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Surgical optomics: a new science towards
surgical precision
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Surgical Optomics represents the convergence of optical imaging technology and advanced
computational analytics to create a new paradigm for precision surgery. Key techniques include
fluorescence-guided surgery (FIGS) using exogenous dyes, spectral imaging leveraging endogenous
chromophores (e.g., hemoglobin, water), and Single Snapshot of Optical Properties (SSOP) for real-
time quantitative imaging. This study examines the potential and limitations of some current Surgical
Optomics technologies, aiming to advance understanding and foster innovation in this transformative
field. By turning the operating room into a data-rich environment, this field has the potential to
revolutionize surgical care, enabling better outcomes for patients.

The quest for advanced intraoperative diagnostic and therapeutic tools has
spanned centuries, but only with the recent surge in Big Data and Artificial
Intelligence has a truly effective solution become feasible1.

Recent decades have seen significant advances in optical technologies
for surgery2. Initially, efforts focused on bridging the gap between human
vision and imaging systems, progressing from Standard Definition (SD) to
High Definition (HD), 4 K, and 3D imaging. As technology evolved, the
focus shifted toward surpassing human vision— achieving microscopic
visualization, and revelation of the previously invisible. In other words, the
surgical augmented eye3.

This evolution has given rise to surgical optomics4, an emerging
interdisciplinary field that pairs optical imaging technology with advanced
computational methods to provide relevant, real-time, quantitative, and
functional information during surgical procedures. “Omics” refers to the
comprehensive characterization and quantification of biological systems5.
Surgical optomics applies this approach to enable surgeons to quantitatively
assess tissue composition andpathophysiological properties (e.g., perfusion,
hydration), at both the micro- and macroscopic level, with unprecedented
precision. In providing real-time access to previously unattainable data,
Surgical Optomics has the potential to enhance intraoperative decision-
making, yet the scope, applications and limitations of surgical optomics
remain underdefined. We aim to delineate this emerging field by exploring
themost prevalent andwidely available surgical optical imaging techniques,
as well as those with significant potential for future advancements (Fig. 1).

The electromagnetic spectrum – how different wave-
lengths are leveraged for surgical use
The electromagnetic spectrum refers to the full range of electromagnetic
radiation characterizedbywavelengthor frequency.Thewavelengths visible
to humans (400–780 nm) represent only a small portion of this continuum,
which encompasses every type of energy wave6. From long, slow, and low-
energy radio waves to ultra-short, fast, high-energy gamma rays, the spec-
trum contains seven broad classes based on how these waves behave when
interacting with matter7 (Fig. 2).

Although every class in the electromagnetic spectrumhas been applied
in the medical field, Surgical Optomics focuses on wavelengths within the
ultraviolet, visible, and infrared light ranges (approximately from 300 to
3000 nm), offering a cost-effective, high-resolution imaging without the use
of ionizing radiation8.

By studying the interaction between light and matter, it is possible to
understand how different electromagnetic wavelengths behave when pro-
pagating through various biological tissues — how each one is absorbed,
reflected, and refracted in distinct settings (Fig. 3). This enables the char-
acterizationof tissuemolecules and facilitates objective clinical conclusions9.

This study examines themost prevalent and promising surgical optical
imaging techniques, emphasizing their current applications and potential
for future advancements. The analysis is categorized into two primary
approaches: exogenous fluorescence, represented by fluorescence-guided
surgery, whichutilizes externally administered contrast agents for enhanced
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visualization10, and endogenous fluorescence, including hyperspectral
imaging and spatial frequency domain imaging (SSOP), which exploit
intrinsic tissue properties to provide functional and structural insights9. This
framework aims to elucidate the advantages, limitations, and future pro-
spects of these modalities in advancing surgical precision and outcomes.

Exogenous fluorescence
Principle
Fluorophores are chemicals that can absorb light at a specific wavelength
and re-emit it at a typically higher (lower energy) wavelength. Fluorescent
imaging exploits this physical phenomenon by utilizing spectrally resolved
light sources that excite the injected exogenous fluorescent dye, which in
turn emits a signal. This signal is detected by cameras equipped with light-
collection filters and processed through specialized hardware and software,
ultimately displaying the fluorescent data, potentially superimposed on a
white-light illuminated image.

By administering these fluorophores in Fluorescence Guided Surgery
(FIGS), specific structures that would otherwise be indiscernible to the
naked eye can be set apart from their surroundings, giving the surgeon
critical support for adequate real-time decision-making11.

