Table 1 Comparison of in-sensor computing devices based on conventional and 2D materials.

From: Two-dimensional material-based devices for in-sensor computing

Materials

Sensory source

Application

Energy consumption (J)

Operating voltage (V)

Endurance (cycles)

Retention (s)

Light wavelength (nm)

Conventional materials

ZnO/Ag/ITO [197]

Light

Face recognition

1.0 × 10−6

2

500

1.0 × 104

white

Si [42]

Light

Edge computing

1.0 × 10−7

2.5

>1 × 103

–

650–950

CuPc/P(VDF-TrFE) [199]

Light

Pain formation simulation

4.6 × 10−8

0.5

-

>5.0 × 101

660, 445

ITO/SA Biopolymer [198]

Light

Pain perception

10−8 to 10−7

2

>250

-

360–860

2D materials

MoS2/BTO [50]

Light

Digit recognition

1.8 × 10−12

5

100

1.0 × 105

450–650

Gr/MoTe2/P(VDF-TrFE) [38]

Light

Edge detection

1.0 × 10−13

15

1 × 106

9.0 × 104

340–1310

α-In2Se3 (2H) [56]

Light

Lane keeping

2.7 × 10−7

3

1 × 104

1.7 × 105

532

Black phosphorus [87]

Light

Pavlovian learning

9.2 × 10−10

0.01

–

–

280–365

VO2 (20 nm film) [93]

Light

Image recognition

4.0 × 10−8

2

–

4.0 × 103

375–532

MXene–ZnO [86]

Humidity & Light

Image recognition

4.5 × 10−6

3

–

1.0 × 104

365

VO2 (40 nm film) [19]

Temperature & pressure

human machine interaction

3.9 × 10−9

2

1 × 1012

-

-

Ti3C2Tx MXenes [85]

Light

Supervised learning

5 × 10−15

0.05

>550

>200

365

MoSSe [32]

Light

Light adaptation

4 × 10−9

4

>4000

>100

350–550

MoS2/h-BN/Te [94]

Light

Dimensionality reduction

3.2 × 10−10

5

1 × 104

>1.0 × 103

450–635