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Content-addressable memories (CAMs) are well-suited for certain computing tasks since they can
search through awhole dataset in a single cycle,whichmakes themsuitable for cryogenic applications
like quantum computing and deep space exploration. This work presents a cryogenic ternary CAM
(TCAM) based on ferroelectric superconducting quantum interference devices (FeSQUIDs).
FeSQUID-based TCAM provides binary decisions (zero or non-zero voltage) for matching and
mismatching conditions and achieves exceptional energy efficiency—consuming only 1.36 aJ and
26.5 aJ for 1-bit binary and ternary searches, respectively. To demonstrate its system-level potential,
we integrate the TCAM into a brain-inspired hyperdimensional computing (HDC) framework, where it
performs associative memory tasks during inference. For a vector size of 10,000 bits, the total energy
consumption is estimated at just 89.4 fJ per vector. Compared to a 5 nm FinFET SRAM-based TCAM,
the FeSQUID-based design achieves over an order of magnitude reduction in energy consumption.

Cryogenic computing systems, capable of operating at/below 4 Kelvin
temperature, have garnered renewed interest in recent years primarily due
to their promise as control processor and memory in large-scale quantum
computing systems1–3. In addition, they are uniquely suited for exa-scale
high-performance computing systems and space applications4–6. A suitable
cryogenic controller and memory system can facilitate the scaling of
quantum computing systems up to thousands of qubits, by solving several
existing challenges, including (i) the requirement of a large number of wires
and interconnects to connect the qubits with currently used room tem-
perature controller and memory, (ii) the possibility of a large amount of
thermal noise propagation from room temperature to noise sensitive qubits,
and (iii) theheat andnoise generationby the lossywires and interconnects1,2.
Moreover, cryogenic systems based on superconducting devices (such as
Josephson junctions and superconducting quantum interference devices
(SQUID)) provide unparalleled speed (hundreds of gigahertz) and energy
efficiency (sub-atto-joule switching energy)4. This can be extremely useful
for developing energy-efficient high-performance computing systems and
space electronics.

One of the critical challenges in cryogenic systems is the need for high-
speed, low-power memory solutions that can complement the computing
infrastructure1. In this quest, superconducting, non-superconducting, and
hybrid technologies have been explored1,7–11. However, all of these

technologies have unique challenges, and therefore, developing a suitable
and scalable memory system for cryogenic applications has remained an
ongoing pursuit. Content addressablememory (CAM) and ternary content
addressable memory (TCAM) are specialized storage systems that can
accelerate certain computing tasks by introducing the capability of com-
paring input data against stored data12,13. CAM performs searches based on
binary data (“0’ and “1”), returning exact match/mismatch output, whereas
TCAMallows an additional state (don’t care, “d”) for the input data (Fig. 1a,
b). The ternary nature of TCAMs allows formore flexible searches, which is
useful in several applications, including pattern recognition, network
routing, and database management. Additionally, CAM and TCAM can be
empowered to calculate the Hamming distance (HD) between the input
search and stored data. This capability allows us to identify nearby matches
(the lowest HD implies the closest match) along with the exact matching
(HD= 0). CAMs and TCAMs with HD calculation capability can be
powerful tools in error detection and correction for both classical and
quantum domains, approximate searching, and other data-intensive
applications. Additionally, TCAMs have recently been used to accelerate
classification tasks, where the TCAM stores the features extracted from the
dataset (images, texts, etc.) as the stored data and can provide the search
resultwhenever the features for any search conditionare applied as the input
data (Fig. 1c)13. Based on the search results, TCAM can predict the
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classification result. Here, the parallel search capability of TCAMs becomes
extremely useful for improving the speed and efficiency of the classifica-
tion tasks.