Each fluorophore used in FIGS has specific optical and pharmaco-
kinetic characteristics that allow for its use in different situations. Among
the clinically available fluorophores, those that emit light in the Near

Infrared (NIR) wavelength spectrum (700–1700 nm) are of special
interest for translation into surgical practice because the signal at this
wavelength can penetrate deeper into tissues with less photon absorption,
scattering, or auto-fluorescence, resulting in high-contrast, three-
dimensional data12–14.

Clinical application
Since its first use nearly a century ago11, fluorescence in surgery has proven
to be a real-time, dynamic, easy-to-use, non-invasive, low-toxicity, and low-
cost way to obtain otherwise invisible data in both open and minimally
invasive surgery10. Clinically approved FIGS uses non-targeted fluorescent
contrast agents such as indocyanine green (ICG) andmethylene blue (MB)1
4,15, which allow for multiple applications, including surgical navigation,
structure identification, tumor delineation, and metabolic activity
evaluation3,16.

Fluorescence can be applied dynamically—imaging an area over time
to draw clinical conclusions—or statically, using a single image to evaluate
the fluorescence intensity of a specific area relative to the background or
other areas. The amphiphilic nature of ICG allows it to bind to plasma
proteins, achieving uniformblooddistributionwhen injected intravenously.
This makes it ideal for real-time, dynamic perfusion assessment17,18, as
demonstrated by several clinical trials on fluorescence guided angiography
(FA), including in gastrointestinal surgery (e.g., anastomosis evaluation)

Fig. 1 | Schematic representation of key technologies in Surgical Optomics.

Fig. 2 | Diagram of the electromagnetic spectrum. Orange stripe display wave-
lengths, which increase in length towards the left. Blue stripe display frequency,
which is inversely proportional to wavelength (decreasing towards the left). Surgical

Optomics primarily focuses on wavelengths within the range between infrared and
ultraviolet, including the visible spectrum.
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and transplant surgery (e.g., vascular patency and real-time liver perfusion
monitoring15,19–25).

ICG has also advanced oncological surgery for lymph node mapping
and tumor detection. In 2005 Kitai et al. demonstrated its feasibility for
lymphnode visualization in breast cancer26. Subsequent studies showed it to
be as effective as existing alternatives while being less disruptive to surgical
workflow and free of ionizing radiation27,28. Fluorescent dyes are also
valuable for lymph node mapping in gastrointestinal procedures, such as
esophageal, gastric, and colonic surgeries29–31. Nonetheless, dose, volume,
and injection methods remain topics of discussion32. Tumor detection
applications often rely on passive fluorophore diffusion into tumors via
aberrant vasculature, pharmacodynamic properties of the fluorophore, or
the binding of fluorescent probes to targeted ligands33,34. Off label, ICG has
been used to visualize various cancers, including liver, breast, colorectal,
head and neck tumors, and melanoma28,35–38.

Liver applications of ICG have been extensively studied due to its
hepatic metabolism35,39. Hepatocellular carcinomas emit a strong fluor-
escent signal due to impaired biliary excretion40, while liver metastases
exhibit a fluorescent ring from healthy immature hepatocytes surrounding
the tumor, attributed to downregulation of anion transporters41. ICG
hepatic metabolism also enables real-time identification of extrahepatic
biliary structures without radiation42, potentially reducing operative time
and laparoscopic-to-open conversion rates, though its impact on post-
operative complications remains unproven43,44. Finally, ICG is used to
demarcate anatomical boundaries in segmental hepatic resections. It guides
parenchymal delineation through both positive and negative staining
techniques, enabling precise surgery while preserving healthy liver tissue45.

In recent years, several large-scale clinical trials and systematic reviews
have underscored the clinical value of ICG‑based perfusion assessment
across a range of surgical applications. The EssentiAL trial, a phase III
randomized study with 839 patients undergoing minimally invasive rectal
surgery, demonstrated that intraoperative ICG fluorescence angiography
reduced anastomotic leak rates by 4.2% (RR 0.645, 95% CI 0.422–0.987;
p = 0.041)46. Multiple recent meta-analyses of ICG use in colorectal surgery
have consistently reported a significant reduction in anastomotic leak risk
(pooled relative risks ≈0.5 and NNT 22–23)47–50. Similarly, for oncologic
liver resection, different meta‑analyses (with sample sizes of 417 to 1260)
have consistently concluded that ICG guidance significantly decreases
operative time (by 16–21min), intraoperative blood loss ( ~ 100mL),

