Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Temporal dynamics and global flows of insect invasions in an era of globalization

Abstract

Human-mediated transport has led to the establishment of more than 6,700 non-native insect species with wide-ranging effects on ecosystems, economies and human health. Understanding how different aspects of globalization affect the spread of non-native insects is crucial to reducing their effects. In this Review, we explore current and historical patterns, drivers and dynamics of global insect invasions facilitated by humans since prehistory. Multiple aspects of the history of globalization have influenced invasion dynamics, including the spread of agricultural practices in the Neolithic period, the advent of early empires and their trade routes, colonization, geopolitical events, wars and economic crises. Technological innovations such as steam ships, containerization and the internet have further accelerated global insect invasions. Spatial invasion patterns are characterized by frequent secondary spread via bridgehead populations, asymmetric intercontinental species flows originating disproportionally from Europe, and biotic homogenization of communities. Insect invasions are predicted to increase dramatically and their dynamics will shift, especially with the opening of trade routes and introduction pathways. Inspection at ports of entry and early detection systems are crucial to inform mitigation efforts. Future interdisciplinary collaborations will integrate knowledge from diverse and emerging data sources and technologies, advancing our understanding of insect invasion biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The globalization of insect dispersal.
Fig. 2: Timeline of events increasing global insect dispersal.
Fig. 3: Intercontinental species flow of non-native insects.
Fig. 4: Number of non-native insect establishments per region over time.
Fig. 5: The variability of global trade flows.
Fig. 6: Geographic knowledge gaps in insect occurrence.

Similar content being viewed by others

References

  1. Roy, H. E. et al. Curbing the major and growing threats from invasive alien species is urgent and achievable. Nat. Ecol. Evol. 8, 1216–1223 (2024).

    Google Scholar 

  2. Bonnamour, A. et al. Historical plant introductions predict current insect invasions. Ecol. Lett. 120, 2418–2426 (2023).

    Google Scholar 

  3. Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).

    CAS  Google Scholar 

  4. Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).

    CAS  Google Scholar 

  5. Hill, M. P., Clusella-Trullas, S., Terblanche, J. S. & Richardson, D. M. Drivers, impacts, mechanisms and adaptation in insect invasions. Biol. Invas. 18, 883–891 (2016).

    Google Scholar 

  6. Kenis, M. et al. Ecological effects of invasive alien insects. Biol. Invas. 11, 21–45 (2009).

    Google Scholar 

  7. McGeoch, M. A., Lythe, M. J., Henriksen, M. V. & McGrannachan, C. M. Environmental impact classification for alien insects: a review of mechanisms and their biodiversity outcomes. Curr. Opin. Insect Sci. 12, 46–53 (2015).

    Google Scholar 

  8. Clark, K. L., Skowronski, N. & Hom, J. Invasive insects impact forest carbon dynamics. Glob. Chang. Biol. 16, 88–101 (2010).

    Google Scholar 

  9. Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. USA 113, 7575–7579 (2016).

    CAS  Google Scholar 

  10. Tatem, A. J., Hay, S. I. & Rogers, D. J. Global traffic and disease vector dispersal. Proc. Natl. Acad. Sci. USA 103, 6242–6247 (2006).

    CAS  Google Scholar 

  11. Bradshaw, C. J. A. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 12986 (2016).

    CAS  Google Scholar 

  12. Edney-Browne, E., Brockerhoff, E. G. & Ward, D. Establishment patterns of non-native insects in New Zealand. Biol. Invas. 20, 1657–1669 (2018).

    Google Scholar 

  13. Boivin, N., Crassard, R. & Petraglia, M. Human Dispersal and Species Movement: From Prehistory to the Present (Cambridge Univ. Press, 2017).

  14. Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).

    Google Scholar 

  15. Perrings, C., Dehnen-Schmutz, K., Touza, J. & Williamson, M. How to manage biological invasions under globalization. Trends Ecol. Evol. 20, 212–215 (2005).