TCAMs can also be useful for cryogenic applications like quantum
computing by efficiently handlingquantumerror correctiondecoding, high-
performance computing by improving latency and energy efficiency, arti-
ficial intelligence (AI) by accelerating pattern recognition and classification,
space exploration by assisting in data storage and retrieval, and decision-
making algorithms, and data centers by improving large-scale search
operations like database queries and search engines. This paper demon-
strated the design and implementation of a cryogenic TCAM with exact
search and HD calculation capabilities. Here, we utilize the ferroelectric
SQUID (FeSQUID)-based cryogenic memory system that combines the
ultra-high speed and energy efficiency of SQUIDs with the voltage-
controlled non-volatility of ferroelectric materials. In the proposed TCAM,
there are two modes- one for exact searching and another for HD calcula-
tion. Due to the use of FeSQUID, we get several advantages from the pro-
posed TCAM when compared with the existing designs (both room
temperature and cryogenic), including (i) the exact searchingmodeprovides
binary decisions for matching and mismatching without needing any per-
ipheral circuitry, thanks to the superconducting behavior of SQUIDs, and
(ii) extremely energy-efficient TCAMoperation (1.36 aJ and 26.5 aJ average
energy consumption for 1-bit CAM and TCAM search. respectively).
Finally, we demonstrate the efficiency and advantages of our proposed
TCAM by performing Hyperdimensional Computing (HDC) algorithm-
based language recognition task. By implementing the associative memory
that supports a highly parallelized search operation for the inference step
with FeSQUID-based TCAM arrays, a single 10,000-bit vector comparison
consumes just 89.4 fJ.Wealso demonstrate that theFeSQUID-basedTCAM
consumes over one order of magnitude less energy compared to the cryo-
genic 5 nm FinFET SRAM-based TCAM to perform the same operation.

Results
In our proposed TCAM, we use FeSQUIDs as storage elements and heater
cryotrons (hTrons) as the access devices to allow write and read operations
of any specific FeSQUID in a large array scenario. Here we first introduce
these two unique devices.

Ferroelectric SQUID (FeSQUID)
Despite extensive research over the last few decades, a robust method for
voltage-controlled gating of SQUIDs remained elusive until the introduc-
tion of FeSQUID in 202114. In FeSQUID, a ferroelectric material is
employed to modulate the superconducting behavior of the SQUID, which
also allows voltage control over the superconductivity. The proposed FeS-
QUID had a SQUID built with two parallel weak links on top of a ferro-
electric material; the structure is shown in Fig. 2a. Ferroelectric materials
exhibit non-volatile polarization switching that can be controlled by an
external voltage bias. Fig. 2b illustrates the voltage-controlled switching of
the ferroelectric polarization (PFE) of a led zirconium titanate (PZT)
material at cryogenic temperatures. The internal PFE of a ferroelectric
material generates surface charges that, in turn, induce electric fields,
effectively injecting direct charge into the system15. Now, when a SQUID is
fabricated on top of a ferroelectric layer, the superconducting material
screens the charge bound at the interface. The amount of bound charge at
the interface directly depends on the remnant polarization (PR) of the fer-
roelectric. Specifically, negative remnant polarization (P�

R ) increases the
surface-bound charge, while positive remnant polarization (Pþ

R ) decreases
it14,16. This alteration in surface chargemodifies the carrier density, which in
turn affects the critical temperature (TC) of the superconductor and, con-
sequently, the superconducting energy gap (Δ). The relationship betweenΔ
andTC can be described using Bardeen-Cooper-Schrieffer (BCS) theory

17,18:

ΔðTÞ ¼ 1:763kBTC tanh 2:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TC

T
� 1

r !

ð1Þ

where T is the temperature and kB is the Boltzmann constant. The
Ambegaokar-Baratoff (AB) theory19 further explains how Δ(T) affects the
critical current (IC):

IC ¼ πΔ

2qeRN
tanh

Δ

2kBT

� �
ð2Þ

Here, qe is the electron charge, and RN is the normal state resistance of
the SQUID. Due to the non-volatile polarization states of the ferroelectric,

Fig. 1 | Introduction to content addressablememory (CAM). Illustrations of the searchmechanismwith a a binary and b ternary CAM. c Block diagram showing the steps
how a CAM can be used for artificial intelligence applications such as classification and pattern recognition tasks.
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two distinct levels of IC are observed in the SQUID’s I–V characteristics.
Specifically, theP�

R state of the ferroelectric results in ahigher critical current
(IC,high), whereas the P

þ
R state leads to a lower critical current (IC,low), as

shown in Fig. 2(c). This unique voltage-controlled superconductivity of
FeSQUID has been leveraged to implement a scalable memory system9, a
voltage-controlled Boolean logic family20, and an in-memory computing
system21 for cryogenic applications.

Heater cryotron (hTron)
Two-terminal Josephson junction-based superconducting circuits face
several challenges, including limited fan-out capability, difficulties in
achieving uniform Josephson junction fabrication, scalability constraints
due to flux trapping, and high sensitivity to external magnetic fields, among
others. To overcome these limitations of Josephson junctions, three-
terminal cryotron-based devices were developed, offering gate current-
controlled switching of the superconducting channel between its super-
conducting and resistive states22.Anotablememberof this family is hTron23,
which is capable of driving high impedances (>100 kΩ) and supporting a
large number of fan-outs due to its highly resistive state. Unlike Josephson
junctions, hTron devices do not rely on superconducting loops, making
them free from issues like flux trapping and scalability challenges22. Heater
cryotrons have already been used as an access device in different cryogenic
memories9,10,24, as an interface between superconductors and
semiconductors23, todesign logic circuits20,22,25,26, in cryogenicneuromorphic
systems27–29, and so on.

