Fig. 4j). This non-volatile, reversible optical control posi-
tions EuTe4 as a promising candidate for adaptive optoelectronic memory.
Additionally, EuTe4 exhibits large negativemagnetoresistance (~86%) at 2 K
under magnetic fields above 4 T, attributed to spin canting of Eu2+ ions120.
This behavior suggests that magnetic fields can modulate the CDW state,
reinforcing EuTe4’s potential as a reconfigurable platform for in-sensor
memory systems driven by electric, optical, and magnetic inputs123.

2D CDW systems have successfully demonstrated key in-sensor
computing functionalities, including light- and temperature-responsive
sensing110,111,122, non-volatile memory through polar state switching122,
neuromorphic behavior112 and coupled oscillator arrays117. These inde-
pendent achievements establish a strong foundation for future ISC devel-
opment. However, several challenges currently limit their practical
deployment. Many CDW transitions occur below room temperature, with
only a few materials (e.g., 1T-TaS2, EuTe4) exhibiting switching near
ambient conditions124. Domain control is often difficult, as CDW phase
switching involves metastable or hidden states that are highly sensitive to
local structure and hard to program deterministically125,126. Ongoing efforts
are being made to address these issues. For example, vdW heterostructures
combining 1T-TaS2 with graphene have been investigated to enable vertical
transport and interlayer functionality127, while h-BN-capped three-terminal
CDW devices provide early demonstrations of gate tunability128. On the
materials growth side, wafer-scale synthesis of monolayer 2H-TaSe2 and
TaS2 films via APCVD has been reported129,130, demonstrating a potential
route to scalable integration.

Spintronic devices
2D materials exhibit different types of magnetism such as ferromagnetism,
antiferromagnetism, ferrimagnetism and altermagnetism. Ferromagnetism
originates from parallel alignment of atomic magnetic moments, driven by
positive exchange interactions (Fig. 5a). 2D ferromagnetic (FM) materials
like CrI3

131, p-SnSe132, VSe2
133, and Fe3GaTe2

134, retain magnetization even
without external fields. This inherent magnetization introduces challenges
for high-density integration, as stray field coupling between adjacent
magnetic domains can cause mutual interference, limiting scalability in
ultra-compact spintronic devices135. Antiferromagnetism results from
antiparallel spin alignment, canceling net magnetization via negative
exchange interactions136. 2D antiferromagnetic (AFM) materials like
FePS3

137, CuCrP2S6
138, NiI2

139 and MnSe2
140 exhibit robust spin ordering

with zero macroscopic magnetization(Fig. 5b). Ferrimagnetism arises from
unequal antiparallel magnetic moments, resulting in a net magnetization.
2D ferrimagnets like Cr2S3

141 and supramolecular Kondo lattices142 provide
tunable spin properties with reduced stray field effects for spintronic
manipulation143. Altermagnetism, a recently discovered class, uniquely
combines compensated magnetic moments in real space with alternating
spin splitting inmomentum space144,145 (Fig. 5c). This dual character enables

spin-polarized currents without net magnetization, unlocking an extra spin
degree of freedom for ISC paradigms. Emerging 2D altermagnetic (ALM)
candidates includeMn5Si3 thin film

146, Co1/4NbSe2
147 and Fe1/4NbS2

148, host
unprecedent spin alignment for spintronic applications.