    Google Scholar 

  16. Meyerson, L. A. & Mooney, H. A. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208 (2007).

    Google Scholar 

  17. Baldwin, R. E. & Martin, P. Two waves of globalisation: superficial similarities, fundamental differences. National Bureau of Economic Research https://www.nber.org/papers/w6904 (1999).

  18. Lockwood, J. L. et al. When pets become pests: the role of the exotic pet trade in producing invasive vertebrate animals. Front. Ecol. Environ. 17, 323–330 (2019).

    Google Scholar 

  19. Gippet, J. M. W., Sherpa, Z. & Bertelsmeier, C. Reliability of social media data in monitoring the global pet trade in ants. Conserv. Biol. 37, e13994 (2023).

    Google Scholar 

  20. Kueffer, C. Plant invasions in the Anthropocene. Science 358, 724–725 (2017).

    CAS  Google Scholar 

  21. Marx, H. E., Giblin, D. E., Dunwiddie, P. W. & Tank, D. C. Deconstructing Darwin’s naturalization conundrum in the San Juan Islands using community phylogenetics and functional traits. Divers. Distrib. 22, 318–331 (2015).

    Google Scholar 

  22. Qian, H. & Sandel, B. Phylogenetic relatedness of native and exotic plants along climate gradients in California, USA. Divers. Distrib. 23, 1323–1333 (2017).

    Google Scholar 

  23. Smith‐Ramesh, L. M., Moore, A. C. & Schmitz, O. J. Global synthesis suggests that food web connectance correlates to invasion resistance. Glob. Chang. Biol. 23, 465–473 (2017).

    Google Scholar 

  24. Park, D. S. & Potter, D. A reciprocal test of Darwin’s naturalization hypothesis in two Mediterranean-climate regions. Glob. Ecol. Biogeogr. 24, 1049–1058 (2015).

    Google Scholar 

  25. Uden, D. R., Allen, C. R., Angeler, D. G., Corral, L. & Fricke, K. A. Adaptive invasive species distribution models: a framework for modeling incipient invasions. Biol. Invas. 17, 2831–2850 (2015).

    Google Scholar 

  26. Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).

    Google Scholar 

  27. Ricciardi, A. et al. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol. Evol. 32, 464–474 (2017).

    Google Scholar 

  28. Araújo, A. et al. Ten thousand years of head lice infection. Parasitol. Today 16, 269 (2000).

    Google Scholar 

  29. Hershkovitz, I. et al. The earliest modern humans outside Africa. Science 359, 456–459 (2018).

    CAS  Google Scholar 

  30. Huchet, J.-B. Insectes et archéologie. Nouv. Archéol. 148, 40–44 (2017).

  31. Clarkson, C. et al. Human occupation of northern Australia by 65,000 years ago. Nature 547, 306–310 (2017).

    CAS  Google Scholar 

  32. O’Connell, J. F. & Allen, J. Dating the colonization of Sahul (Pleistocene Australia–New Guinea): a review of recent research. J. Archaeol. Sci. 31, 835–853 (2004).

    Google Scholar 

  33. Marangoni, A., Caramelli, D. & Manzi, G. Homo sapiens in the Americas. Overview of the earliest human expansion in the new world. J. Anthropol. Sci. 92, 79–97 (2014).

    Google Scholar 

  34. Yvinec, J.-H., Huchet, J.-B., Moret, P. & Ponel, P. Bilan et perspectives de l’archéoentomologie en France. Nouv. Archéol. 167, 49–53 (2022).

    Google Scholar 

  35. Panagiotakopulu, E. & Buckland, P. C. A thousand bites—insect introductions and late Holocene environments. Quat. Sci. Rev. 156, 23–35 (2017).

    Google Scholar 

  36. Larson, G. et al. Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proc. Natl. Acad. Sci. USA 104, 15276–15281 (2007).

    Google Scholar 

  37. López-Uribe, M. M., Cane, J. H., Minckley, R. L. & Danforth, B. N. Crop domestication facilitated rapid geographical expansion of a specialist pollinator, the squash bee Peponapis pruinosa. Proc. R. Soc. B 283, 20160443 (2016).