The hTron is a four-terminal superconducting device driven by cur-
rent. Two terminals serve as the gate, while the other two form the super-
conducting channel, as depicted in Fig. 2d. The gate and channel are
separated by a dielectric spacer that thermally connects but electrically
isolates the two. When no gate current (IG) is applied, the channel remains
superconducting, assuming a given channel bias current (IB). However,
once IG is applied, the gate becomes resistive, generating thermal phonons
that propagate through thedielectric spacer to the superconducting channel.
Until IG increases beyond a certain threshold, the superconductivity of the
channel persists22. This behavior is shown in Fig. 2e.

When the gate current (IG) exceeds a critical threshold (ISW), enough
thermal phononswith sufficient energy (>2δ) are generated and transported
to the channel. These phonons become able to disrupt the cooper pairs and
suppress the superconductivity of the channel superconductor. Therefore,
the channel’s critical current (ICCh) falls below the applied channel bias
current (IB). This causes the channel to transition into a high-impedance
resistive state, redirecting the channel current (IB) to the external circuit, as
illustrated in Fig. 2f, g shows the gate current-controlled switching of the
channel between its superconducting and resistive states.

Design principle of FeSQUID-based TCAM
Figure 3a shows the schematic of the proposed cryogenic TCAM. In this
section, we discuss the design and working principles of this TCAM. The
proposed TCAM is a modified version of FeSQUID-based memory cell,
demonstrated in ref. 9. In the FeSQUID-basedmemory cell, to store one bit

Fig. 2 | Device structures and characteristics of ferroelectric superconducting
quantum interference device (FeSQUID) and heater cryotron (hTron). a Device
structure and circuit symbol of a FeSQUID. b Polarization-voltage characteristics of
a Lead Zirconium Titanate (PZT) ferroelectric. c Current-voltage characteristics for
two ferroelectric polarization states. d False colored scanning electron microscope
image of a fabricated hTron device.WSi superconductor is used to form the gate and
the channel, and SiO2 is used as the dielectric material to separate them. Illustration

of gate-controlled switching of a hTron channel when e IG < ISW, keeping the
channel in its superconducting state, and f IG > ISW, switching the channel to its
resistive state. g Gate current-controlled switching of the hTron channel. Note, the
plot uses two separate y-axes---left for gate current (IG) and right for channel current
(ICh).While the channel bias current (IB) and the gate switching current (ISW) appear
visually aligned, they represent distinct quantities and are not numerically equal.
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of data, one FeSQUID and one hTron are connected in series, andmultiple
cells are connected in parallel along each row of the memory array. How-
ever, in this work, we use two memory cells connected in parallel to each
other to design a 1-bit TCAM.Theoperation of this TCAMcell is controlled
by one readword line (RWL), two readbit lines (RBLs), twowriteword lines
(WWLs), and one sense line (SL). The operating principle of the TCAMcell
is discussed in detail in the next section. Now, to build a large-scale TCAM,
these TCAM cells need to be connected in parallel along the row where the
shared RWL in each row will act as the match line (ML) to exhibit the
matching/mismatching result (Fig. 3b).

The proposed TCAM has two modes- one for exact search (binary
result) and another for HD calculation (analog result). The mode of the
TCAM can be selected by choosing a suitable bias current for the RWL of
eachTCAM. For exact searchmode, the value of RWL current (IRWL) needs
to be chosen in a way so that we get superconducting and resistive states
from SQUIDS for “0” and “1” data, respectively. According to Fig. 2c, the
range for this IRWL is – IC,Low < IRWL < IC,High. Due to the use of the super-
conducting state of SQUID and the parallel connection of all the TCAMs in
a row (as shown in Fig. 3b, if there is any SQUID with a superconducting
state, theML of that rowwill have zero voltage. This provides us with the
binary decision from the ML- either zero or some non-zero voltage for
any amount of mismatch or complete matching, respectively. Now, for
HD calculationmode, we do not want binary decisions formatching and
mismatching; rather, we want analog decisions with different levels of
ML voltage for different levels of matching between the input and stored
data. Therefore, we need to avoid the superconducting state of SQUIDs,
and that’s where the use of FeSQUIDs becomes extremely useful because
FeSQUIDs can show either superconducting/resistive states or only
resistive state with two different resistance values for two states. In the
HD calculation mode, we choose the value of IRWL in a way so that
FeSQUIDs show two different resistance values for “0” and “1” states.
According to Fig. 2c, the required range of IRWL for this mode is
-IRWL > IC,High. Fig. 3c shows the values of IRWL used for two TCAM
modes in this work.