hospital stay ( ~ 1–1.6 days), and postoperative complications, with a sig-
nificantly higher one-year disease‑free survival (OR 2.87) relative to non-
ICG controls51,52. Beyond these oncological applications, ICG has been
increasingly leveraged in the field of Liver Transplant for graft evaluation,
donor safety, and anatomical guidance, as shown in a review by Lau et al.
which demonstrated that ICG clearance during normothermic machine
perfusion can reliably predict early allograft dysfunction and correlates with
postoperative outcomes, while intraoperative ICG angiography provides
real-time assessment of arterial, venous, and biliary patency20. Recent clin-
ical studies have applied ICG cholangiography during donor hepatectomy
to delineate biliary anatomy, demonstrating that the use of ICG reduces
biliary complications relative to historical rates, improves precision in bile
duct transection53,54, leads to faster biliary anastomosis (mean time 28 vs.
37min, p = 0.02) and fewer postoperative biliary leaks (2.5% vs. 8.3%,
p = 0.04)55.

Open challenges
FIGS has demonstrated its value as a tool that provides surgeons with
supplementary, previously invisible information for clinical decision-
making. Despite the growing adoption of fluorescent contrast agents in
clinical practice and their injection generally being regarded as safe, rare but
severe complications, such as anaphylactic shock, have been reported56,57.
Furthermore, prolonged washout times of fluorescent contrast agents, such
as 30min for ICG58) pose challenges for the repeated testing required in
applications like perfusion monitoring.

Current clinically approved fluorescence systems cannot provide
quantitative results because they fail to measure the absolute concentration
of fluorescent agents in tissues and lack control over basic variables that
affect signal readings59. Fluorescence intensity directly varieswith the square
distance between the tissue and the imaging system. Without rigorous
control or normalization, the observed signal cannot reliably indicate actual
perfusion60–63. Additionally, each commercial system uses proprietary
algorithms with unique cutoff values, rendering results from different sys-
tems mostly incomparable64,65. Fluorescence signals may appear blurry or
lack resolution due to light scattering within the tissue. The attenuation of
both excitation light andfluorescence emissionhinders accurate localization
and quantification of fluorescence, which is essential for precise and
quantitative diagnostic applications. As a result, surgeons rely only on
qualitative images, leading to subjective, inconsistent, and biased
interpretations66,67. Current evidence remains low and insufficient to
recommend FIGS broadly for reducing surgical complications36,68,69.

Efforts to achieve objective quantification have introduced methods
such as signal-to-background-ratio (SBR), which compares the mean
signal from target tissues to background fluorescence. SBR can provide
pseudo-quantification and more standardized results70. Calibration
devices like the Green Balance™ ICG Reference Card (Diagnostic Green;
Aschheim–Dornach, Germany) and the CalibrationDISK™ (SurgVision
BV, Harde, the Netherlands) can improve reproducibility by controlling
variables such as camera distance and illumination, generating space-
resolved pseudo-quantitative results in static images71,72.

Time-resolved quantification has also been explored as an alternative
to absolute fluorescence intensity parameters73. For instance, fluorescence-
based enhanced reality (FLER) (Fig. 4) analyzes temporal fluorescence
characteristics rather than the intensity of individual pixels, generating
quantitativeperfusioncartography that overlaidonto real-time laparoscopic
videos. These color-coded maps, which highlight varying levels of tissue
perfusion, offer more clinically valuable insights compared to traditional
qualitative ICG systems61,62,74. Although FLER has shown experimental60–63
,75–77 and clinical78 accuracy, its implementation remains time-consuming
and adds complexity to surgical workflows79. Repeated analyses encounter
the same issues observed with standard ICG assessment. Other approaches
that rely on time-resolvedmetrics (e.g., time to peak, maximum fluorescent
value over time, slope of the time to peak), face challenges due to the lack of
standardized variables, leading to heterogeneous results preventing stan-
dard implementation in clinical practice80.

Fig. 3 | Schematic of light tissue interactions. Absorption occurs when light is
absorbed by tissue molecules and converted into other forms of energy (e.g., heat).
Reflection refers to light bouncing specularly (at a single angle) off the surface.
Scattering involves deflection of light in various directions by tissue structures (e.g.,
organelles and fibers) which may also alter the photon’s wavelength. Fluorescence is
the re-emission of absorbed light at a different wavelength. Transmission describes
the process of photons passing through tissue without being dissipated. These
phenomena occur simultaneously and at varying degrees depending on tissue
properties and light characteristics.
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Machine learning algorithms have shown promise in fluorescence
analysis, reducing subjectivity by identifying dynamic intensity patterns
over time. These algorithms can distinguish between cancerous and normal
tissue with minimal disruption to surgical workflow81. The ongoing
CLASSICA project uses machine learning to analyze ICG perfusion pat-
terns, aiming at differentiating benign and malignant rectal polyps82.
However, these analyses are conducted in the postoperative period and are
not available in real time during surgery.