    Google Scholar 

  38. Lawrence, A. L. et al. Out-of-Africa, human-mediated dispersal of the common cat flea, Ctenocephalides felis: the hitchhiker’s guide to world domination. Int. J. Parasitol. 49, 321–336 (2019).

    Google Scholar 

  39. Gibbons, A. How the Akkadian Empire was hung out to dry. Science 261, 985 (1993).

    CAS  Google Scholar 

  40. Liu, T., Chen, J., Jiang, L. & Qiao, G. Human-mediated eco-evolutionary processes of the herbivorous insect Hyalopterus arundiniformis during the Holocene. Divers. Distrib. 28, 1313–1326 (2022).

    Google Scholar 

  41. Kébé, K. et al. Global phylogeography of the insect pest Callosobruchus maculatus (Coleoptera: Bruchinae) relates to the history of its main host, Vigna unguiculata. J. Biogeogr. 44, 2515–2526 (2017).

    Google Scholar 

  42. Garnas, J. et al. Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences. Biol. Invas. 18, 935–952 (2016).

    Google Scholar 

  43. Ryan, S. F. et al. Global invasion history of the agricultural pest butterfly Pieris rapae revealed with genomics and citizen science. Proc. Natl. Acad. Sci. USA 116, 20015–20024 (2019).

    CAS  Google Scholar 

  44. Tang, Q. et al. Solving the 250-year-old mystery of the origin and global spread of the German cockroach, Blattella germanica. Proc. Natl. Acad. Sci. USA 121, e2401185121 (2024).

  45. Kelly, S. E., Moore, W., Hall, W. E. & Hunter, M. S. Hiding in plain sight: cryptic enemies are found on cochineal (Hemiptera: Dactylopiidae), a scale insect of economic and cultural significance. Ecol. Evol. 12, e9151 (2022).

    Google Scholar 

  46. Liu, Y., Li, Y., Li, X. & Qin, L. The origin and dispersal of the domesticated Chinese oak silkworm, Antheraea pernyi, in China: a reconstruction based on ancient texts. J. Insect Sci. 10, 180 (2010).

    CAS  Google Scholar 

  47. Crees, J. J. & Turvey, S. T. What constitutes a ‘native’ species? Insights from the Quaternary faunal record. Biol. Conserv. 186, 143–148 (2015).

    Google Scholar 

  48. Crosby, A. W. Ecological Imperialism (Cambridge Univ. Press, 2004).

  49. Lenzner, B. et al. Naturalized alien floras still carry the legacy of European colonialism. Nat. Ecol. Evol. 6, 1723–1732 (2022).

    Google Scholar 

  50. Langor, D. W., DeHaas, L. J. & Foottit, R. G. Diversity of non-native terrestrial arthropods on woody plants in Canada. Biol. Invas. 11, 5–19 (2009).

    Google Scholar 

  51. López, D. N., Fuentes-Contreras, E., Ruiz, C., Ide, S. & Estay, S. A. A bug’s tale: revealing the history, biogeography and ecological patterns of 500 years of insect invasions. NeoBiota 81, 183–197 (2023).

    Google Scholar 

  52. Bonnamour, A., Gippet, J. M. W. W. & Bertelsmeier, C. Insect and plant invasions follow two waves of globalisation. Ecol. Lett. 24, 2418–2426 (2021).

    Google Scholar 

  53. Hulme, P. E. Unwelcome exchange: international trade as a direct and indirect driver of biological invasions worldwide. One Earth 4, 666–679 (2021).

    Google Scholar 

  54. Greenwood, L. F. et al. Exploring pest mitigation research and management associated with the global wood packaging supply chain: what and where are the weak links? Biol. Invas. 25, 2395–2421 (2023).

    Google Scholar 

  55. Athni, T. S. et al. The influence of vector-borne disease on human history: socio-ecological mechanisms. Ecol. Lett. 24, 829–846 (2021).

    Google Scholar 

  56. Meurisse, N., Rassati, D., Hurley, B. P., Brockerhoff, E. G. & Haack, R. A. Common pathways by which non-native forest insects move internationally and domestically. J. Pest. Sci. 92, 13–27 (2019).

