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Cellular mechanisms of traumatic
brain injury
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Mild traumatic brain injury (mTBI) is an acute injury with immediate and medium-term symptom
presentation. However, our mechanistic understanding of mTBI and how mechanical loading of soft
cellular tissues leads to injury is limited. The aim of this review is to introduce this interdisciplinary field
to non-experts and provide an overview of our current understanding of how mechanical trauma
contributes to cellular injury. Here, we compare the significance of various measures of mechanical
loading including strain magnitude, strain rate, loading mode, and frequency, and their relative
significance for cell and tissue injury in in vitro and ex vivo experimental models reported in the
literature. Interestingly, while it is difficult to define a precise injury threshold value based on strain
magnitude alone, cellular injury is commonly observed at strain rates of >0.1 s-1, higher than rates
observed in many normal cell functions (< 0.01 s-1). We explore the role of the plasma membrane,
cytoskeleton, and specialized structures in maintaining cell integrity during traumatic injury.

As part of their normal physiology, cells and tissues undergo changes in
shape in response to internally generated and external mechanical forces.
For example, adult connective tissues are subjected to mechanical forces as
part of everyday movement (such as tendons, skin, muscle etc.), and
embryonic epithelial layers are stretched by internally generated forces
during formation of the internal organs. In addition to passively sustaining
mechanical loads, cells actively sense and respond to mechanical stimuli in
their environment through a process referred to as mechano-
transduction1–3. Cellular responses to load depend greatly on cell type and
loading conditions, which can impact cell proliferation4–6, viability7–9, and
gene expression10–13. In addition, mechanical loading of cells and tissues
plays an important role in tissue homeostasis. In many connective tissues
the absence of mechanical load can lead to tissue degeneration (i.e., muscle
atrophy, loss in bone density)14–16. Given that sustaining and generating
mechanical load is critical for tissue function and homeostasis, many tissues
are specialized for this purpose and are composed of extracellular matrix
proteins (e.g., collagen, elastin) that are organized into load-bearing struc-
tures. In contrast, approximately 80% of the volume of human brain tissue
are cells, with a ratio of 5:3:1 for neurons, glia and endothelial cells17.

Not all mechanical loading of cells and tissues is physiological. Beyond
a certain threshold, the amount of deformationor the speed atwhich a tissue
is deformed leads to failure, which can present as symptoms such as tissue
rupture18, haemorrhaging19, blistering, and cracking20. At the cellular level,
pathological mechanical loading leads to cell death21–26 changes in cell
morphology27–29, and subsequently alteration in cell function. What defines
the difference between physiological and pathological mechanical loading

conditions for a particular tissue, and at what point does this transition
occur? This question is significant for both the design of personal protective
equipment that aims to attenuate traumatic tissue deformation, and our
understanding of the mechanisms of disease. Traumatic brain injury (TBI)
provides a relevant example, where impact- or blast-based injuries are
caused by excessive brain tissue deformation. Instances of TBI are common,
affecting 1153 in every 100,000 individuals per year30,31 and ranging in
severity. Mild traumatic brain injury (mTBI) includes conditions such as
concussion, whereas severe traumatic brain injury is characterized by
complications such as post-traumatic seizures32. mTBI is particularly chal-
lenging, as it often goes undiagnosed, but can still lead to long-termmedical
implications, including Persistent Post-Concussive Symptoms (PPCS).
These symptoms, which are developed in approximately 15-25% of mTBI
patients33,34, include chronic headaches, increased likelihood of depression,
and dementia32,35.

While prior studies have primarily explored strain-induced damage at
the whole cell and tissue levels, our understanding of the resulting
mechanical failure of specific subcellular structures is limited. In this work,
we aim to provide an analysis of existing studies to assess our current
understanding of injury at the cellular and subcellular levels. Understanding
the link betweenmechanical loading of tissues and the subsequent effect on
cellular function requires an interdisciplinary approach that combines
concepts from engineering and life sciences. First, we introduce basic
measures frommechanical engineering that are commonly used to describe
soft tissue deformation. Next, we explore different loading conditions for
cells and tissues reported in the literature that are considered physiological
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or pathological. Finally, we focus on traumatic brain injury and explore the
effect of different loading conditions has on brain cells by evaluating how
different cellular structures respond to mechanical load and under what
conditions they are likely to mechanically fail and lead to injury.