Topological spin textures, such as skyrmions149 and merons150, trans-
cend conventional magnetic order in 2Dmaterials by organizing spins into
stable, topologically protected configurations rather than simple parallel or
antiparallel arrangements151. Skyrmions, nanoscale vortex-like spin struc-
tures, are stabilized by the interplay of dipolar interactions, Dzyaloshinskii-
Moriya interactions (DMI)152, and magnetic anisotropy149(Fig. 5d). DMI is
induced by broken inversion symmetry in chiral crystals or interfaces,
driving the emergence of skyrmions in 2D systems. Examples include
ultrathin metallic magnets (e.g., FeGe153), Cr-based vdW compounds
(CrI3

154, CrGeTe3
155), and heterostructures like h-BN/Co156, WTe2/CrCl3

157

where interfacial DMI generates skyrmions that move and interact as
particle-like entities with distinct dynamical modes. Merons, resembling
half-skyrmions, exhibit partial spin winding and arise in materials such as
MnBr2

158 or strained twisted 2D magnets159(Fig. 5e). Meron-based devices
are promising for high storage density due to their nanoscale size160. These
textures enable ultra-dense, low-energy spintronic devices, as their topo-
logical stability permits robust motion with minimal current161.

2D spintronic devices harness the spin degree of freedom of electrons,
leveraging magnetization dynamics, robust spin ordering, and topological
stability in magnetic materials to manipulate electronic states and achieve
tunable resistance162. Themagnetoresistance effect inherent to these devices
enables unique capabilities inmagnetic field sensing for ISC. Traditional 2D
spintronic devices include magnetic tunnel junctions (MTJs)163 and multi-
ferroic systems164. Emerging ALM order and topological spin textures
enhance the performance of these systems, offering pathways to novel ISC
devices with high-density memory and low-power operation165.

MTJs are spintronic devices composed of two ferromagnetic layers
separated by an ultrathin insulating tunneling barrier. These devices exploit
tunneling magnetoresistance (TMR), where the relative magnetization
alignment of the ferromagnetic layers governs the tunneling resistance,
enablingnon-volatile resistance switching.Two-dimensionalmaterials such
as h-BN andTMDCs (e.g.,MoS2 andWS2) serve as atomically thin, smooth
tunneling barriers, enhancing TMR ratios and scalability166,167 (Fig. 5f). For
the ferromagnetic layers, 2D vdWmagnets like Fe3GeTe2, Cr2Ge2Te6, and
CrI3 provide tunable magnetism, room-temperature ferromagnetic order,
and robust spin filtering168,169. Beyond memory, MTJs enable novel com-
putingparadigms suchas probabilistic computing170, where stochasticMTJs
paired with 2D-MoS2 FETs

171 realize “p-bits”— fluctuating units that har-
ness intrinsic stochasticity— for tasks like random number generation and
spin logic (Fig. 5h). MTJs exhibit magnetic field-sensing and strain-sensing
capabilities (Fig. 5i), as their magnetization direction and free energy in the
ferromagnetic layer are sensitive to applied stress, allowing tunable TMR for
detecting strain amplitudes and direction172,173. The non-volatile memory
and multimodal sensing capabilities make MTJs promise toward ISC
applications.

2D multiferroic devices integrate sensing, memory, and processing
functionalities into a single platform by exploiting tunable magnetoelectric
coupling. These systems often employ heterostructures combining 2D
magneticmaterials (e.g., Cr2Ge2Te6

174) and ferroelectric layers (e.g., In2Se3),
enabling reconfigurable spin-dependent optoelectronic responses175

(Fig. 5g). For memory applications, the ferroelectric layer controls the
magnetic state of the heterostructure, allowing nonvolatile data storage
through reversible transitions between ferromagnetic (spin-polarized pho-
tocurrent, “1”) and AFM (unpolarized photocurrent, “0”) states176 (Fig. 5j).
Simultaneously, the spin-constrained photoelectric effect underpins their
sensing capability: variations in light exposuremodulate charge transfer and
photocurrent characteristics, enabling optical readout of stored information
without altering its magnetic state176. This dual functionality positions 2D
multiferroics as promising candidates for ISC applications.