    Google Scholar 

  57. Roques, A. et al. Are invasive patterns of non-native insects related to woody plants differing between Europe and China? Front. For. Glob. Chang. 2, 91 (2020).

    Google Scholar 

  58. Smith, R. M. et al. Recent non-native invertebrate plant pest establishments in Great Britain: origins, pathways, and trends. Agric. For. Entomol. 9, 307–326 (2007).

    Google Scholar 

  59. Liebhold, A. M., Brockerhoff, E. G., Garrett, L. J., Parke, J. L. & Britton, K. O. Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front. Ecol. Environ. 10, 135–143 (2012).

    Google Scholar 

  60. Mally, R. et al. Historical invasion rates vary among insect trophic groups. Curr. Biol. 34, 5374–5381 (2024).

    CAS  Google Scholar 

  61. Galil, B. S., Mienis, H. K., Hoffman, R. & Goren, M. Non-indigenous species along the Israeli Mediterranean coast: tally, policy, outlook. Hydrobiologia 848, 2011–2029 (2021).

    Google Scholar 

  62. Castellanos-Galindo, G. A., Robertson, D. R., Sharpe, D. M. T. & Torchin, M. E. A new wave of marine fish invasions through the Panama and Suez canals. Nat. Ecol. Evol. 4, 1444–1446 (2020).

    Google Scholar 

  63. Liu, X. et al. Risks of biological invasion on the belt and road. Curr. Biol. 29, 499–505 (2019).

    CAS  Google Scholar 

  64. Miller, A. W. & Ruiz, G. M. Arctic shipping and marine invaders. Nat. Clim. Chang. 4, 413–416 (2014).

    Google Scholar 

  65. Yamanaka, T. et al. Comparison of insect invasions in North America, Japan and their islands. Biol. Invasions 17, 3049–3061 (2015).

    Google Scholar 

  66. Roques, A. et al. Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years. Biol. Invas. 18, 907–920 (2016).

    Google Scholar 

  67. Brown, M. E. et al. Plant pirates of the Caribbean: is Cuba sheltered by its revolutionary economy? Front. Ecol. Environ. 19, 208–215 (2021).

    Google Scholar 

  68. Chen, X. L. et al. Factors affecting the geographical distribution of invasive species in China. J. Integr. Agric. 21, 1116–1125 (2022).

    Google Scholar 

  69. Santini, A., Maresi, G., Richardson, D. M. & Liebhold, A. M. Collateral damage: military invasions beget biological invasions. Front. Ecol. Environ. 21, 469–478 (2023).

    Google Scholar 

  70. Bertelsmeier, C. Globalization and the anthropogenic spread of invasive social insects. Curr. Opin. Insect Sci. 46, 16–23 (2021).

    Google Scholar 

  71. Lombaert, E. et al. Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. PLoS ONE 5, e9743 (2010).

    Google Scholar 

  72. Bertelsmeier, C., Liebhold, A. M., Brockerhoff, E. G., Ward, D. & Keller, L. Recurrent bridgehead effects accelerate global alien ant spread. Proc. Natl. Acad. Sci. USA 115, 5486–5491 (2018).

    CAS  Google Scholar 

  73. Lee, C. C. et al. Analysis of recent interception records reveals frequent transport of arboreal ants and potential predictors for ant invasion in Taiwan. Insects 11, 356 (2020).

    Google Scholar 

  74. Blumenfeld, A. J. & Vargo, E. L. Geography, opportunity and bridgeheads facilitate termite invasions to the United States. Biol. Invas. 22, 3269–3282 (2020).

    Google Scholar 

  75. Bertelsmeier, C. & Keller, L. Bridgehead effects and role of adaptive evolution in invasive populations. Trends Ecol. Evol. 33, 527–534 (2018).

    Google Scholar 

  76. Isitt, R. et al. Asymmetrical insect invasions between three world regions. NeoBiota 90, 35–51 (2024).

    Google Scholar 

  77. Fenn‐Moltu, G. et al. Global flows of insect transport and establishment: the role of biogeography, trade and regulations. Divers. Distrib. 29, 1478–1491 (2023).