Physiological And Pathological Deformations Of Cells
And Tissues
Quantitative metrics for characterizing changes in cell and
tissue shape
Descriptive, quantitative, and normalized metrics are useful tools for
comparing changes in cell and tissue shape and for distinguishing between
physiological and pathological loading conditions. Firstly, changes in shape
can be characterized by the mode or ‘type’ of deformation. Cells and tissues
experience three primary types of mechanical deformations, namely ten-
sion, compression, and shear (see further reading and Box 1 for detailed
discussion on modes of deformation). Secondly, changes in cell and tissue
shape can be quantified by the parameter strain, which measures the
amount of deformation. Strain is a second-order tensor that can be repre-
sented by a square matrix (e.g., a 3×3 matrix for 3D strain). For example,
brain tissue is structurally anisotropic (i.e., direction-dependent) due to
structures such as white matter tracts, or nerves. This is observed in
mechanical testing data, where ex vivo tissue samples from the corpus cal-
losumweremeasured to be relatively stiffer when tensionwas applied along
the fiber tracts as opposed to in the transverse direction, while they were
stiffer in compression applied transverse to the fiber tract directions36. It has
been suggested that these directional differencesaremarginal and secondary
to anatomical differences seen across various regions in the brain and may
therefore be considered mechanically isotropic36 (i.e., uniform in all

directions) in its strain response36. However, computational models of head
injury have increasingly considered integrating representative tractography
to be essential for accurate injury prediction37–40. While different physical
definitions of strain exist (see Box 1), focusing on a particularmode of strain
can provide convenient comparative metrics for studying complex objects
such as cells and tissues and are widely used41–46. The most commonly used
definitions of strain are engineering strain and Green strain. The engi-
neering strain (ε) is used for small deformation (ε < 0.01), whereas Green
strain is applicable to a general large deformation. When a deformation
becomes too large, cells and tissues can rupture or delaminate leading to cell
death. The term ‘ultimate strain’defines the strainmagnitude value atwhich
failure occurs. Thirdly, as most biological tissues and cells are viscoelastic (a
time-dependent material property), strain rate,_ε, is used to describe the rate
at which a given strain magnitude is applied. Finally, many cell types and
tissues experience dynamic and repetitive loading conditions, such as a
beating heart. Repetitive deformation can be characterized in terms of fre-
quency, which is the number of loading cycles per second (orHertz). For an
example of these values, see Box 2.

Cell and tissue strains
Different strain magnitudes, strain rates, and loading frequencies are
observed in diverse cell types and tissues as part of their physiological
function. During embryonic development and in processes such as dorsal
closure47,48 and gastrulation49,50, epithelial sheets can endure large strain
magnitudes, up to 0.5–1.0, which typically occur at low strain rates, 10-4 to
10-3s-151. In contrast, in adult tissues, strainmagnitudes range from0.1 to 1.0
can occur at high strain rates exceeding 0.1 s-152–55. For example, the strain
magnitudes associated with cyclic stretching of lungs range between

Box 1 | Strain andModes of Deformation

Strain is a second order tensor that is usually represented by a square
matrix (e.g., a 3×3matrix for 3D strain). Tensile and compressive strains
arenormal strains that act along the surfacenormal,whereasshear strain
involves deformation parallel to the surface plane. Normal and shear
strains are dimensionless and form the component of a strainmatrix. The
diagonal components εxx, εyy and εzz of the 3D strain tensor shown below
(ε) describe the normal strain in the x-, y- and z-direction respectively,
whereas the off-diagonal components

γxy
2 ,

γxz
2 and

γyz
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strain.
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Physical Definitions of Strain
Engineering strain (ε) The normal strain is defined as the ratio of the

change in length (ΔL ¼ l� L0) to the original length of a material
εyy ¼ ΔL

L0

� �
. The shear component of the engineering strain describes the

shape distortion and is defined as γxy ¼ 4x
L0

� α where Δx indicates the
relative displacement between two transverse planes. The engineering

strain is suitable for linear elasticmaterials undergoing small deformation
(i.e., length changes that are less than two orders of magnitude of the
characteristic length) with negligible rigid body motion.