The FeSQUIDs are utilized to store the data as the ferroelectric
polarization (similar to the memory operation) for the TCAM operations.
One FeSQUID stores the data (Data) while the other stores the inverted
version of data( �Data). To store Data and �Data, we need to apply suitable

voltages across the ferroelectric of FeSQUIDs through the WWLs (VWWL1

and VWWL2). Fig. 3e shows the definition of Data and the corresponding
device states. The input search data is applied through a combination of two
gate currents (RBL currents, IRBL1 and IRBL2) of the two hTrons, which
determine the switching of the hTrons. Fig. 3d shows the values of RBL
currents for different input search data (Search and �Search).

Wroking principle of FeSQUID-based TCAM
Any TCAM search can be divided into twomajor operations: (i) storing the
data inside the memory through a memory write operation, and (ii)
searching any input data against the stored data through a memory read
operation. To write data into a FeSQUID-based memory cell, we apply
appropriate voltage biases (positive or negative) across the ferroelectric
layer. Specifically, we manipulate the polarization state of the ferroelectric
material within the targeted FeSQUID cell by employing a V/2 biasing
scheme.The appropriate voltage biases (±VWRITEor±VWRITE/2) are applied
to the write word lines (WWLs) and source lines (SLs), such that only the
selected memory cell experiences the full ±VWRITE across its ferroelectric
layer. In this configuration, half-selected cells located in the same row or
columnas the targeted cellwill experience±VWRITE/2,while unselectedcells,
not sharing the same rowor column,will experience0 V.Toensure thewrite
operation affects only the selected cell, the write voltage must be carefully
chosen to satisfy the condition 1

2 jVWRITEj < jVCj < jVWRITEj, whereVC is the
coercive voltage of the ferroelectric. To satisfy this condition, we have used
±5V as the value of VWRITE. Please refer to

9 for more details on the write
operation in a FeSQUID memory array.

As illustrated in Fig. 2c, applying a current within the range
IC,Low < I < IC,High to the SQUIDwill result in either a superconducting (0 V)
state for P�

R or a resistive (nonzero voltage) state for Pþ
R , depending on the

polarization state of the ferroelectric. This property is exploited for the exact
search mode by applying a suitable current bias through the SQUID. First,
all WWLs and SLs are grounded. Moreover, as seen in Fig. 2c, if a current
larger than IC,High is applied, the SQUID will show two different resistance
values (and hence, two voltages) depending on the polarization states. This
characteristic of SQUID is used for the HD calculationmode. RBL currents
are responsible for determining the switching of the hTrons connected in
series with each FeSQUID. The search data are represented by the RBL
currents.

Fig. 3 | The proposed cryogenic ternary content addressable memory (TCAM).
a Circuit schematic of the proposed TCAM cell. b Illustration of the array-level
organization, where data will be stored in a row. c Values of read word line currents

(IRWL) for twomodes of the proposed TCAM. Definitions of (d) input search data in
terms of read bit line currents (IRBL1 and IRBL2) and e stored data in terms of
FeSQUID's device states.
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Basedon the applicationofRWLandRBLcurrents, theMLvoltagewill
dependonwhether the input searchmatches ormismatches the stored data.
Figure 4 shows the working principle of the exact search mode of the
proposed TCAM. Here, first, Data and �Data are stored in the two FeS-
QUIDs with the help ofWWLs. Then, when Search and �Search are applied
through theRBL currents (chosenaccording toFig. 3d), and the appropriate
current is applied to the RWL (chosen according to Fig. 3c), one of the
hTrons becomes superconducting while the other remains in a highly
resistive state (50 kΩ). For matching conditions (Data = 0 and Search = 0
(Fig. 4a),Data = 1and Search = 1 (Fig. 4e), the FeSQUIDconnected in series
with the superconductinghTron switches to its resistive state.As a result, the
RWL current flows through this branch, and we get a nonzero voltage drop
in the ML (shown in Fig. 4g). On the other hand, for the mismatching
conditions (Data = 0 and Search = 1 (Fig. 4b),Data = 1 and Search = 0 (Fig.
4d), the FeSQUID connected in series with the superconducting hTron
remains in its superconducting state. As a result, we get zero voltage drop in
the ML (shown in Fig. 4g).