Targeted fluorescent agents represent another frontier in the
advancement of FIGS, aiming to overcome current limitations of oncologic
applications and enable real-time analysis. These fluorescent probes typi-
cally use a biomarker conjugated to a fluorophore, thereby providing a
signal at the target site and enabling real-time visualization of primary
tumors, neoplastic lymph nodes, and distant metastasis12,59. Among the
myriad fluorescent probes developed, antibodies and peptide-based
recognition elements are of particular interest. Fluorophore-antibody
probes, inspired by targeted cancer therapies, have demonstrated excep-
tional precision, with high sensitivity and specificity in detecting multiple
tumors in both experimental settings83,84 and clinical trials85. Similarly,
fluorescent peptide probes rely on a labeled peptide sequence that can
selectively bind to or becomemodified by the molecular target expressed at
the tumor site, offering numerous advantages, including rapid distribution
and reduced or absent immunogenicity86. The drawback is that each tar-
geted probe is specific to a tumor andmust undergo extensive development
and navigate regulatory hurdles before clinical use. Additionally, as with

non-targeted fluorophores, quantifying targeted fluorescence to correlate
intensity with tumor characteristics remains a challenge. Targeted fluor-
escent agents have also been evaluated in endoscopic applications. Phase II
and phase III trials87,88 have demonstrated their feasibility for tumor iden-
tification, highlighting their potential as an alternative for endoscopic
follow-up of esophageal and rectal lesions89–91.

The limitations of non-targeted and targeted FIGS have spurred
interest in alternative imaging technologies.While FIGS offers considerable
benefits, its transition to a standard surgical tool requires addressing the lack
of quantification, improving standardization, and navigating regulatory
challenges for targeted agents.

Dye-free methods have been developed as alternative approaches
for tissue characterization that do not require exogenous agents.
Autofluorescence, which operates on the same optical principles as
exogenous fluorescence but without the need for a contrast agent, has
been extensively studied within FIGS. However, its application is limited
to tissues with naturally occurring intrinsic fluorophores, such as the
parathyroid92,93. Although effective for specific applications, auto-
fluorescence is static and has a significantly lower signal-to-background
ratio, which has hindered its development as a general alternative to
exogenous fluorescence. In contrast, emerging dye-free techniques that
exploit light-tissue interactions—such as reflectance and scattering—are
offering new opportunities for tissue characterization. These methods
provide safer, more reliable imaging solutions without the need for
exogenous agents.

Fig. 4 | FLER system used in a left hemicolectomy. a After ICG is injected and
recorded over time with an infrared camera (b) Fluorescence Time to Peak is
computed (c) and a virtual perfusion cartography is built (Red =High time to peak∴

low perfusion). d The virtual cartography is superimposed onto real-time images to
obtain a mixed reality effect and display the quantified ICG signal directly on
the bowel.
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Spectral imaging
Principle
Spectral imaging (SI) refers to imaging techniques that capturemultiple
bands across the electromagnetic spectrum to determine tissue com-
position noninvasively. Unlike standard cameras, which use only three
visible spectral bands (red, green, and blue—RGB), SI covers a broader
range, often including spectral bands corresponding to both visible and
invisible light94 (Fig. 5). As different tissue types (e.g., different organs)
have unique optical properties (e.g., absorption, reflection and scat-
tering) at different wavelengths, SI can potentially recover their detailed
molecular composition, even beyond the visible surface95–97. SI is clas-
sified based on the number of spectral bands captured and their spectral
bandwidth. It can be broadly divided into multispectral imaging (MSI)
and hyperspectral imaging (HSI). MSI typically captures up to tens of
relatively broad, non-contiguous spectral bands using filters and illu-
minationmethods. HSI, in contrast, captures up to hundreds of narrow
spectral bands per pixel, providing high spectral and spatial
resolution98.

Clinical application
Numerous image processing and machine learning algorithms have been
developed to efficiently handle the large datasets of multidimensional
images generated by hyperspectral cameras99. In surgical settings, both
regression and classification algorithms have been exploited to extract
clinically relevant parameters, ultimately providing valuable insights that
can support surgical decision-making100,101.