There are many variants of strain measures developed for different
types of loading set-ups. Some of them are defined below based on the
uniaxial loading scenario (i.e., normal strain component):

True strain / logarithmic strain (εt) The natural logarithm of the ratio
of the final length to the original length εt ¼ ln Δl

L0

� �� �
.

This definition accounts for large deformations and is suitable for
plastic deformations.

Green strain (εG) A strain measure defined with respect to the
undeformed (reference) configuration εG ¼ 1

2
l2�L0

2

L0
2

� �� �
.

This definition is used in finite strain theory and large deformation
analysis, along with Almansi strain.

Almansi strain (εA) A strain measure defined with respect to the
deformed (current) configuration εA ¼ 1

2
l2�L0

2

l2

� �� �
.

Box 2 | Example values of engineering strain

Example 1: Consider a 90-µm-long section of the axon of a neuron46

stretched along its long axis and therefore subjected to tensile strain. If
the section of the axon undergoes a 4.5 µm extension in 2 seconds, it
would experience an engineering strain magnitude of 0.05 µm/µm,
sometimes reported as 5%, at a strain rate of 0.025 s-1. If this cell
underwent cyclic loading, being stretched and then relaxed back to its
original shape 10 times in 5 seconds, it undergoes a loading frequency
of 2 Hz.

Example 2:
Epithelial cells lining blood vessel walls experience shear strains due

to blood flow.Consider a cell with dimensionsof 40μm in length and5μm
in thickness. If a small shear stress is applied, displacing the top surface
of the cell laterally by 0.1 μm relative to the bottom, the cell experiences a
shear strain of approximately 0.02 radians, indicating a change of angle
by approximately 1.1°.
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0.04–0.12which occurs at a frequency of 0.2–1Hzduring breathing56. Heart
valves experience strain magnitudes as high as 1.4752,57, while diastolic
motion of myocardium involves strain magnitudes of 0.1–0.2 and loading
frequency of ~1Hz58. Biological tissues often experience a complex com-
bination of deformationmodes, strainmagnitudes, strain rates, and loading
frequencies. A summary of different strain magnitudes and strain rates
sustained by selected tissue types is show in Fig. 1.

Transitions from physiological to pathological loading
When strain amplitudes and rates are large, especially for soft tissues that are
not specialized for load-bearing, or diseased tissues with attenuated
mechanicalproperties, the appliedmechanical loadingbecomespathological.
A tissue-specific threshold that determines whether a given loading is ben-
eficial or detrimental may exist. We sought to determine the approximate
thresholdvalues for strainmagnitudeand strain rate fromthevalues reported
in the literature. When plotting as a function of strain magnitude alone, it is
difficult to define a precise injury threshold value although a positive cor-
relation between increasing magnitude and instances of cell injury is both
intuitive and seen in the data (Fig. 2a). When plotting as a function of strain
rate (Fig. 2b), physiological cellular loading often appears to occur at strain
rates <0.01 s-1 with many reported pathological loading conditions com-
monly observed at strain rates of >0.1 s-1. One hypothesis that can be made
from this observation is that over this range, some of the cellular structures
responsible for maintaining cell shape cannot reorganize to adapt to the
deformation occurring on this timescale (for example a strain magnitude of
1.0, at a rate of 0.1 s-1, takes ~10 seconds). To explore this hypothesis, we
discuss the different cellular structures important for maintaining brain cell
shape in the context of the timescale for their turnover (binding and
assembly, un-binding anddis-assembly) and repair, andhowstrain rates that
exceed these limits lead to cellular injury and TBI. While discussing these
structures it is important to note that tissue loading in vivo is a complex
combinationofmagnitudes and rates in three-dimensional space.Making an
estimate of timescale and the turnoverofdifferent cellular structuresprovides
a simple starting point for the complex problem of brain tissue injury.