Now, for the “d” case in the input search,we applynon-zero currents to
both RBLs. As a result, in these cases shown in Fig. 4c, f, both hTrons switch
to their resistive states, which leads to the division of the applied RWL
current between two branches. The current that flows through each of the
branches (IRWL/2) is not sufficient to switch the FeSQUID state to its
resistive state. However, since both hTrons become resistive, we get a non-
zero voltagedrop in theML(shown inFig. 4g), irrespective of the storeddata
in the FeSQUIDs. Fig. 4g shows the value of ML voltages, power con-
sumption, and energy consumption for all the possible combinations of a
1-bit TCAM.

Now, we discuss another capability of our proposed TCAM, which is
the HD calculation. Figure 5a shows a 4-bit TCAM where five different
combinations of 4-bit data are stored in the TCAM array, and one specific
input search data is applied. As explained earlier in this section and in Fig. 4,

in the exact search mode, due to the choice of RWl current, we will get zero
and non-zero ML voltages for any mismatch and complete match,
respectively. However, in the HD calculation mode, we select the RWL
current in such away that the SQUID always receives a current that is larger
than its critical currents (IC,Low and IC,High). Therefore, the SQUID never
remains in the superconducting state. For the two states,we get twodifferent
values of resistance, as shown inFig. 2c.Wedesign and choose the operating
modes of the proposed TCAM in a way that we get the highest ML voltage
for the complete matching condition, and the voltage drops with the
increase in the mismatch. Fig. 5a shows the ML voltages for this mode for
different amounts of mismatch in the 4-bit TCAM. We also extend our
simulation to larger TCAM arrays and the ML voltage values for different
amounts of mismatch in different sizes of the TCAM arrays in Fig. 5b. The
ML voltage for n-bit TCAM can be calculated using the following equation:

VML ¼ nbits × IRWL

� � 1

nbits ×
1

50kΩ þ nmatch ×
1

1:8kΩ þ nbits � nmatch

� �
× 1

0:9kΩ
ð3Þ

where nbits and nmatch represent the size of TCAM cells in a row and the
number of matching bits in that row, respectively. In this equation, we use
fixed resistance values for the FeSQUID and hTron devices, derived from
experimentally reported data in ref. 14 and23, respectively. While these
resistance levels may vary with temperature and biasing conditions, we
adopt their experimentally observed mean values to illustrate the funda-
mental operation of the proposed TCAM architecture. It is important to
note that although suchvariationsmay influence theMLvoltage levels in the
HD calculation mode (as shown in Fig. 5b), they do not affect the exact
searchmode. This is because the binary decision in exact search relies on the
superconducting (zero-resistance) and resistive (nonzero resistance) states
of the FeSQUID and hTron devices. Thus, evenwith variations in resistance
magnitude, theMLwill still yield zero or nonzero voltages corresponding to

Fig. 4 | Working Principle of the proposed ternary content addressable memory
(TCAM) in the exact search mode. Illustration of the working principle of the
TCAM when a Data = 0 and Search = 0, b Data = 0 and Search = 1, c Data = 0 and
Search = d, dData = 1 and Search = 0, eData = 1 and Search = 1, and fData = 1 and

Search = d. Here, “d” represents the don’t care condition in the search bit. gMatch
line (ML) voltage, power, and energy consumption for 1-bit exact search with the
proposed TCAM.
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match and mismatch conditions, ensuring robust binary classification. On
the other hand, for the HD calculation mode, although the resistance levels
may have variations, we will still have different levels of ML voltage (with
differentmagnitudes) for different degrees ofmatching. To demonstrate the
effect of variation in the resistance levels and the bias current on the ML
voltage levels during HD calculation mode, we performed a 10,000-point
Monte Carlo analysis, as discussed in the next section. To decode the HD
from the ML voltage levels, any cryogenic voltage-based comparator and
sense amplifier can be utilized30.