Regression techniques in SI. Regression techniques are employed to
recover and quantify relevant functional tissue properties. This can be
achieved using SI, as endogenous light-absorbing molecules in tissue -
referred to as chromophores - absorb and scatter light at specific and
known wavelengths in unique patterns102–107. Hemoglobin in blood is a
key endogenous chromophore. SI leverages the distinct spectral sig-
natures of oxygenated and deoxygenated hemoglobin to enable real-time
imaging of tissue oxygenation and perfusion108,109. The quantification of
functional tissue parameters has been applied across various clinical
contexts, especially in colorectal surgery. This includes site selection for
colon anastomosis110,111, assessment of colon tissue vascularization112, and
the identification of optimal bowel transection points113. Recently, the
authors developed the first real-time SI system that was applied in pro-
spective patient studies106.

Beyond tissue perfusion and oxygenation, regression-based SI can also
monitorwaterdistribution114, servingas a sensitive andnon-invasive tool for
continuous, real-time monitoring of tissue hydration across diverse perio-
perative settings115,116.

Classification techniques in SI. The unique composition of different
tissue generates distinct spectral signatures, enabling precise intrao-
perative differentiation and characterization of specific organs and ana-
tomical structures based on their “spectral fingerprints” (Fig. 6).

This ability of SI to distinguish between tissues in surgical settings was
first demonstrated by Zuzak et al. during a laparoscopic cholecystectomy,
where a near-infrared MSI system showcased the in vivo visualization of
distinct anatomical structures117. Since then, SI has proven effective for
anatomical navigation in a plethora of procedures, including thyroid
surgery118, neurosurgery119,120, and liver surgery121. When integrated with
advanced deep learning algorithms, SI enables automatic tissue
recognition122. By classifying each pixel of a HS image, these models can
automatically identify specific organs123–125 and critical anatomical struc-
tures (e.g., biliary ducts, vessels, and nerves)4,123–130. This capability paves the
way for real-time augmented reality applications and robotic automation in
surgery, offering the potential to enhance precision in surgical
interventions4.

Cancer hallmarks, such as angiogenesis and increased metabolism,
can alter hemoglobin and oxygen concentration, cellular structures, and
vascular networks within tumor sites131. These tumor-associated changes
can be leveraged by SI for various clinical purposes, including cancer
tissue classification122,132, metastasis detection133–135, tumor site
delineation108,136, and sentinel lymph node identification across multiple
tumor types38. Several studies have investigated hyperspectral imaging
(HSI) for the non-invasive detection of colorectal cancer in freshly
resected samples135,136. However, these studies are limited by small
datasets or rely on classical machine learning models, such as support
vector machines (SVMs) or multi-layer perceptrons (MLPs), which only
consider spectral features smoothed with low-pass spatial filters, without
employing deep learning techniques. Prior research on tissue
classification135,136 has shown that these traditional approaches without
spatial smoothing, underperform compared to convolutional neural
networks (CNNs)122. Ongoing studies are further exploring the applic-
ability of MSI systems in the endoscopic setting, particularly, it is being
evaluated by the authors for its ability to distinguish between normal and
cancerous tissue in the colon and rectum based on their distinct optical
signatures, without requiring intravenous contrast agents or tissue
biopsy. Preliminary pre-clinical results have revealed clear spectral dis-
tinctions between healthy and pathological tissue in colorectal cancer
specimens, further confirming the feasibility and safety of MSI in this
context (Fig. 7).

In addition to the functional and structural mapping capabilities dis-
cussed above,HSI combinedwithmachine learning can nowbe applied as a
true theranostic tool. By guiding and assessing thermal damage during laser
ablation therapies137, HIS can reliably predicting both thermal thresholds

Fig. 5 | Schematic representation of a spectral imaging hypercube. SI acquires 3-dimensional data by measuring the tissue reflectance spectrum at each pixel.
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and necrosis extent, with a strong correlation to histopathology scores138

thus achieving high accuracy in delineating ablation margins during liver
procedures in animal models139.

There is growing evidence of the correlation between HIS and histo-
pathological assessment. In the preclinical models of hepatic outflow
obstruction, declines in HSI-derived oxygen saturation and rises in

deoxyhemoglobin were spatially co-localized with histologically confirmed
venous congestion and necrosis zones on H&E staining121,140. Additionally,
in a clinical series of major hepatectomies, intraoperative HSI measure-
ments were significantly correlated with post-operative serum markers of
liver injury, which aligned with pathologically confirmed areas of ischemic
damage141.