Altermagnetism enables spin current generation without spin–orbit
coupling. In altermagnets, a charge current applied perpendicular to the
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Néel vector generates a spin current parallel to it. This phenomenon, termed
spin-splitter torque, provides a basis for new spintronic devices. Alter-
magnets provide a newmechanism for the generation of spin currents that
do not rely on spin−orbit coupling, offering a mechanism termed spin
splitter torque devices (Fig. 5k). Integrating ferroelectricity and ferro-
magnetism into a single material remains a significant challenge. Alter-
magnets provide a promising avenue for achieving such coexistence, as their
unique spin-symmetry properties enable simultaneous ferroelectric and
spin polarization. Recent experimental progress supports this potential:
studies of (Ge, Mn)Te alloys, which span the phase diagram between FE
GeTe andALMMnTe, demonstrate tunablemagnetoelectric coupling177. In
3D systems, large TMR has been predicted in MTJs with altermagnets
theoretically178,179, and also realized experimentally180 at room temperature.
This is due to the momentum dependent spin polarization even though the
total density of states for spin-up and spin-up down electrons at the Fermi
energy are the same in these uniquematerials. This intriguing effect has just
emerged as a new frontier in the research of MTJs with 2D materials.

2Dmagnetic skyrmions,with their nanoscale size, defect tolerance, and
ultralow depinning current density, are promising information carriers for
ultra-dense, high-speed, and energy-efficient spintronic applications suchas
racetrack memories181, logic gates, neuromorphic computing161, and mag-
netic sensing182 (Fig. 5l). For neuromorphic architectures, skyrmion-based
devices like Pt/Co/Ir heterostructures leverage nonlinear magnetic field-

driven dynamics in Hall bars to emulate reservoir computing183 (Fig. 5m).
Skyrmions act as reconfigurable processing units, enabling high-
dimensional mapping and short-term memory effects (Fig. 5n). The devi-
ces demonstrate a skyrmion density-dependent accuracy (highest 94.7%) in
handwritten digit recognition. Skyrmions show magnetic sensing cap-
abilities: a [W/CoFeB/MgO]10multilayerHall bar sensor exploits spin-orbit
torque-induced transformations between skyrmions, stripe domains, and
type-II bubbles182. By monitoring anomalous Hall effect signals via a dif-
ferential readout scheme, it detects in-plane (±17 mT) and out-of-plane
(±30 mT) fields with linear response and higher sensitivity over conven-
tional anomalous Hall effect sensors (Fig. 5o).

CMOScompatibility remains a challenge for 2Dspintronic ISCdevices
due to three key limitations: low thermal and chemical stability, poor
interface quality, and limited synthesis scalability. Many 2Dmagnets, such
as CrI3 and Cr2Ge2Te6, are air-sensitive and exhibit sub-room-temperature
Curie points, requiring encapsulation and cryogenic operation incompa-
tible with CMOS processes131,184. Approaches like strain engineering, che-
mical doping, andheterostructure designhave shownpromise in improving
coercivity and thermal stability185,186. Notably, MBE-grown Fe3GeTe2 has
demonstrated higher Curie temperatures and improved film uniformity187.
Interface quality also remains a concern, asmetal contacts (e.g., Pt, Ta) often
introduce contamination and spin scattering188,189. Encapsulationwithh-BN
and other passivation methods help preserve interface integrity but remain
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difficult to scale186.Meanwhile, wafer-scale synthesis of 2Dmagnets remains
limited. Techniques such as CVD and mechanical exfoliation often yield
defects and poor uniformity190, which hinder reliable integration, especially
inmultilayer heterostructures where interface control and doping precision
are critical191.