Mechanisms Of Cellular Injury In TBI
Due to the clinical significance of traumatic brain injury, there has been an
ongoing effort to estimate the strain magnitudes and strain rates that occur

in vivo for brain tissue during impact-based (e.g. collisions during sports)
and blast-based (e.g. exposure to explosions) TBI events. There have also
been concerted efforts to study TBI in the context of age-related neurode-
generative diseases, as neurodegenerative diseases compromise the brain’s
structural integrity and resilience, making it more susceptible to traumatic
brain injury (TBI) (see, for example, Abdi et al. 59). In addition, TBI itself can
accelerate neurodegenerative processes, creating a cycle of increased vul-
nerability and progressive cognitive decline (e.g., Brett et al.60). Existing
studies suggest that the average strain rate experienced by brain tissue
during impact TBI could reach as high as 52 s-1. In vitro models and com-
putational simulations of inertia-driven impact TBI have demonstrated that
brain tissues deform by peak strain magnitudes of 0.2–0.5 at rates of 10 to
50 s−1 61–70 (Fig. 3a). In blast-driven TBI, computational simulations of the
head subjected to shock wave loading predict brain tissue strain magnitude
of ≤0.1, but at high rates ranging from 12 to 960 s-171,72. Together, these
studies indicate that TBI can occur over a broad range of loading conditions
depending on the context of the injury. For the basis of our discussion, we
consider mild Traumatic Brain Injury (mTBI) events to occur at a repre-
sentative average strain magnitude of ~0.3 and strain rate of ~10 s-1.

Cellular responses to high strain rate loading
What happens to the cellular constituents of brain tissue when loaded by a
strain magnitude of ~0.3 at a strain rate of ~10 s-1 associated with mTBI?
Several different cellular structures are well documented as having an
important role in sustaining cell shape, which include the plasma mem-
brane, cytoskeleton, cytoplasm as well as a secondary role for some orga-
nelles. Furthermore, cells in the brain, such as neurons, often contain
specialized structures such as axons, dendrites, and spines that give cells
complex morphologies and features that could be damaged during
mechanical loading. In general, cellular structures can accommodate
changes in cell shape by firstly ‘unravelling’ or aligning in the direction of
mechanical loading (an entropic change), and secondly by ‘stretching’
which depends on the mechanical properties of the proteins, lipids, and
molecules that constitute that structure (an enthalpic change). Cellular
structures that can accommodate high strainmagnitudes therefore typically
either have a lot of ‘extra material’ that can unravel under stretch or consist
of a material that is durable and can stretch without mechanical failure. As
part of a living system, many cellular structures undergo active remodelling

Fig. 1 | Graphical representation of the range of strain loading conditions
associated with physiological and pathological processes of the body. a Simplified
graphical representation andb scatter plot of strain rate versus strainmagnitude plot of
various physiological andpathological processes. Processes are grouped by the relevant