Fig. 6 |Automated surgical scene segmentation fromhyperspectral imaging data.
Human organs exhibit characteristic spectral profiles, which can be leveraged for
highly accurate surgical scene segmentation using deep learning116. The plots show

the median spectra (solid line) across gastrointestinal organ annotations for the
sample image, with the shaded areas indicating the standard deviation.
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Open challenges
While SI holds promise as a valuable intraoperative imaging tool, several
challenges hinder its widespread adoption in clinical settings142. Limitations
often emerge from the inherent challenges of balancing advances across all
three critical dimensions of SI (spatial, spectral, and temporal resolution).
Optimizing one dimension frequently necessitates trade-offs in the others,
complicating efforts to achieve simultaneous and comprehensive
improvements.

Quantitative imaging with SI faces significant challenges, including
reproducibility and the robust quantification of functional tissue para-
meters. Current devices report non-quantitative chromophore indices (e.g.,
hemoglobin index) rather than clinically relevant tissue properties. These
indices are generated using methods such as the Modified Beer-Lambert
Law, time-domain diffuse spectroscopy, and second-derivative techniques,
which have inherent limitations143–146, including the reliance on unrealistic
assumptions that do not hold in a clinical scenario or restricted applicability
of the results to pointmeasurements147. Machine learning approaches show
potential148 but require extensive annotated datasets and reliable reference
gold standards— also defined as “ground truth” (e.g., blood gas analysis, or
pathology), which remain scarce. Physics-based diffuse reflectance simu-
lations for training machine learning algorithms149–151 have equally shown
potential but struggle with domain gaps and the lack of complex spatial
context (i.e., limits in generating realistic spatially resolved maps of optical
properties and simulating complex surfaces that include curvature or
texture).

The scarcity of large, diverse medical HSI datasets further limits the
development of robust deep learning algorithms. Most existing studies rely
on single-center data, with only one known multicenter HSI study4, and
none to date exploring real-time applications. Although the number and
size ofmedical HSI datasets are growing— some now encompassing tens to
hundreds of patients4,125,152 — few surgical HSI datasets are publicly
available120,153,154.

Device variability further aggravates these challenges. Parameters such
as imagingmethods (e.g., pushbroom, snapshot), number of spectral bands,
spectral range, spectral and spatial resolution, sensitivity, and noise levels
differ substantially across HSI devices9,155. Standardization is also lacking

across file formats, accompanying metadata (e.g., exposure time, gain,
environmental factors, clinical data), measurement protocols, and annota-
tions. Such variability complicates cross-study validation and comparison.

Confounding factors remainmostly underexplored inmedicalHSI, yet
they are critical to developing reliable deep learning models, preventing
shortcut learning and algorithmic failure156. Seidlitz et al. have begun
addressing this challenge by examining subject-, therapy-, and imaging-
related confounders in automated sepsis diagnosis usingHSI skin images152.
For semantic surgical scene segmentation, recent studies have investigated
model generalization across shifts in geometric domains124,125, perfusion
states157 and illumination conditions158.

Slow acquisition times also impede HSI integration into surgical
workflows. Recent advances in high-speed spectral imaging devices for
laparoscopic surgery show promise109,159. In open surgeries, dynamically
changing lighting conditions necessitate continuous light source calibration,
disrupting the surgical workflow and potentially compromising patient
safety. Emerging techniques, such as those using specular highlights160 or
deep learning158, aim to address inaccuracies in functional tissue parameter
measurements and segmentation errors caused by uncalibrated
illumination.

To advance SI adoption, multidisciplinary, well-designed, large-scale
research initiatives are essential. These efforts should aim to identify the
spectral characteristics required for specific diagnostic inquiries and estab-
lish which tissue types can be reliably differentiated. Future studies should
prioritize capturing predefined spectral target structures, to streamline data
processing and image acquisition. Additionally, tailored data extraction
algorithmswill be crucial tominimizedelays between image acquisition and
data availability, thereby enhancing the clinical utility of SI in surgical
applications142.

Single snapshot imaging of optical properties
Principle
While spectral imaging requires complex data processing to recover optical
parameters from raw measurements Spatial Frequency Domain Imaging
(SFDI)uses spatiallymodulated light patterns projectedonto a tissue surface
to directly probe its optical properties. By analyzing the reflected light at

Fig. 7 | Hyperspectral data of a specimen of human colon with a tumor.
A Representative spectral curve output generated by a commercially available
hyperspectral camera. B Human colon specimen with regions of interest (ROIs)
corresponding to colorectal cancer (#21, #22) and healthy tissue (ROIs #1–20).

Absorbance and reflectance data are presented for wavelengths ranging from 500 to
1000 nm. The spectral curves are not normalized, which poses challenges for
interpretation by clinical personnel. Close collaboration with data scientists is
essential to derive clinically relevant insights for routine surgical practice.
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different spatial frequencies, SFDI separates the effects of absorption and
scattering, allowing for the extraction of quantitative optical properties (e.g.,
absorption coefficient, scattering coefficient) across the tissue.