Spintronic devices offer promising ISC capabilities, with MTJs
enabling memory-in-sensor architectures59,172, multiferroic devices sup-
porting low-power spin logic176, and skyrmion-baseddevices demonstrating
magnetic sensing182, and neuromorphic functions183. However, spintronic
devices face several key challenges for ISC applications. Many 2D magnets
suffer from low Curie temperatures and require cryogenic conditions,
limiting practical deployment162. Interface quality in magnetic hetero-
structures is critical, as oxidation and defects degrade spin injections and
suppress magnetoresistance signals162. Spintronic readout signals, such as
TMR, are often weak and demand amplification or improved sensing
architectures192. Scalability remains an issue: wafer-scale synthesis of uni-
form 2D magnets is difficult, and conventional spintronic devices face
thermal stability and interface control challenges as dimensions shrink20.
Recent efforts have begun addressing these issues. For example, vdW
magnetic electrode transfer has enabled high-performance 2D spin valves
with improved interface quality193, while integrated multiferroic tunnel
junctions using Mn2Se3, TiTe2, and In2S3 have demonstrated in-memory
logic and multilevel storage via magnetic and electric-field control194.

Summary and outlook
Two-dimensional material-based ISC devices achieve their performance
through fundamentally distinct physical mechanisms, each shaping how
information is sensed, stored, and processed at thematerial level. FE devices
utilize switchable polarization domains arising from broken crystal sym-
metry. These bistable dipole configurations can be flipped with low energy
and minimal leakage, enabling fast, non-volatile operation and long
retention34. Memristive devices operate via ion migration, filament forma-
tion, or phase transitions. Such localized and stimulus-responsive processes
allow high-speed switching and multimodal sensing19, but their variability
and diffusion-driven mechanisms limit endurance and retention86. CDW
systems exploit collective electron behavior, where the entire electronic
structure reorganizes coherently112. This allows for femtojoule, picosecond
transitions, ideal for neuromorphic oscillators and memory, though the
metastable nature of CDW phases often complicates control and repro-
ducibility. Spintronic devices rely on spin polarization170, magnetic
anisotropy182, and topological textures such as skyrmions195. These enable
non-volatilemagnetoresistive states and vector-sensitive sensing182, yet their
performance is constrained by interface quality, temperature stability, and
efficient spin injection. Each mechanism offers specific advantages while
also introducing performance trade-offs.

Scaling up high-performance 2D ISC devices is essential for bridging
the gap between laboratory innovations and practical real-world applica-
tions. Critical challenges span wafer-scale synthesis, defect-minimized
transfer, and heterogeneous integration17,196. To address synthesis, techni-
ques like chemical vapor deposition (CVD) andmetal-organic CVD enable
growth of uniform 2D transition metal dichalcogenides (TMDCs, e.g.,
MoS₂, WS₂) on 300-mm silicon wafers, compatible with back-end-of-line
(BEOL) semiconductor processes197. Substrate engineering, such as step-
controlled templates, further ensures single-crystal film uniformity. In
addition, wafer-scale growth of single-domain 2D monolayer arrays via
geometric confinement198 and stacked multilayer vdW superconductors
through a high-to-low temperature growth strategy199 have been demon-
strated. However, transferring these atomically thin layers to target sub-
strates risks introducing defects or contamination, necessitating advanced
transfer protocols (e.g., polymer-free methods) to preserve material
integrity200. To address these issues, recent efforts have focused on (i)
polymer-assisted wet transfer methods, (ii) polymer-free transfer methods,
such as adhesive tape-based solvent-free transfer201, and (iii) deterministic
dry transfer methods200. High-throughput layer-by-layer exfoliation tech-
niques have also been proposed for generating multiple compound

semiconductor membranes from a single wafer202. For system-level inte-
gration, monolithic 3D architectures, where 2D material layers are
sequentially stacked onto prefabricated silicon circuitry, offer a scalable path
toward compact ISC systems. This approach enables vertical interconnects
with minimized footprint while preserving the performance of bottom-tier
CMOS logic, especially when combined with low-temperature transfer
techniques and interlayer isolation strategies16.Monolithic 3D integrationof
2D material-based AI-processing hardware has recently been demon-
strated, highlighting integrability and multifunctionality16. However, chal-
lenges such as interlayer misalignment, interface contamination, and poor
via connectivity need to be addressed to ensure layer-to-layer reliability16,203.