System-level benchmarking
The TCAM architecture proposed here is particularly well-suited for
application in cryogenic environments, where conventional CMOS mem-
ory and logic circuits suffer from degraded performance or excessive power
dissipation. In quantum computer systems, for example, the TCAM can
accelerate quantum error correction (QEC) through rapid, parallel searches
of large syndrome-to-correction codebooks stored locally at cryogenic
temperatures. Thisminimizes data transfer overhead between the cryogenic
and room-temperature domains and reduces latency in fault-tolerant
quantum operations. Similarly, in space-based systems—where ambient
temperatures are low and power availability is limited, the TCAM can
enable image recognition and decision-making applications by efficiently
matching input data against stored templates or classification rules in real
time. These cryogenic-specific applications exploit the ultra-low power,
non-volatility, and robust binary decision enabled by the superconducting
property of the FeSQUID and hTron devices, making it a desirable choice
for next-generation in-memory computing under extreme environmental
conditions.

With the ever-growing interest in machine learning, the size and data
requirements of today’s models are enormous. However, many application
scenarios have strict constraints for the system, e.g., in cryogenic environ-
ments, embedded systems, or IoT devices. Here, efficient and computa-
tionally lightweight algorithms are key. For these reasons, researchers have
explored techniques to simplify models by quantizing conventional
machine-learning approaches. While reducing the model size, the funda-
mental requirements of large datasets and large training efforts are
unchanged.

For these reasons, an emerging brain-inspired machine-learning
concept called Hyperdimensional Computing (HDC) has been proposed
and gained rapid interest. InHDC, information is stored as patterns in large
vectors with thousands of elements. By utilizing randomness and similarity,
HDC is inherently resilient to noisy data and errors in computing opera-
tions. This enables the utilization of emerging hardware, which often may
suffer from imprecise operation, e.g., due to variability. HDC has been
showcased in various classical machine-learning tasks such as language
recognition31 (illustrated in Fig. 6a), image classification32, or wafer map
defect pattern classification33.

The data type of vector elements can be selected, and real numbers,
integer numbers, bipolar values, or binary values can be used. Using binary
makesHDCvery efficient, as the operations canbe implementedusing basic
logic gates. For the similarity metric used during inference, the Hamming

distance needs to be calculated, which is a combination of bit-wise XORand
popcount. This can be implemented using TCAMarrays that store the class
vector bits and are searched with the bits of the query vector34.

The used vector size affects the inference accuracy of the final model,
which is shown in Fig. 6b. For instance, training the language recognition
modelwith 10,000bits yields an inference accuracyof 97.1%while usinghalf
the size yields 95.9%. Estimating the energy consumption of a single vector
comparison can be done using the following equation:

E ¼ nbits × 5 μA×VML × 0:3 ns ð4Þ

where nbits is the size of the vectors and VML is the match line voltage,
depending on nbits and nmatch (see Eq. 3). Here, we consider the switching
time of hTron as the only delay during the search operation in the TCAM
cell. We use 0.3 ns for the superconducting to resistive switching of hTron
devices, as reported in ref. 23.Moreover, the chosenbias current is calibrated
with the experimental data of FeSQUID reported in ref. 14. Also, the Eq. (4)
only considers dynamic energy since both FeSQUID and hTron operate in
the superconducting regime during idle states, and their static power con-
sumption is zerounder cryogenic conditions.Asmost of the vectors inHDC
are orthogonal (i.e., a similarity of ≈50%), we assume the number of
matching bits to be half of the total number of bits. This gives an energy
consumption of 89.4 fJ per vector comparison with 10,000 bits, and 44.7 fJ
with 5000 bits.

To put the numbers in perspective, we have implemented a block of
TCAM cells using conventional SRAM technology with 5 nm FinFET
transistors.Due to the lackof existing superconductingTCAMarchitectures
in the literature, particularly at the circuit level, we selected cryogenic
SRAM-basedTCAM(circuit schematic is shown inFig. 7a) as a relevant and
available benchmark. Note, cryogenic-compatible SRAM has been actively
exploredas apracticalmemory solution for low-temperature environments,
and recent efforts have demonstrated functional SRAM-based TCAM
architectures operating under cryogenic conditions. Similar to the cryo
FeSQUID, we operate the SRAM circuits at 4 K with a supply voltage of
0.7 V.Whenqueriedwithdata, the search lines (SL)will be used to apply the
voltage corresponding to the bit “S”. The TCAM cell will respond with one
of two cases. For a match (C = S), the data is the same, and the TCAM cell
blocks all discharge paths from ML to ground. With an example case of
C = 1 and S = 1, this is facilitated as follows. The S1 cell is programmed such
that the L node has a low voltage, and the S2 cell has a high voltage at the R
node. Even though SL is high, the left discharge path is blocked by L being
low, and the right discharge path is blocked by SLB being low. For a mis-
match (C ≠ S), the TCAM cell will form a single discharge path inside the
cell. For example,withC = 0 andS = 1, the left discharge pathwill be open as
L is high in this case. By connectingmultiple SRAMTCAMcells to a shared
wire (hereML as shown in Fig. 7b), the discharge rate of the potential ofML
is directly proportional to the number of TCAM cells responding with a
mismatch. This implements the functionality of the Hamming distance. To
transform the discharge rate into a temporal signal, a clocked self-
referencing sense amplifier (CSRSA) is used. The CSRSA produces a sharp
output signal that can be digitized by a time-to-digital converter. By cutting