Absorption is primarily dictated by the tissue’s chemical composition,
as photons can be absorbed by endogenousmolecules, such as hemoglobin,
lipids and water. In contrast, scattering arises from local variations in the
refractive index and is influenced by cellular structural properties. These
interactions are quantified as optical properties: the absorption coefficient
and the scattering coefficient, respectively161. As a result, the absorption
coefficient reflects the extent and nature of molecular interactions and is
typically associated with functional metrics such as oxygenation, hydration
ormetabolism. In contrast, the scattering coefficient is related to sub-cellular
structures, including nuclei, mitochondria, and collagen.

Single Snapshot of Optical Properties (SSOP) is an advanced imaging
technique derived fromSFDI that aims to simplify and speed up the process
of acquiring optical propertymaps of tissues.Unlike traditional SFDI,which
requires multiple spatially modulated patterns at different phase shifts and
spatial frequencies, SSOPuses only a single spatiallymodulated illumination
pattern to extract the tissue’s optical properties. Advanced algorithms and
pre-calibrations are used to compute tissue absorption and reduced scat-
tering coefficients from just one image162,163.

Clinical application
The measurement of optical properties, namely absorption and scattering
coefficients, has been shown in the literature to highlight the presence of
diseases or tissue alterations intraoperatively164–171.

Technologies for measuring optical properties typically employ mod-
ulation techniques to resolve the temporal and spatial behavior of light
propagation161. Most of these technologies require either a temporal
sequence of images or a spatial scanning tomeasure and to generate optical
properties maps, limiting their applicability for real-time intraoperative
guidance. To address this limitation, SSOP was developed to provide
quantitative measures of individual optical properties for each pixel in a
wide field image within a single snapshot, thereby enabling real-time
intraoperative imaging172 (Fig. 8).

The SSOP technology was demonstrated preclinically in pigs to image
oxygenation in real time using the Trident imaging system173. This tech-
nology was also validated in a variety of preclinical procedures in pigs, such

as esophagus, liver, colorectal, stomach or kidney surgical procedures using
metabolic biomarkers such as lactate for correlation170,174,175. Recently it was
successfully translated to a clinical trial, where it was used to image the
oxygenation of the externalized colon of 10 patients undergoing left anterior
resection of the colon78.

Open challenges
Current SSOP implementations, while enabling real-time optical property
imaging with acceptable visual quality, face challenges such as edge artifacts
and lower resolution compared to SFDI and spectral imaging. The inte-
gration of deep learning with Graphics Processing Units (GPU) computa-
tion and CNNs have enabled significant advances in biomedical optics,
including achieving real-time processing despite network complexity. For
instance, a study has demonstrated the feasibility of CNN-based, GPU-
accelerated SSOP technology, which integrates 3D profile correction and
high-quality image reconstruction from a single SSOP input.172,176–178.

A preclinical in vivo trial highlights the capability of SSOP to generate
real-time oxygenation rate maps, aligning with results from ICG fluores-
cence imaging. However, the simultaneous acquisition of oxygenation and
fluorescence data has not yet been explored, and integrating or displaying
both datasets concurrently could present technical challenges173.

Currently, most studies have been conducted in preclinical settings
using equipment that is neither commercially available nor widely acces-
sible. The approval and adoption of the described technologies for clinical
use will be essential to facilitate future clinical studies aimed at evaluating
their impact on intraoperative surgical decision-making.

Future of surgical optomics
Surgical Optomics represents the convergence of optics, surgery, and
computational analytics to create a new paradigm for precision surgery. By
turning the operating room into a data-rich environment, this field has the
potential to revolutionize surgical care, enabling better outcomes, reduced
complications, and faster recovery for patients.

Emerging techniques in surgical optomics, currently in earlypreclinical
development, hold significant promise for advancing intraoperative
diagnostics.

Optical elastography is an advanced imaging modality that quantifies
the biomechanical properties of biological tissues using light-based

Fig. 8 | SSOP Preclinical results. A Oxygen saturation images of a swine bowel
during baseline (t =−1 min), occlusion (t = 10 min), and after release (t = 14 min);
(B) Corresponding color images; (C) Time course of occlusionmeasure at the center
of the occlusion section; and (D) Pearson’s correlation analysis between normalized

lactates and SSOP-StO2 in correspondence to all ROIs. Of note capillary lactates
were normalized according to systemic lactates to reduce variability. Lactates in
ischemic ROIs (blue dots) were significantly higher compared to vascularized ROIs
(red dots procedures) adapted from172.
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measurements. By leveraging the altered mechanical characteristics of
pathological tissues compared to healthy ones, optical elastography has the
potential to serve as a noninvasive intraoperative diagnostic tool179.