Current 2D material-based ISC applications, such as digit recognition
and edge detection, are constrained to either single-modality optical sensing
or lack real-time data processing capabilities. Advancing toward complex
applications like autonomous robotics204 or wearable health monitoring205

requires ISC systems to achievemultimodal integration and spatiotemporal
analysis. Recent progress highlights a pathway96: motion-detection ISC
systems based on MoS2 memtransistors employ two-stream neural net-
works to decouple static spatial data (e.g., object shape) from dynamic
temporal data (e.g., movement), leading to real-time action recognition.

Compared to conventional ISC platforms such as Si42, ZnO206,
ITO207,and organic semiconductors208, 2D materials offer significant
advantages in terms of energy efficiency, spectral coverage, andmultimodal
sensing versatility (Table 1), owing to their atomic thickness and high
surface-to-volume ratio. While conventional systems benefit from mature
fabrication processes, excellent endurance (>106 cycles), and reliable device
integration, they typically suffer from higher energy consumption
(10−6–10−8 J) and limited sensing functionality, often restricted to visible
light. In contrast, 2D ISC devices achieve ultralow switching energies (down
to 10−13 J), broader spectral sensitivity (280–1310 nm), and support diverse
inputs such as light, humidity, and pressure.

Emerging 2D topological insulators (TIs) enable ISC with unprece-
dented functionalities through their unique quantum properties: insulating
bulk states and spin-polarized, topologically protected surface/edge states209.
These states support phenomena like dynamic magnetoelectric effects,
chiral edge transport, and the giant anomalous Hall effect210, leading to
adaptive sensing, low-power in-memory computing, and stable readout for
probabilistic/neuromorphic architectures211. For example, magnetic TIs
achieve high-accuracy pattern recognition at cryogenic temperatures211.
Practical implementation is limited by low Curie temperatures, air sensi-
tivity, and phase instability in candidate materials like MnBi₂Te₄212,213. To
overcome these issues, recent work has explored capping strategies using
Al2O3 or graphene to stabilize magnetic and topological phases at room
temperature214. Topologically protected boundary states in 2D insulators
enable high-mobility, backscattering-immune charge transport, which can
enhance thermoelectric effects such as the Seebeck response. This supports
thermoelectric-driven ISC applications, particularly in scenarios where
efficient thermal management is critical215.

2D ISC systems have the potential to significantly enhance biomedical
applications that demand real-time, on-device processing of multimodal
signals, such as brain-machine interfaces, seizure detection systems, and
health monitoring platforms. Current 2D material-based systems have
already demonstrated promising performance in these fields. For instance,
in brain-machine interfaces, 2D systems enable real-time neural signal
decodingwith sub-millisecond latency and ultralowpower consumption by
processing electroencephalogram (EEG) and localfield potentials directly at
the sensor layer25,26. In seizure detection, on-chip 2D devices based on
charge-trapmemory and dynamicmemristor arrays support real-timeEEG
analysis and closed-loop neuromodulation, achieving sub-second latency,
nanowatt-level power consumption, and classification accuracies exceeding
96%27,28. In wearable health monitoring, 2D systems allow continuous, on-
body trackingof signals such as glucose, temperature, andmotion,with real-
time response within milliseconds, low detection limits (e.g., <10 μM for
glucose), and sub-microwatt power consumption29,30. ISC architectures that
co-integrate sensing, memory, and computing at the sensor level could
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further advance these systems byminimizing data transfer, lowering energy
consumption, and shrinking device footprint.

Thefieldof 2DISCdevices is rapidly evolving, drivenbybreakthroughs
in new materials, device architectures, and integration strategies. Advances
in ferroelectric, memristive, and spintronic 2D materials are pushing the
boundaries of energy-efficient, multifunctional ISC, enabling real-time data
processing and adaptive sensing. As research progresses, intelligent mate-
rials and sensors will seamlessly integrate with emerging technologies,
accelerating the development of next-generation IoT and AI systems.
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