    Google Scholar 

  78. Bertelsmeier, C. & Ollier, S. Bridgehead effects distort global flows of alien species. Divers. Distrib. 27, 2180–2189 (2021).

    Google Scholar 

  79. Wong, M. K. L., Economo, E. P. & Guénard, B. The global spread and invasion capacities of alien ants. Curr. Biol. 33, 566–571 (2023).

    CAS  Google Scholar 

  80. Lantschner, M. V., Corley, J. C. & Liebhold, A. M. Drivers of global Scolytinae invasion patterns. Ecol. Appl. 5, e02103 (2020).

    Google Scholar 

  81. Niemelä, P. & Mattson, W. J. Invasion of North American forests by European phytophagous insects: legacy of the European crucible? Bioscience 46, 741–753 (1996).

    Google Scholar 

  82. Mattson, W., Vanhanen, H., Veteli, T., Sivonen, S. & Niemelä, P. Few immigrant phytophagous insects on woody plants in Europe: legacy of the European crucible? Biol. Invasions 9, 957–974 (2007).

    Google Scholar 

  83. Song, Z., Che, S. & Yang, Y. The trade network of the Belt and Road Initiative and its topological relationship to the global trade network. J. Geogr. Sci. 28, 1249–1262 (2018).

    Google Scholar 

  84. Banks, N. C., Paini, D. R., Bayliss, K. L. & Hodda, M. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecol. Lett. 18, 188–199 (2015).

    Google Scholar 

  85. Capinha, C., Essl, F., Porto, M. & Seebens, H. The worldwide networks of spread of recorded alien species. Proc. Natl. Acad. Sci. USA 120, e2201911120 (2023).

    CAS  Google Scholar 

  86. Liebhold, A. M., Brockerhoff, E. G. & Kimberley, M. Depletion of heterogeneous source species pools predicts future invasion rates. J. Appl. Ecol. 54, 1968–1977 (2017).

    Google Scholar 

  87. Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl. Acad. Sci. USA 115, 201719429 (2018).

    Google Scholar 

  88. Yamanaka, T. et al. International imports and climatic filtering drive compositional variation in non-native insect establishments. Divers. Distrib. 30, e13844 (2024).

    Google Scholar 

  89. Liebhold, A. M. et al. Plant diversity drives global patterns of insect invasions. Sci. Rep. 8, 12095 (2018).

    Google Scholar 

  90. Bertelsmeier, C. et al. Global proliferation of non-native plants is a major driver of insect invasions. BioScience 74, 770–781 (2024).

    Google Scholar 

  91. Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).

    Google Scholar 

  92. Gippet, J. M. W., Liebhold, A. M., Fenn-Moltu, G. & Bertelsmeier, C. Human-mediated dispersal in insects. Curr. Opin. Insect Sci. 35, 96–102 (2019).

    Google Scholar 

  93. Amano, T., Coverdale, R. & Peh, K. S.-H. The importance of globalisation in driving the introduction and establishment of alien species in Europe. Ecography 39, 1118–1128 (2016).

    Google Scholar 

  94. Roy, B. A. et al. Increasing forest loss worldwide from invasive pests requires new trade regulations. Front. Ecol. Environ. 12, 457–465 (2014).

    Google Scholar 

  95. Trombik, J., Ward, S. F., Norrbom, A. L. & Liebhold, A. M. Global drivers of historical true fruit fly (Diptera: Tephritidae) invasions. J. Pest. Sci. 96, 345–357 (2023).

    Google Scholar 

  96. Pyšek, P. et al. Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc. Natl. Acad. Sci. USA 107, 12157–12162 (2010).

    Google Scholar 

  97. Dreher, A. Does globalization affect growth? Evidence from a new index of globalization. Appl. Econ. 38, 1091–1110 (2006).

    Google Scholar 

  98. Chapman, D., Purse, B. V., Roy, H. E. & Bullock, J. M. Global trade networks determine the distribution of invasive non-native species. Glob. Ecol. Biogeogr. 26, 907–917 (2017).