organs and tissues. Values for strain obtained for different tissues including
bones191–195, lungs56,196,197, ligaments198,199, and cartilage200; brain61–66,71,72,201, heart52,57,58,196,
skin55 and intestines202. Each point plotted represents the average value from an
individual study. The bounding lines are qualitative and are for visual reference only.
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Fig. 3 | Responses of tissue and cellular models of
the brain to different strain magnitudes and rates.
aArepresentative strainfield observedwithin a head
surrogate intended to simulate the brain under
mTBI conditions. The strain field was captured at
the time point corresponding to the peak maximum
principal strain of 0.20magnitude at rate of 7 s-170 (©
Rovt et al. 2023, reprinted with permission from
Elsevier). bAxons show swellings (bulbs) two hours
after high strain magnitude, high strain magnitude
(0.58–0.77) and high strain rate (26–35 s-1)107 (©
Smith et al. 1999, Society for Neuroscience).
c Degree of axonal undulation is shown to be pro-
portional to the strain amplitude applied at a rate of
44 s-142 (© Tang-Schomer et al. 2009, reprinted with
permission from Wiley & Sons). d Model of the
axonal cortical cytoskeleton; The axonal core con-
tains bundled microtubules cross-linked by
microtubule-associated proteins. Surrounding this
core are neurofilaments and an outer scaffold of
periodic F-actin rings connected by α/β-spectrin
tetramers aligned along the axon180 (cross-sections
of the tetramers shown as dimers) (Adapted from
Dubey et al. 2020, used under CC-BY license).
e Super-resolution images of axons labelled with
anti-βII spectrin (primary) and Alexa Fluor 488
(secondary). Repeated patterns along the axon
length indicating ring structures are observed. Scale
bar: 1 μm180 (©Dubey et al. 2020, used under CC-BY
license).

Fig. 2 | Physiological and pathological responses
of cells under strain loading. a Physiological203–205

and pathological21,24,62,126,202,206–208 cellular responses
at various strain magnitudes. b Physiological51,204,205

and pathological21,126,202,207,209 cellular responses at
various strain rates. Physiological responses are
shown in green text, whereas the pathological
responses are shown in red.
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and turnover and are repaired as a normal part of cell function. The time-
scale for critical processes such as protein diffusion, binding, synthesis, and
repair, and the timescale over which deformation occurs therefore have
complex roles in cellular responses to strain rate.

To study the mechanical response of cells and tissues to external
mechanical loading, a range of different tools have been developed. In vitro
methods for exposing cell cultures and tissues tomechanical stretch are now
widely used to evaluate injury in response to deformation73–77. In addition to
whole cell and tissue loading, biophysical tools such as atomic force
microscopy78,79,micropipette aspiration80, and optical tweezers81 can be used
to characterize themechanical properties of subcellular structures, including
the properties of cytoskeletal polymers82–84 and the response of the plasma
membrane85,86. Similarly, a range of optical microscopy and spectroscopy
techniques have been developed to measure the dynamics of proteins and
molecules within subcellular structures including single molecule
imaging87,88, Fluorescence Correlation Spectroscopy (FCS)89,90, and Fluor-
escence Recovery after Photobleaching (FRAP)91–94. In the following sec-
tions, we use data reported in the literature that were obtained from whole
cell testing, biophysical tools, and microscopy/spectroscopy to make com-
parisons between the role of strain magnitude, strain rate, and loading
frequency on brain cell injury, in the context of a transition from physio-
logical to pathological loading of brain tissue.

Plasma membrane
The plasma membrane separates the interior of mammalian cells from the
external environment and consists of a lipid bilayer packed withmembrane
proteins95–97. While lipid bilayers themselves cannot accommodate large
planar strains (up to 0.02–0.0498,99), the cellular plasmamembrane is notflat,
and membrane material contained within caveolae (small 50–100 nm
membrane invaginations) and other structures can be unravelled under
stretch to buffer rapid changes in cellular strain. For example, cells subjected
to hypo-osmotic shock, which increases their volume by ~35%, results in a
reduction in the number of caveolae by ~30%100. Inmigration of primordial
germ cells, membrane protrusions (blebs) form through the flattening of
membrane tubes99,101. In addition to changes in membrane topography,
lipids and proteins in the plasma membrane can diffuse in the plane of the
membrane and are mobile, potentially allowing them to reorganize under
strain. For example, in supported lipid bilayers recovery of fluorescence
occurs within ~20–30 seconds after photobleaching102, with similar values
reported for the recovery of membrane-bound proteins by lateral diffusion
and exchange with the cytoplasm in ~20 seconds103. It has also been shown
that changes in plasma membrane tension following changes in cellular
strain coordinates the activation of exocytosis and contraction104. In addi-
tion to passive effects, mechanical strain has also been suggested to directly
affect lipid order and plasmamembranemobility, slowing recovery rates105.
The plasma membrane is therefore a dynamic cellular structure that can
respond to the strains associated with mTBI injury both directly through
changes in shape and dynamically through planar diffusion and turnover.