Fig. 5 |Working Principle of the proposed ternary
content addressable memory (TCAM) in an array
scenario. aMatch line (ML) voltage levels obtained
for different amounts of mismatch between the
input search and stored data in a 4 × 4 TCAM array.
b Evolution ofML voltage levels for different TCAM
array sizes (4-64 bits) and different amounts of
mismatch.
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the large vectors into smaller sections, blocks are formed that calculate the
Hamming distance in the analog domain. Hence, the results in Fig. 6c show
adecreasing energy consumption for the SRAM-based cells.As fewer blocks
are needed when increasing the block size, the comparison of an entire
vector becomes more efficient due to the reduction of overhead in the form
of fewer sense amplifiers. In our energy estimation scheme for the cryo
FeSQUID, the energy depends on VML, which is only subject to the ratio
between block size to the number ofmismatches, i.e.,fixed to 50%here. Still,
the energy consumption of cryo FeSQUID is over one order of magnitude
smaller than cryo SRAM. For instance, using vectors with 10.000 bits and a
block size of 10 bits, SRAM consumes 1.29 × 10−12 J compared to the
8.94 × 10−14 J of FeSQUID. The energy consumption shown in this work is
based on the comparison of two 10,000-bit vectors, where one vector is
stored in the TCAM cells and the other is applied through the search lines.
The energy considered here is only for the active part of the calculation,
extracted for one block and then extrapolated.

To analyze the impact of resistance variation on the performance of
HDC, we first conducted a 10,000-point Monte Carlo study of the ML
voltage distributions. For this, we considered a standard deviation of 5% for
FeSQUID and hTron resistance levels, and the bias current used in the
TCAMarray. Thematch levels (i.e., theHamming distance) are swept from

0 to 15. This yields the ML voltage distributions for each mismatch level.
From the ML voltage distributions, we calculate discrete probability dis-
tributions by sorting the voltages of each mismatch level into buckets. The
nominal ML voltages are used to calculate the decision boundaries halfway
between the respective neighbors. Sorting the voltages into the buckets
formed by the decision boundaries yields the discrete probability distribu-
tions, which can be abstracted in a confusionmatrix. The confusionmatrix,
shown in Fig. 6d, shows the spread in variation slightly growing for larger
Hamming distances.

The formed confusion matrix describes the error behavior, which we
then inject into the inference algorithm of HDC. Here we cut the class and
query vectors into blocks of the same size and calculate the software
Hamming distance first. Using the discrete probability distribution of the
respective software,Hammingdistance gives a randomhardwareHamming
distance that is accumulatedwith all other hardware Hamming distances of
this vector comparison. To acquire sufficient statistical data, we run the
entire inference algorithm 100 times for each tested vector dimension.
Figure 6e shows the results of the inference accuracy loss due to the injected
errors from the resistance variation. The loss is calculated by subtracting the
inference accuracy with the injected errors from the ideal accuracy. With a
vector larger than 5000 bits, the accuracy loss is below one percentage point.

Fig. 7 | Introduction to static random-access
memory (SRAM)-based ternary content addres-
sable memory (TCAM). a Schematic of the 16T
SRAM-based TCAMcell. b Schematic of the SRAM-
based TCAM block.

Fig. 6 | System-level benchmarking of the pro-
posed ternary content addressable memory
(TCAM) while performing the language
recognition task. a Illustration of the HDC algo-
rithm for language recognition. The encoded search
vector of the sample text that needs to be recognized
is compared to all pre-trained class vectors. The
most similar (i.e., closest) vector is then inferred as
the result. b The inference accuracy of language
recognition over the vector size. c Energy con-
sumption of a single vector comparison with 10,000
bits using ferroelectric superconducting quantum
interference device (FeSQUID)-based and static
random-access memory (SRAM)-based TCAM
cells. d Confusion matrix of Hamming distance
(HD) calculation in an FeSQUID TCAM block with
15 cells. We performed a 10,000-point Monte Carlo
analysis with 5% standard deviation in the resistance
levels and the bias current. e Inference accuracy loss
due to the injected errors from the resistance
variation.
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As can be seen, the error resilience improves with larger vectors as expected
from other HDC works.