Optical Coherence Tomography (OCT) is already utilized in some
medical fields as a non-invasive imaging technique that produces high-
resolution, cross-sectional images of biological tissues by measuring the
backscattered light. Employing low-coherence interferometry with near-
infrared light, OCT achieves varying tissue penetration depths based on
optical properties. This technique provides micrometer-scale structural
images, enabling detailed visualization and analysis of tissuemorphology180.

Full-Field Optical Coherence Tomography (FF-OCT), a variation of
OCT, offers high-resolution, en face (surface-parallel) images rather than
cross-sectional views. FF-OCT captures the entire field of view simulta-
neously, allowing for faster imaging over larger areas compared to con-
ventional OCT. This technique is particularly suited for intraoperative
pathology, where detailed surface imaging is essential for accurate tissue
assessments. FF-OCT allows for real-time, label-free imaging, showing
promise for identifying cellular and subcellular structures in tissue
samples181.

Intraoperative Raman Spectroscopy (RS) provides real-time molecular
information of tissues during surgery by exploiting Raman scattering— a
phenomenon where light interacts with molecular vibrations, resulting in
wavelength shifts that reveal the molecular composition of tissues. This
technique excels in distinguishing healthy tissues from diseased ones, such
as differentiating cancerous from non-cancerous tissues, with exceptional
precision182.

All the cutting-edge imaging techniques discussed in this paper
represent important progress in surgical optics; however, they remain
experimental and require further development before clinical integration.
Recent studies have begun to quantify clinical benefits, suggesting real
potential for improving outcomes. For instance, ICG-guided lymphade-
nectomy in oncologic liver surgery improved 3-year disease-free survival
from68.2%to 81.4% (HR0.53,p = 0.012)183, andmeta-analyses in colorectal
surgery report significant reductions in intraoperative blood loss (WMD
–4.38mL, p = 0.001) and postoperative complications (WMD –0.04,
p = 0.027)184. Moreover, multispectral and HSI tools have advanced beyond
pilot feasibility and recent studies have demonstrated that real-time
intraoperative oxygenation mapping is now practical, though integration
into standard workflow remains an active area of development101.

While technical feasibility has been demonstrated, routine clinical
adoption will require overcoming implementation barriers. Future research
will focus on assessing their clinical feasibility, cost-effectiveness, and
potential to enhance diagnostic precision and support real-time surgical
decision-making.

As detailed above, further important steps towards the advancement
and implementation of surgical optomics in clinical practice are:
• Standardization and Validation: Establishing clinical standards for

using these techniques to ensure reliability and reproducibility across
diverse surgical contexts.

• Integration into SurgicalWorkflows: Developing portable, easy-to-use
systems that seamlessly integrate into operating rooms.

• Broad Accessibility: Reducing costs and system complexity to make
Surgical Optomics accessible for a wider range of healthcare settings.

Conclusion
Surgical optomics represents a groundbreaking advancement in precision
surgery. By harnessing the properties of light and bespoke advanced compu-
tational methods, including machine learning, it can enable real-time visua-
lization, characterization, and quantification of tissue and organ properties at
bothmicroscopicandmacroscopic scales.Althoughstill in theexploratoryand
developmental stage, this innovation has the potential to enhance surgical
outcomes by facilitating precise resection of diseased tissue, minimizing col-
lateral damage to healthy structures, and improving patient safety.

While Surgical Optomics is still in the exploratory and developmental
stage, its future envisions operating rooms transformed into data-driven

environments where real-time optical imaging technologies will enable the
rapid interpretation of complex optical data, empowering surgeons with
unprecedented insights.

As the technology advances, these tools will become more compact,
faster, and seamlessly integrated into surgical workflows. However, its
successful integration depends on surgeons’ comprehensive understanding
of these technologies and their inherent limitations. promise to enable
unprecedented precision, ushering in an era of personalized, minimally
invasive, andhighly effective surgical interventions. Continued research and
development in this field hold the potential to redefine the standard of care,
enhancing patient safety and improving outcomes on a global scale. Cru-
cially, the future application of these technologies will require seamless
collaboration among surgeons, engineers, and data scientists, emphasizing
the importance of interdisciplinary integration in achieving this transfor-
mative vision.
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