Indeed, changes in membrane morphology are often a hallmark of
cellular injury in TBI. For example, Diffuse axonal injury (DAI) is a form of
TBI-induced injury characterized by extensive stretch- and shear-induced
damage to axonal fibres due to rotational forces experienced during sudden
head acceleration or deceleration106. Early-stage axonal injuries in DAI are
marked by bulging along the long axis of the axons (axonal swelling).
Uniaxial stretch experiments on neuronal cells107 showed that while axons
could withstand strain magnitudes of up to 0.65 without severing, they
exhibited cytoplasmic and membrane bulging upon returning to their ori-
ginal length (Fig. 3b).Other experimentshave reported axonal swellings and
the formationof axonal bulbs at strainmagnitudes exceeding 0.22 and strain
rates over 27 s-1, with these changes becoming more pronounced as strain
amplitude and rate increased108,109. Pathological axonalmembrane swellings
where microtubule bundles have disintegrated into loops or waves have
beenobserved inbothTBI andneurodegenerativediseases, andhighlighting
the significance of the interaction between the plasma membrane and
underlying cytoskeletal structures42,107–114. Interestingly, recentwork has also

suggested that axonal bulbs may have a protective effect, preventing Ca2+

influx into non-stressed regions of the axon115. Additionally, axonal injury
disrupts fast axonal transport, leading to the abnormal accumulation of
amyloid precursor protein (APP) at sites of axonal swelling. This APP
buildup, a hallmark of DAI, results from impaired anterograde transport
and has been implicated in secondary neurodegenerative processes fol-
lowing TBI116–118.

In addition to changes in membrane morphology, rupturing of the
plasma membrane has also been suggested as a mechanism for axonal
injury. Traumatic injury has been shown to increase membrane perme-
ability, which correlates with the rate and magnitude of loading119–125. In
neuronal injuries, membrane rupture, or the formation of membrane pores
under strain (mechanoporation), frequently occurs before neuronal
degeneration in tension and shear traumatic brain injury experiments, at
strain magnitude of 0.3 and strain rate of 10 s-1126. Furthermore, membrane
mechanoporation can trigger calcium influx, reactive oxygen species (ROS)
generation, and mitochondrial dysfunction, leading to further cellular
damage anddeath45.Mechanical stimulation of themembrane is also closely
linked with the regulation of mechanosensitive ion channels. Mechan-
osensitive ion channels, such as Piezo 1 and Piezo2, play a critical role in
maintaining neuronal homeostasis by regulating processes like cell migra-
tion and differentiation through controlled Ca2+ influx127–130. Piezo 2
channel in particular helps modulate sensory processes under normal
conditions129,131.However, TBI conditions candysregulate Piezo2, leading to
an excessive calcium influx. This disruptionnot only increases cellular stress
but also contributes to neuronal death and the production of inflammatory
cytokines like TNF-α and IL-1β132. For example, cells stretched at strain
magnitudes of 0.73–0.9, at a strain rate of 33 s-1 exhibited prolonged plasma
membrane damage and an increase in cell death (up to 45%), particularly
after 12-24 hours post-injury133.