    Google Scholar 

  99. Aulus-Giacosa, L., Ollier, S. & Bertelsmeier, C. Non-native ants are breaking down biogeographic boundaries and homogenizing community assemblages. Nat. Commun. 15, 2266 (2024).

    CAS  Google Scholar 

  100. Daru, B. H. et al. Widespread homogenization of plant communities in the Anthropocene. Nat. Commun. 12, 6983 (2021).

    CAS  Google Scholar 

  101. Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).

    CAS  Google Scholar 

  102. Shaw, J. D., Spear, D., Greve, M. & Chown, S. L. Taxonomic homogenization and differentiation across Southern Ocean Islands differ among insects and vascular plants. J. Biogeogr. 37, 217–228 (2010).

    Google Scholar 

  103. Garnas, J. R., Hurley, B. P., Slippers, B. & Wingfield, M. J. Biological control of forest plantation pests in an interconnected world requires greater international focus. Int. J. Pest. Manag. 58, 211–223 (2012).

    Google Scholar 

  104. Holway, D. A. & Suarez, A. V. Homogenization of ant communities in mediterranean California: the effects of urbanization and invasion. Biol. Conserv. 127, 319–326 (2006).

    Google Scholar 

  105. Wong, M. K. L., Guénard, B. & Lewis, O. T. The cryptic impacts of invasion: functional homogenization of tropical ant communities by invasive fire ants. Oikos 129, 585–597 (2020).

    Google Scholar 

  106. Rivest, S. A. & Kharouba, H. M. Taxonomic and functional homogenization of butterfly communities along an urban gradient. Insect Conserv. Divers. 17, 273–286 (2024).

    Google Scholar 

  107. Turbelin, A. J., Malamud, B. D. & Francis, R. A. Mapping the global state of invasive alien species: patterns of invasion and policy responses. Glob. Ecol. Biogeogr. 26, 78–92 (2017).

    Google Scholar 

  108. Kalusová, V. et al. Naturalization of European plants on other continents: the role of donor habitats. Proc. Natl. Acad. Sci. USA 114, 13756–13761 (2017).

    Google Scholar 

  109. Kueffer, C. et al. A global comparison of plant invasions on oceanic islands. Perspect. Plant. Ecol. Evol. Syst. 12, 145–161 (2010).

    Google Scholar 

  110. Dawson, W. et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 1, 0186 (2017).

    Google Scholar 

  111. Capinha, C., Essl, F., Seebens, H., Pereira, H. M. & Kühn, I. Models of alien species richness show moderate predictive accuracy and poor transferability. NeoBiota 38, 77–96 (2018).

    Google Scholar 

  112. Capinha, C., Marcolin, F. & Reino, L. Human‐induced globalization of insular herpetofaunas. Glob. Ecol. Biogeogr. 29, 1328–1349 (2020).

    Google Scholar 

  113. Roura-Pascual, N. et al. Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proc. Natl. Acad. Sci. USA 108, 220–225 (2011).

    CAS  Google Scholar 

  114. Seebens, H. et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Chang. Biol. 21, 4128–4140 (2015).

    Google Scholar 

  115. Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl. Acad. Sci. USA 108, 203–207 (2011).

    CAS  Google Scholar 

  116. Fenn-Moltu, G. et al. Alien insect dispersal mediated by the global movement of commodities. Ecol. Appl. 33, e2721 (2023).

    Google Scholar 

  117. Ollier, S. & Bertelsmeier, C. Precise knowledge of commodity trade is needed to understand invasion flows. Front. Ecol. Environ. 20, 467–473 (2022).

    Google Scholar 

  118. Rouget, M. et al. Invasion debt—quantifying future biological invasions. Divers. Distrib. 22, 445–456 (2015).

    Google Scholar 

  119. Maclachlan, M. J., Liebhold, A. M., Yamanaka, T. & Springborn, M. R. Hidden patterns of insect establishment risk revealed from two centuries of alien species discoveries. Sci. Adv. 7, eabj1012 (2021).

    Google Scholar 

  120. Turner, R. et al. Worldwide border interceptions provide a window into human-mediated global insect movement. Ecol. Appl. 31, e02412 (2021).