Discussion
In this paper, we presented a cryogenic TCAM architecture leveraging the
unique properties of FeSQUID technology. The proposed TCAMaddresses
key challenges faced by current cryogenic computing systems, such as the
need for ultra-low power consumption, high-speed operation, and scal-
ability. By combining the non-volatility of ferroelectric materials with the
superconducting efficiency of SQUIDs, our design achieves substantial
energy savings, with an average energy consumption of 1.36 aJ and 26.5 aJ
for 1-bit binary and ternary searches, respectively. In addition to supporting
exact match search operations, our TCAM enables Hamming distance
(HD) calculation, which opens up new possibilities in error detection and
correction, quantum error correction decoding, approximate search algo-
rithms, andAI-based classification tasks.Wedemonstrate the advantages of
FeSQUID-based TCAM array by benchmarking against TCAMwith 5 nm
FinFET-based cryogenic SRAMarray forHDC-based language recognition
task. The proposed FeSQUID-based TCAM needs over one order of
magnitude lower energy. The parallel search capability and efficient data
processing of this energy-efficient TCAM make it highly applicable to a
range of cryogenic applications, including large-scale quantum computing,
high-performance computing, space exploration, and data-intensive tasks
in data centers.

In addition to demonstrating the functionality of the FeSQUID-based
TCAM, we recognize the importance of addressing process integration
challenges for practical implementation. While ferroelectric materials
typically require high-temperature annealing during fabrication, recent
advances in low-temperature deposition techniques—such as plasma-
enhanced atomic layer deposition—enable their integrationwithin aBEOL-
compatible thermal budget. This mitigates potential damage to super-
conducting layers. Notably, several ferroelectric materials, including PZT35,
perovskite oxides36, and antiferroelectric zirconia37,38, have been shown to
retain stable polarization and functional properties at cryogenic tempera-
tures down to 50mK. Moreover, ferroelectric materials have been experi-
mentally integrated with superconducting materials and devices14.
Nevertheless, to minimize risks of electrostatic interference—such as
unintended modulation of the superconducting energy gap due to ferro-
electric polarization, grounded shielding layers, cryogenic trench isolation,
and optimized physical layouts can be used. These strategies support the
monolithic integration of voltage-controlled FeSQUIDs with super-
conducting hTrons, enabling scalable, non-volatile, and energy-efficient
TCAM architectures suitable for cryogenic computing environments.

Methods
Device modeling and TCAM simulation
To perform the simulation of the proposed TCAM, we utilize Verilog-A-
based compact models for FeSQUID and hTron from our previous works.
Please refer to9,20, and25 formore details on themodelingmethodologies and
validation of FeSQUID and hTron, respectively.

Tomodel the voltage-controlled switching of ferroelectric polarization,
we use the Preisach model, which is calibrated with the experimental data
reported in ref. 14. Then,we use equations (1) and (2) tomodel the effects of
ferroelectric polarization on the superconducting energy gap and critical
current of SQUID. Finally, we utilize the resistively and capacitively shunted
junction (RCSJ) model to implement the current-voltage characteristics of
SQUID, depending on the two polarization states of the ferroelectric
material.

For hTrons, we use a phenomenological Verilog-A model, which, at
every timestep, compares the applied gate current and channel current with
the switching thresholds. Based on the comparison, the model determines
whether the channel will remain superconducting or switch to its resistive
state. The switching thresholds and other device parameters were taken
from the experimental data, reported in ref. 25.

Using these two models, we developed a HSPICE framework to
simulate andverify theTCAMdesign.The resultsmentioned inFigs. 4 and5
are obtained using this simulation framework.

System-level simulation
The implementation of the HDC algorithm for language recognition and
SRAM-based TCAM blocks is from a previous work34. This allows us to
change various parameters such as vector dimension, block size, or supply
voltage. The employed supply voltage for the SRAM circuit simulations is
0.7 V. To simulate the transistor at these low temperatures accurately, we
have employed a custom cryogenic compact model based on BSIM-CMG.
The respective model cards for NMOS and PMOS have been carefully
calibrated to reproduce cryogenic measurements of mature 5 nm FinFET
technology39.

Data availability
The data that support the plots within this paper are available as supple-
mentary materials.
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