Microtubules and Axons
Microtubules are cylindrical filaments formed from protofilaments of
tubulin dimers and play a critical role in processes such as cell division134.
Microtubules have a highbending rigidity (i.e. a persistence length of several
millimetres135,136) and have been reported to have a non-negligible role in
determining the mechanical properties of single cells in compression137–139.
Microtubules are highly dynamic and exhibit dynamic instability, char-
acterized by continuous phases of polymerization and depolymerization
(turnover time of 1–10min)140,141. The dynamic behavior of microtubules is
regulated by interactions with microtubule-associated proteins (MAPs),
which bind to microtubules and influence their stability, dynamics, and
cellular interactions. For example, MAP2 serves as a marker of dendritic
injury and synaptic plasticity following TBI and has a role in stabilizing
microtubules and supporting neuronal structure142,143. Similarly, MAP6
(also known as STOP) has been shown to contribute to microtubule sta-
bilization post-TBI144. The MAP tau is essential for stabilizing and orga-
nizing microtubules in parallel alignment within axons, and the cross-
linking of tau helps maintain uniform spacing between adjacent micro-
tubules and reduces depolymerization145–149. Axons in neurons are sup-
ported by tau-stabilizedmicrotubules, which exhibit a long turnover time of
>30minutes150,151. The interplay between turnover dynamics and the
mechanical response is particularly significant for microtubules. For
example, mechanical stresses have been reported to cause damage to the
microtubule lattice, which can repair itself through the addition of new
tubulin dimers152.

In axons, continuous bundles of cross-linkedmicrotubules are thought
to provide structural support against different forms ofmechanical loading,
such as tension and compression111. Indeed, mechanical loading can lead to
microtubule bending which can lead to internal tension, compression, and
shear. This will in turn promote breaking and subsequent depolymerization
of microtubules153,154. Following loading at a large strain magnitude of 0.3-
0.75 and a fixed strain rate of 44 s-1, undulating distortions have been
observed to form along axons (Fig. 3c) which coincides with buckling,
breakage, and progressive loss of microtubules42. Mechanically induced
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damage of microtubules and subsequent axonal failure are strain rate
dependent71,155–157, consistent with the notion that bending, potential
breakage and disruption of themicrotubule network153,154 occur particularly
in regions of the axon where themicrotubules are relatively stable with long
turnover times.

The strain rate sensitivity of microtubule-based injury may also be
attributed to the viscoelastic properties of the neuronal cytoskeleton158,159. It
has been hypothesised160 that the tau proteins are viscoelastic: being flexible
at low strain rates ( ~ 0.01 s-1) allowing for reversible sliding of
microtubules126,161,162 but stiffen up under strain applied at high rate,
transferring significant load onto microtubules and potentially causing
damage160. This microtubular failure likely disrupts neurite transport,
leading to an accumulation of vesicles and organelles, which manifests
morphologically as axonal beading163, and causing electrophysiological
dysfunction of the neurons66.

Actin, growth cone, dendrites, and spines
The actin cytoskeleton plays a critical role in determining cell shape and
mechanical properties2,164,165. Actin filaments are semi-flexible polymers (i.e.
a persistence length ~10–20 µm166) that assemble into higher order struc-
tures such asmeshes, bundles, networks and fibres, to enable cells to sustain
external load, generate forces, and change shape. The assembly of different
actin structures is facilitated by the interaction between actin filaments and
an array of regulatory proteins that include actin filament nucleating pro-
teins, crosslinking proteins, and motor proteins167,168. All these elements,
including actin filaments themselves, are dynamic, allowing cells to dyna-
mically change shape and generate mechanical forces. The turnover time-
scale of actin filaments and their regulatory proteins is structure dependent
and have been measured using fluorescent fusion proteins to actin FRAP.
For example, filaments in the actin cortex are highly dynamic, turning over
in ~11 seconds169,170. By comparison actin filaments and crosslinking pro-
teins in structures such as stress fibres are more stable, taking hundreds of
seconds to turn over171–173. Interestingly, disease-causing mutations to actin
regulatory proteins can lead to excessive polymerization of actin
filaments174,175 or over-crosslinking of actin structures subsequently chan-
ging the turnover dynamics of different actin structures and cellular
mechanical properties176,177.

In neurons, actin plays a central role in the formation of distinct
structures that are significant for their response to strain loading178. In the
axon, actin filament rings form along the length of the axon interconnected
by spectrin tetramers, with a periodicity of 180-190 nm179 (Fig. 3d). Actin-
spectrin networks have been proposed to have a role in the mechanical
response of the axon in TBI. For example, Dubey et. al. 180. used a custom-
built stretching apparatus to investigate themechanical response of axons to
strain loading.They observed that the actin-spectrin cytoskeleton (Fig. 3e) is
a prominent contributor to axon mechanics by functioning as a shock
absorber. Spectrin proteins are proposed to reversibly unravel181 by a strain
magnitude of up to 0.1, softening the axon and buffering changes in length
that could potentially cause damage. In other work, an increase in actin-
spectrin spacing from 183 nm to 202 nm has been observed adjacent to
neuronal swellings following injury by a strain magnitude of ~0.1182. Fur-
thermore, it has been proposed that softening of the spectrin scaffold under
repeated mechanical loading exposes microtubules in axons to increased
stress during repeated TBI events183. In addition to the formation of actin
rings in axons, actin plays a critical role in dynamic processes such as the
formation of growth cones, dendritic spines, and protrusions. In many of
these structures, actin dynamics and remodelling are critical for plasticity
and changes in actin dynamics can lead to neurodegenerative disease184–186.
For example, it has been shown that actin-binding protein cofilin interferes
with the actin polymerization process when the cell is subjected to stress,
leading to the formation of persistent rod-like structures which are linked to
Alzheimer’s and Huntington’s disease187–190. Changes in the turnover
dynamics of these disease-associated structures and the corresponding
effects on the strain response of these cells is an interesting area of future
research.

Conclusion
Traumatic brain injuries (TBI) are a common and significant health
concern, with both short- and long-term detrimental effects. Cellular
injury in TBI depends on strain magnitude and strain rate, presenting a
complex combination of loading conditions. Interestingly, many cell
types are able to tolerate high strainmagnitudes if loaded at a quasi-static
strain rate, but sustain damage from loading applied at high strain rate.
This suggests that the turnover of cellular structures, such as the
membrane and cytoskeletal polymers, allows cells to adapt to slow
physiological loads, but not fast loading. This highlights the significance
of considering various mechanical loading parameters (e.g. strain
magnitude, strain rate, loading mode, and frequency) in determining
cellular and tissue injury. Among these, high strain rate emerges as a
critical factor contributing to cellular damage, which can be linked to the
mechanical properties and dynamic responses of subcellular structures.
In this work, we have introduced some of the key structures that con-
tribute to cellular responses to strain. The plasma membrane, with its
rapid turnover time ( < 10 s), experiences in-plane tension and serves as
a barrier against mechanical deformation. The cytoskeletal components
exhibit a range of mechanical responses: actin in the cortex (turnover
~11 s) and stress fibres ( > 100 s) primarily counteract tension, while
microtubules (1–10 min) and MAP-stabilized microtubules ( > 30 min)
resist tension, compression, and shear forces. These turnover times
highlight the varying capacities of cellular structures to respond to
mechanical strain, influencing the extent of injury and potential
recovery following traumatic loading. Understanding these behaviours
and characteristics is crucial for developing targeted interventions to
mitigate cellular damage.

Future research in traumatic brain injury (TBI) should focus on elu-
cidating the interplay between these structural components under different
loading conditions, with particular attention to how the dynamics of indi-
vidual cell components may influence injury thresholds. A possible area of
focus could include the study ofmembrane-cytoskeletal linker proteins and
cytoskeletal crosslinking proteins, combined with measurements of their
dynamics andmechanical properties, to develop a holistic understanding of
cellular injury mechanisms in TBI. Additionally, exploring potential ther-
apeutic strategies to modulate cytoskeletal dynamics and membrane resi-
lience may provide new avenues for mitigating TBI-induced cellular
damage. Ultimately, a deeper understanding of these mechanical interac-
tionswill enhanceour ability to develop effective protective and regenerative
strategies in neurotrauma research.
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