    Google Scholar 

  121. Forister, M. L. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl. Acad. Sci. USA 112, 442–447 (2015).

    CAS  Google Scholar 

  122. Seebens, H. et al. Projecting the continental accumulation of alien species through to 2050. Glob. Chang. Biol. 27, 970–982 (2021).

    CAS  Google Scholar 

  123. Cadotte, M. W. in Conceptual Ecology and Invasion Biology: Reciprocal Approaches to Nature (eds Cadotte, M. W. et al.) 15–33 (Springer, 2006).

  124. de Candolle, A. Géographie botanique raisonnée; ou, Exposition des faits principaux et des lois concernant la distribution géographique des plantes de l’epoque actuelle. 610 (Librairie de Victor Masson, 1855).

  125. Darwin, C. On the Origin of Species by Means of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life (Appleton, 1859).

  126. Berg, C. Enumeración de las plantas europeas que se hallan como silvestres en la provincia de Buenos Aires y en la Patagonia. An. Soc. Cient. Argent. 3, 183–204 (1877).

    Google Scholar 

  127. Wehi, P. M., Kamelamela, K. L., Whyte, K., Watene, K. & Reo, N. Contribution of Indigenous Peoples’ understandings and relational frameworks to invasive alien species management. People Nat. 5, 1403–1414 (2023).

    Google Scholar 

  128. Liebhold, A. M. & Griffin, R. L. The legacy of Charles Marlatt and efforts to limit plant pest invasions. Am. Entomol. 62, 218–227 (2016).

    Google Scholar 

  129. Williams, K. A. An overview of the U.S. National Plant Germplasm System’s Exploration Program. HortScience 40, 297–301 (2005).

    Google Scholar 

  130. Cerri, J., Bertolino, S., Carnevali, L., Monaco, A. & Genovesi, P. Blacklists do not necessarily make people curious about invasive alien species. A case study with Bayesian structural time series and Wikipedia searches about invasive mammals in Italy. NeoBiota 71, 113–128 (2020).

    Google Scholar 

  131. Simberloff, D. Risk assessments, blacklists, and white lists for introduced species: are predictions good enough to be useful? Agric. Resour. Econ. Rev. https://doi.org/10.1017/S1068280500010005 (2006).

  132. Carnegie, A. J. et al. Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biol. Invas. 18, 127–144 (2016).

    Google Scholar 

  133. Wilson, J. R. U., Dormontt, E. E., Prentis, P. J., Lowe, A. J. & Richardson, D. M. Something in the way you move: dispersal pathways affect invasion success. Trends Ecol. Evol. 24, 136–144 (2009).

    Google Scholar 

  134. Haack, R. A., Hardin, J. A., Caton, B. P. & Petrice, T. R. Wood borer detection rates on wood packaging materials entering the United States during different phases of ISPM 15 implementation and regulatory changes. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2022.1069117 (2022).

  135. Lovett, G. M. et al. Nonnative forest insects and pathogens in the United States: impacts and policy options. Ecol. Appl. 26, 1437–1455 (2016).

    Google Scholar 

  136. Lyal, C. H. C. & Miller, S. E. Capacity of United States federal government and its partners to rapidly and accurately report the identity (taxonomy) of non-native organisms intercepted in early detection programs. Biol. Invas. 22, 101–127 (2020).

    Google Scholar 

  137. Larson, E. R. et al. From eDNA to citizen science: emerging tools for the early detection of invasive species. Front. Ecol. Environ. 18, 194–202 (2020).

    Google Scholar 

  138. Martinez, B. et al. Technology innovation: advancing capacities for the early detection of and rapid response to invasive species. Biol. Invas. 22, 75–100 (2020).

    Google Scholar 

  139. Parker, K. et al. Crossing the great divide: bridging the researcher–practitioner gap to maximize the utility of remote sensing for invasive species monitoring and management. Remote. Sens. 13, 4142 (2021).

    Google Scholar 

  140. Masters, S. et al. Quantifying an online wildlife trade using a web crawler. Biodivers. Conserv. 31, 855–869 (2022).

    Google Scholar 

  141. Hulme, P. E. Importance of greater interdisciplinarity and geographic scope when tackling the driving forces behind biological invasions. Conserv. Biol. 36, e13817 (2022).

    Google Scholar 

  142. Knapp, M., Collins, C. J. & Matisoo-Smith, E. Ancient invaders: how paleogenetic tools help to identify and understand biological invasions of the past. Annu. Rev. Ecol. Evol. Syst. 52, 111–129 (2021).

    Google Scholar 

  143. Estoup, A. et al. Combining genetic, historical and geographical data to reconstruct the dynamics of bioinvasions: application to the cane toad Bufo marinus. Mol. Ecol. Resour. 10, 886–901 (2010).

    Google Scholar 

  144. Daume, S. Mining Twitter to monitor invasive alien species—an analytical framework and sample information topologies. Ecol. Inform. 31, 70–82 (2016).

    Google Scholar 

  145. O’Neill, D. et al. Investigating the potential of social media and citizen science data to track changes in species’ distributions. Ecol. Evol. 13, e10063 (2023).

    Google Scholar 

  146. Buba, Y., Kiflawi, M., McGeoch, M. A. & Belmaker, J. Evaluating models for estimating introduction rates of alien species from discovery records. Glob. Ecol. Biogeogr. 33, e13859 (2024).

    Google Scholar 

  147. Vargas, M. tradestatistics: Open Trade Statistics API Wrapper and Utility Program. R package version 5.0.0 https://cran.r-project.org/web/packages/tradestatistics/tradestatistics.pdf (2024).

  148. Global administrative areas v.4.1. University of Waterloo https://uwaterloo.ca/library/geospatial/collections/us-and-world-geospatial-data-resources/global-administrative-areas-gadm (2012).

  149. Global Biodiversity Information Facility. GBIF https://www.gbif.org (2024).

  150. Lee, W. et al. Current status of exotic insect pests in Korea: comparing border interception and incursion during 1996-2014. J. Asia. Pac. Entomol. 19, 1095–1101 (2016).

    Google Scholar 

  151. Du, J., Fang, S., Zhao, J., Shi, J. & Liang, T. Analysis of insect pests identified to species that were intercepted at Chinese ports of entry. Manag. Biol. Invas. 14, 641–657 (2023).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by grants from the Swiss canton Vaud, the Swiss National Science Foundation (SNSF grant 310030_192619) and the SERI-funded ERC grant SPREAD (MB22.00086). C.B. and J.R.G. also acknowledge support from Fondation Herbette for the sabbatical visit of J.R.G. to the University of Lausanne.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to all aspects of the article.

Corresponding author

Correspondence to Cleo Bertelsmeier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks Núria Roura-Pascual and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

EDDMapS: www.eddmaps.orgFirstRecord: https://dataportal.senckenberg.de/dataset/global-alien-species-first-record-database

Global Biodiversity Information Facility: www.gbif.org

iNaturalist: www.inaturalist.org

WildSpotter: www.wildspotter.org

Glossary

Acclimatization societies

Societies dedicated to the establishment of non-native species for the perceived improvement of the local flora and fauna for aesthetic and economic purposes.

Bridgehead effects

Secondary spread of species from established non-native populations.

Invasion debts

Invasions predicted to occur on the basis of past events.

Jump dispersal

Discontinuous long-distance dispersal.

Native species

Species that have not established outside their native range.

Non-native species

Species introduced outside their native range that have established a self-sustaining population.

Propagule pressure

Number of individuals introduced or the frequency of introduction events.

Sentinel gardens

Plantation of a variety of host plant species, which can provide early warning of non-native insect species that can use them as hosts.

Slippage

Introduction of a known quarantine pest that was not detected at port.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertelsmeier, C., Bonnamour, A., Garnas, J.R. et al. Temporal dynamics and global flows of insect invasions in an era of globalization. Nat. Rev. Biodivers. 1, 90–103 (2025). https://doi.org/10.1038/s44358-025-00016-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44358-025-00016-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing