Abstract
Human-mediated transport has led to the establishment of more than 6,700 non-native insect species with wide-ranging effects on ecosystems, economies and human health. Understanding how different aspects of globalization affect the spread of non-native insects is crucial to reducing their effects. In this Review, we explore current and historical patterns, drivers and dynamics of global insect invasions facilitated by humans since prehistory. Multiple aspects of the history of globalization have influenced invasion dynamics, including the spread of agricultural practices in the Neolithic period, the advent of early empires and their trade routes, colonization, geopolitical events, wars and economic crises. Technological innovations such as steam ships, containerization and the internet have further accelerated global insect invasions. Spatial invasion patterns are characterized by frequent secondary spread via bridgehead populations, asymmetric intercontinental species flows originating disproportionally from Europe, and biotic homogenization of communities. Insect invasions are predicted to increase dramatically and their dynamics will shift, especially with the opening of trade routes and introduction pathways. Inspection at ports of entry and early detection systems are crucial to inform mitigation efforts. Future interdisciplinary collaborations will integrate knowledge from diverse and emerging data sources and technologies, advancing our understanding of insect invasion biology.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Roy, H. E. et al. Curbing the major and growing threats from invasive alien species is urgent and achievable. Nat. Ecol. Evol. 8, 1216–1223 (2024).
Bonnamour, A. et al. Historical plant introductions predict current insect invasions. Ecol. Lett. 120, 2418–2426 (2023).
Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).
Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).
Hill, M. P., Clusella-Trullas, S., Terblanche, J. S. & Richardson, D. M. Drivers, impacts, mechanisms and adaptation in insect invasions. Biol. Invas. 18, 883–891 (2016).
Kenis, M. et al. Ecological effects of invasive alien insects. Biol. Invas. 11, 21–45 (2009).
McGeoch, M. A., Lythe, M. J., Henriksen, M. V. & McGrannachan, C. M. Environmental impact classification for alien insects: a review of mechanisms and their biodiversity outcomes. Curr. Opin. Insect Sci. 12, 46–53 (2015).
Clark, K. L., Skowronski, N. & Hom, J. Invasive insects impact forest carbon dynamics. Glob. Chang. Biol. 16, 88–101 (2010).
Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. USA 113, 7575–7579 (2016).
Tatem, A. J., Hay, S. I. & Rogers, D. J. Global traffic and disease vector dispersal. Proc. Natl. Acad. Sci. USA 103, 6242–6247 (2006).
Bradshaw, C. J. A. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 12986 (2016).
Edney-Browne, E., Brockerhoff, E. G. & Ward, D. Establishment patterns of non-native insects in New Zealand. Biol. Invas. 20, 1657–1669 (2018).
Boivin, N., Crassard, R. & Petraglia, M. Human Dispersal and Species Movement: From Prehistory to the Present (Cambridge Univ. Press, 2017).
Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).
Perrings, C., Dehnen-Schmutz, K., Touza, J. & Williamson, M. How to manage biological invasions under globalization. Trends Ecol. Evol. 20, 212–215 (2005).
Meyerson, L. A. & Mooney, H. A. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208 (2007).
Baldwin, R. E. & Martin, P. Two waves of globalisation: superficial similarities, fundamental differences. National Bureau of Economic Research https://www.nber.org/papers/w6904 (1999).
Lockwood, J. L. et al. When pets become pests: the role of the exotic pet trade in producing invasive vertebrate animals. Front. Ecol. Environ. 17, 323–330 (2019).
Gippet, J. M. W., Sherpa, Z. & Bertelsmeier, C. Reliability of social media data in monitoring the global pet trade in ants. Conserv. Biol. 37, e13994 (2023).
Kueffer, C. Plant invasions in the Anthropocene. Science 358, 724–725 (2017).
Marx, H. E., Giblin, D. E., Dunwiddie, P. W. & Tank, D. C. Deconstructing Darwin’s naturalization conundrum in the San Juan Islands using community phylogenetics and functional traits. Divers. Distrib. 22, 318–331 (2015).
Qian, H. & Sandel, B. Phylogenetic relatedness of native and exotic plants along climate gradients in California, USA. Divers. Distrib. 23, 1323–1333 (2017).
Smith‐Ramesh, L. M., Moore, A. C. & Schmitz, O. J. Global synthesis suggests that food web connectance correlates to invasion resistance. Glob. Chang. Biol. 23, 465–473 (2017).
Park, D. S. & Potter, D. A reciprocal test of Darwin’s naturalization hypothesis in two Mediterranean-climate regions. Glob. Ecol. Biogeogr. 24, 1049–1058 (2015).
Uden, D. R., Allen, C. R., Angeler, D. G., Corral, L. & Fricke, K. A. Adaptive invasive species distribution models: a framework for modeling incipient invasions. Biol. Invas. 17, 2831–2850 (2015).
Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).
Ricciardi, A. et al. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol. Evol. 32, 464–474 (2017).
Araújo, A. et al. Ten thousand years of head lice infection. Parasitol. Today 16, 269 (2000).
Hershkovitz, I. et al. The earliest modern humans outside Africa. Science 359, 456–459 (2018).
Huchet, J.-B. Insectes et archéologie. Nouv. Archéol. 148, 40–44 (2017).
Clarkson, C. et al. Human occupation of northern Australia by 65,000 years ago. Nature 547, 306–310 (2017).
O’Connell, J. F. & Allen, J. Dating the colonization of Sahul (Pleistocene Australia–New Guinea): a review of recent research. J. Archaeol. Sci. 31, 835–853 (2004).
Marangoni, A., Caramelli, D. & Manzi, G. Homo sapiens in the Americas. Overview of the earliest human expansion in the new world. J. Anthropol. Sci. 92, 79–97 (2014).
Yvinec, J.-H., Huchet, J.-B., Moret, P. & Ponel, P. Bilan et perspectives de l’archéoentomologie en France. Nouv. Archéol. 167, 49–53 (2022).
Panagiotakopulu, E. & Buckland, P. C. A thousand bites—insect introductions and late Holocene environments. Quat. Sci. Rev. 156, 23–35 (2017).
Larson, G. et al. Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proc. Natl. Acad. Sci. USA 104, 15276–15281 (2007).
López-Uribe, M. M., Cane, J. H., Minckley, R. L. & Danforth, B. N. Crop domestication facilitated rapid geographical expansion of a specialist pollinator, the squash bee Peponapis pruinosa. Proc. R. Soc. B 283, 20160443 (2016).
Lawrence, A. L. et al. Out-of-Africa, human-mediated dispersal of the common cat flea, Ctenocephalides felis: the hitchhiker’s guide to world domination. Int. J. Parasitol. 49, 321–336 (2019).
Gibbons, A. How the Akkadian Empire was hung out to dry. Science 261, 985 (1993).
Liu, T., Chen, J., Jiang, L. & Qiao, G. Human-mediated eco-evolutionary processes of the herbivorous insect Hyalopterus arundiniformis during the Holocene. Divers. Distrib. 28, 1313–1326 (2022).
Kébé, K. et al. Global phylogeography of the insect pest Callosobruchus maculatus (Coleoptera: Bruchinae) relates to the history of its main host, Vigna unguiculata. J. Biogeogr. 44, 2515–2526 (2017).
Garnas, J. et al. Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences. Biol. Invas. 18, 935–952 (2016).
Ryan, S. F. et al. Global invasion history of the agricultural pest butterfly Pieris rapae revealed with genomics and citizen science. Proc. Natl. Acad. Sci. USA 116, 20015–20024 (2019).
Tang, Q. et al. Solving the 250-year-old mystery of the origin and global spread of the German cockroach, Blattella germanica. Proc. Natl. Acad. Sci. USA 121, e2401185121 (2024).
Kelly, S. E., Moore, W., Hall, W. E. & Hunter, M. S. Hiding in plain sight: cryptic enemies are found on cochineal (Hemiptera: Dactylopiidae), a scale insect of economic and cultural significance. Ecol. Evol. 12, e9151 (2022).
Liu, Y., Li, Y., Li, X. & Qin, L. The origin and dispersal of the domesticated Chinese oak silkworm, Antheraea pernyi, in China: a reconstruction based on ancient texts. J. Insect Sci. 10, 180 (2010).
Crees, J. J. & Turvey, S. T. What constitutes a ‘native’ species? Insights from the Quaternary faunal record. Biol. Conserv. 186, 143–148 (2015).
Crosby, A. W. Ecological Imperialism (Cambridge Univ. Press, 2004).
Lenzner, B. et al. Naturalized alien floras still carry the legacy of European colonialism. Nat. Ecol. Evol. 6, 1723–1732 (2022).
Langor, D. W., DeHaas, L. J. & Foottit, R. G. Diversity of non-native terrestrial arthropods on woody plants in Canada. Biol. Invas. 11, 5–19 (2009).
López, D. N., Fuentes-Contreras, E., Ruiz, C., Ide, S. & Estay, S. A. A bug’s tale: revealing the history, biogeography and ecological patterns of 500 years of insect invasions. NeoBiota 81, 183–197 (2023).
Bonnamour, A., Gippet, J. M. W. W. & Bertelsmeier, C. Insect and plant invasions follow two waves of globalisation. Ecol. Lett. 24, 2418–2426 (2021).
Hulme, P. E. Unwelcome exchange: international trade as a direct and indirect driver of biological invasions worldwide. One Earth 4, 666–679 (2021).
Greenwood, L. F. et al. Exploring pest mitigation research and management associated with the global wood packaging supply chain: what and where are the weak links? Biol. Invas. 25, 2395–2421 (2023).
Athni, T. S. et al. The influence of vector-borne disease on human history: socio-ecological mechanisms. Ecol. Lett. 24, 829–846 (2021).
Meurisse, N., Rassati, D., Hurley, B. P., Brockerhoff, E. G. & Haack, R. A. Common pathways by which non-native forest insects move internationally and domestically. J. Pest. Sci. 92, 13–27 (2019).
Roques, A. et al. Are invasive patterns of non-native insects related to woody plants differing between Europe and China? Front. For. Glob. Chang. 2, 91 (2020).
Smith, R. M. et al. Recent non-native invertebrate plant pest establishments in Great Britain: origins, pathways, and trends. Agric. For. Entomol. 9, 307–326 (2007).
Liebhold, A. M., Brockerhoff, E. G., Garrett, L. J., Parke, J. L. & Britton, K. O. Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front. Ecol. Environ. 10, 135–143 (2012).
Mally, R. et al. Historical invasion rates vary among insect trophic groups. Curr. Biol. 34, 5374–5381 (2024).
Galil, B. S., Mienis, H. K., Hoffman, R. & Goren, M. Non-indigenous species along the Israeli Mediterranean coast: tally, policy, outlook. Hydrobiologia 848, 2011–2029 (2021).
Castellanos-Galindo, G. A., Robertson, D. R., Sharpe, D. M. T. & Torchin, M. E. A new wave of marine fish invasions through the Panama and Suez canals. Nat. Ecol. Evol. 4, 1444–1446 (2020).
Liu, X. et al. Risks of biological invasion on the belt and road. Curr. Biol. 29, 499–505 (2019).
Miller, A. W. & Ruiz, G. M. Arctic shipping and marine invaders. Nat. Clim. Chang. 4, 413–416 (2014).
Yamanaka, T. et al. Comparison of insect invasions in North America, Japan and their islands. Biol. Invasions 17, 3049–3061 (2015).
Roques, A. et al. Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years. Biol. Invas. 18, 907–920 (2016).
Brown, M. E. et al. Plant pirates of the Caribbean: is Cuba sheltered by its revolutionary economy? Front. Ecol. Environ. 19, 208–215 (2021).
Chen, X. L. et al. Factors affecting the geographical distribution of invasive species in China. J. Integr. Agric. 21, 1116–1125 (2022).
Santini, A., Maresi, G., Richardson, D. M. & Liebhold, A. M. Collateral damage: military invasions beget biological invasions. Front. Ecol. Environ. 21, 469–478 (2023).
Bertelsmeier, C. Globalization and the anthropogenic spread of invasive social insects. Curr. Opin. Insect Sci. 46, 16–23 (2021).
Lombaert, E. et al. Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. PLoS ONE 5, e9743 (2010).
Bertelsmeier, C., Liebhold, A. M., Brockerhoff, E. G., Ward, D. & Keller, L. Recurrent bridgehead effects accelerate global alien ant spread. Proc. Natl. Acad. Sci. USA 115, 5486–5491 (2018).
Lee, C. C. et al. Analysis of recent interception records reveals frequent transport of arboreal ants and potential predictors for ant invasion in Taiwan. Insects 11, 356 (2020).
Blumenfeld, A. J. & Vargo, E. L. Geography, opportunity and bridgeheads facilitate termite invasions to the United States. Biol. Invas. 22, 3269–3282 (2020).
Bertelsmeier, C. & Keller, L. Bridgehead effects and role of adaptive evolution in invasive populations. Trends Ecol. Evol. 33, 527–534 (2018).
Isitt, R. et al. Asymmetrical insect invasions between three world regions. NeoBiota 90, 35–51 (2024).
Fenn‐Moltu, G. et al. Global flows of insect transport and establishment: the role of biogeography, trade and regulations. Divers. Distrib. 29, 1478–1491 (2023).
Bertelsmeier, C. & Ollier, S. Bridgehead effects distort global flows of alien species. Divers. Distrib. 27, 2180–2189 (2021).
Wong, M. K. L., Economo, E. P. & Guénard, B. The global spread and invasion capacities of alien ants. Curr. Biol. 33, 566–571 (2023).
Lantschner, M. V., Corley, J. C. & Liebhold, A. M. Drivers of global Scolytinae invasion patterns. Ecol. Appl. 5, e02103 (2020).
Niemelä, P. & Mattson, W. J. Invasion of North American forests by European phytophagous insects: legacy of the European crucible? Bioscience 46, 741–753 (1996).
Mattson, W., Vanhanen, H., Veteli, T., Sivonen, S. & Niemelä, P. Few immigrant phytophagous insects on woody plants in Europe: legacy of the European crucible? Biol. Invasions 9, 957–974 (2007).
Song, Z., Che, S. & Yang, Y. The trade network of the Belt and Road Initiative and its topological relationship to the global trade network. J. Geogr. Sci. 28, 1249–1262 (2018).
Banks, N. C., Paini, D. R., Bayliss, K. L. & Hodda, M. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecol. Lett. 18, 188–199 (2015).
Capinha, C., Essl, F., Porto, M. & Seebens, H. The worldwide networks of spread of recorded alien species. Proc. Natl. Acad. Sci. USA 120, e2201911120 (2023).
Liebhold, A. M., Brockerhoff, E. G. & Kimberley, M. Depletion of heterogeneous source species pools predicts future invasion rates. J. Appl. Ecol. 54, 1968–1977 (2017).
Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl. Acad. Sci. USA 115, 201719429 (2018).
Yamanaka, T. et al. International imports and climatic filtering drive compositional variation in non-native insect establishments. Divers. Distrib. 30, e13844 (2024).
Liebhold, A. M. et al. Plant diversity drives global patterns of insect invasions. Sci. Rep. 8, 12095 (2018).
Bertelsmeier, C. et al. Global proliferation of non-native plants is a major driver of insect invasions. BioScience 74, 770–781 (2024).
Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).
Gippet, J. M. W., Liebhold, A. M., Fenn-Moltu, G. & Bertelsmeier, C. Human-mediated dispersal in insects. Curr. Opin. Insect Sci. 35, 96–102 (2019).
Amano, T., Coverdale, R. & Peh, K. S.-H. The importance of globalisation in driving the introduction and establishment of alien species in Europe. Ecography 39, 1118–1128 (2016).
Roy, B. A. et al. Increasing forest loss worldwide from invasive pests requires new trade regulations. Front. Ecol. Environ. 12, 457–465 (2014).
Trombik, J., Ward, S. F., Norrbom, A. L. & Liebhold, A. M. Global drivers of historical true fruit fly (Diptera: Tephritidae) invasions. J. Pest. Sci. 96, 345–357 (2023).
Pyšek, P. et al. Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc. Natl. Acad. Sci. USA 107, 12157–12162 (2010).
Dreher, A. Does globalization affect growth? Evidence from a new index of globalization. Appl. Econ. 38, 1091–1110 (2006).
Chapman, D., Purse, B. V., Roy, H. E. & Bullock, J. M. Global trade networks determine the distribution of invasive non-native species. Glob. Ecol. Biogeogr. 26, 907–917 (2017).
Aulus-Giacosa, L., Ollier, S. & Bertelsmeier, C. Non-native ants are breaking down biogeographic boundaries and homogenizing community assemblages. Nat. Commun. 15, 2266 (2024).
Daru, B. H. et al. Widespread homogenization of plant communities in the Anthropocene. Nat. Commun. 12, 6983 (2021).
Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).
Shaw, J. D., Spear, D., Greve, M. & Chown, S. L. Taxonomic homogenization and differentiation across Southern Ocean Islands differ among insects and vascular plants. J. Biogeogr. 37, 217–228 (2010).
Garnas, J. R., Hurley, B. P., Slippers, B. & Wingfield, M. J. Biological control of forest plantation pests in an interconnected world requires greater international focus. Int. J. Pest. Manag. 58, 211–223 (2012).
Holway, D. A. & Suarez, A. V. Homogenization of ant communities in mediterranean California: the effects of urbanization and invasion. Biol. Conserv. 127, 319–326 (2006).
Wong, M. K. L., Guénard, B. & Lewis, O. T. The cryptic impacts of invasion: functional homogenization of tropical ant communities by invasive fire ants. Oikos 129, 585–597 (2020).
Rivest, S. A. & Kharouba, H. M. Taxonomic and functional homogenization of butterfly communities along an urban gradient. Insect Conserv. Divers. 17, 273–286 (2024).
Turbelin, A. J., Malamud, B. D. & Francis, R. A. Mapping the global state of invasive alien species: patterns of invasion and policy responses. Glob. Ecol. Biogeogr. 26, 78–92 (2017).
Kalusová, V. et al. Naturalization of European plants on other continents: the role of donor habitats. Proc. Natl. Acad. Sci. USA 114, 13756–13761 (2017).
Kueffer, C. et al. A global comparison of plant invasions on oceanic islands. Perspect. Plant. Ecol. Evol. Syst. 12, 145–161 (2010).
Dawson, W. et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 1, 0186 (2017).
Capinha, C., Essl, F., Seebens, H., Pereira, H. M. & Kühn, I. Models of alien species richness show moderate predictive accuracy and poor transferability. NeoBiota 38, 77–96 (2018).
Capinha, C., Marcolin, F. & Reino, L. Human‐induced globalization of insular herpetofaunas. Glob. Ecol. Biogeogr. 29, 1328–1349 (2020).
Roura-Pascual, N. et al. Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proc. Natl. Acad. Sci. USA 108, 220–225 (2011).
Seebens, H. et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Chang. Biol. 21, 4128–4140 (2015).
Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl. Acad. Sci. USA 108, 203–207 (2011).
Fenn-Moltu, G. et al. Alien insect dispersal mediated by the global movement of commodities. Ecol. Appl. 33, e2721 (2023).
Ollier, S. & Bertelsmeier, C. Precise knowledge of commodity trade is needed to understand invasion flows. Front. Ecol. Environ. 20, 467–473 (2022).
Rouget, M. et al. Invasion debt—quantifying future biological invasions. Divers. Distrib. 22, 445–456 (2015).
Maclachlan, M. J., Liebhold, A. M., Yamanaka, T. & Springborn, M. R. Hidden patterns of insect establishment risk revealed from two centuries of alien species discoveries. Sci. Adv. 7, eabj1012 (2021).
Turner, R. et al. Worldwide border interceptions provide a window into human-mediated global insect movement. Ecol. Appl. 31, e02412 (2021).
Forister, M. L. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl. Acad. Sci. USA 112, 442–447 (2015).
Seebens, H. et al. Projecting the continental accumulation of alien species through to 2050. Glob. Chang. Biol. 27, 970–982 (2021).
Cadotte, M. W. in Conceptual Ecology and Invasion Biology: Reciprocal Approaches to Nature (eds Cadotte, M. W. et al.) 15–33 (Springer, 2006).
de Candolle, A. Géographie botanique raisonnée; ou, Exposition des faits principaux et des lois concernant la distribution géographique des plantes de l’epoque actuelle. 610 (Librairie de Victor Masson, 1855).
Darwin, C. On the Origin of Species by Means of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life (Appleton, 1859).
Berg, C. Enumeración de las plantas europeas que se hallan como silvestres en la provincia de Buenos Aires y en la Patagonia. An. Soc. Cient. Argent. 3, 183–204 (1877).
Wehi, P. M., Kamelamela, K. L., Whyte, K., Watene, K. & Reo, N. Contribution of Indigenous Peoples’ understandings and relational frameworks to invasive alien species management. People Nat. 5, 1403–1414 (2023).
Liebhold, A. M. & Griffin, R. L. The legacy of Charles Marlatt and efforts to limit plant pest invasions. Am. Entomol. 62, 218–227 (2016).
Williams, K. A. An overview of the U.S. National Plant Germplasm System’s Exploration Program. HortScience 40, 297–301 (2005).
Cerri, J., Bertolino, S., Carnevali, L., Monaco, A. & Genovesi, P. Blacklists do not necessarily make people curious about invasive alien species. A case study with Bayesian structural time series and Wikipedia searches about invasive mammals in Italy. NeoBiota 71, 113–128 (2020).
Simberloff, D. Risk assessments, blacklists, and white lists for introduced species: are predictions good enough to be useful? Agric. Resour. Econ. Rev. https://doi.org/10.1017/S1068280500010005 (2006).
Carnegie, A. J. et al. Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biol. Invas. 18, 127–144 (2016).
Wilson, J. R. U., Dormontt, E. E., Prentis, P. J., Lowe, A. J. & Richardson, D. M. Something in the way you move: dispersal pathways affect invasion success. Trends Ecol. Evol. 24, 136–144 (2009).
Haack, R. A., Hardin, J. A., Caton, B. P. & Petrice, T. R. Wood borer detection rates on wood packaging materials entering the United States during different phases of ISPM 15 implementation and regulatory changes. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2022.1069117 (2022).
Lovett, G. M. et al. Nonnative forest insects and pathogens in the United States: impacts and policy options. Ecol. Appl. 26, 1437–1455 (2016).
Lyal, C. H. C. & Miller, S. E. Capacity of United States federal government and its partners to rapidly and accurately report the identity (taxonomy) of non-native organisms intercepted in early detection programs. Biol. Invas. 22, 101–127 (2020).
Larson, E. R. et al. From eDNA to citizen science: emerging tools for the early detection of invasive species. Front. Ecol. Environ. 18, 194–202 (2020).
Martinez, B. et al. Technology innovation: advancing capacities for the early detection of and rapid response to invasive species. Biol. Invas. 22, 75–100 (2020).
Parker, K. et al. Crossing the great divide: bridging the researcher–practitioner gap to maximize the utility of remote sensing for invasive species monitoring and management. Remote. Sens. 13, 4142 (2021).
Masters, S. et al. Quantifying an online wildlife trade using a web crawler. Biodivers. Conserv. 31, 855–869 (2022).
Hulme, P. E. Importance of greater interdisciplinarity and geographic scope when tackling the driving forces behind biological invasions. Conserv. Biol. 36, e13817 (2022).
Knapp, M., Collins, C. J. & Matisoo-Smith, E. Ancient invaders: how paleogenetic tools help to identify and understand biological invasions of the past. Annu. Rev. Ecol. Evol. Syst. 52, 111–129 (2021).
Estoup, A. et al. Combining genetic, historical and geographical data to reconstruct the dynamics of bioinvasions: application to the cane toad Bufo marinus. Mol. Ecol. Resour. 10, 886–901 (2010).
Daume, S. Mining Twitter to monitor invasive alien species—an analytical framework and sample information topologies. Ecol. Inform. 31, 70–82 (2016).
O’Neill, D. et al. Investigating the potential of social media and citizen science data to track changes in species’ distributions. Ecol. Evol. 13, e10063 (2023).
Buba, Y., Kiflawi, M., McGeoch, M. A. & Belmaker, J. Evaluating models for estimating introduction rates of alien species from discovery records. Glob. Ecol. Biogeogr. 33, e13859 (2024).
Vargas, M. tradestatistics: Open Trade Statistics API Wrapper and Utility Program. R package version 5.0.0 https://cran.r-project.org/web/packages/tradestatistics/tradestatistics.pdf (2024).
Global administrative areas v.4.1. University of Waterloo https://uwaterloo.ca/library/geospatial/collections/us-and-world-geospatial-data-resources/global-administrative-areas-gadm (2012).
Global Biodiversity Information Facility. GBIF https://www.gbif.org (2024).
Lee, W. et al. Current status of exotic insect pests in Korea: comparing border interception and incursion during 1996-2014. J. Asia. Pac. Entomol. 19, 1095–1101 (2016).
Du, J., Fang, S., Zhao, J., Shi, J. & Liang, T. Analysis of insect pests identified to species that were intercepted at Chinese ports of entry. Manag. Biol. Invas. 14, 641–657 (2023).
Acknowledgements
The authors acknowledge support by grants from the Swiss canton Vaud, the Swiss National Science Foundation (SNSF grant 310030_192619) and the SERI-funded ERC grant SPREAD (MB22.00086). C.B. and J.R.G. also acknowledge support from Fondation Herbette for the sabbatical visit of J.R.G. to the University of Lausanne.
Author information
Authors and Affiliations
Contributions
The authors contributed to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Biodiversity thanks Núria Roura-Pascual and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
EDDMapS: www.eddmaps.orgFirstRecord: https://dataportal.senckenberg.de/dataset/global-alien-species-first-record-database
Global Biodiversity Information Facility: www.gbif.org
iNaturalist: www.inaturalist.org
WildSpotter: www.wildspotter.org
Glossary
- Acclimatization societies
-
Societies dedicated to the establishment of non-native species for the perceived improvement of the local flora and fauna for aesthetic and economic purposes.
- Bridgehead effects
-
Secondary spread of species from established non-native populations.
- Invasion debts
-
Invasions predicted to occur on the basis of past events.
- Jump dispersal
-
Discontinuous long-distance dispersal.
- Native species
-
Species that have not established outside their native range.
- Non-native species
-
Species introduced outside their native range that have established a self-sustaining population.
- Propagule pressure
-
Number of individuals introduced or the frequency of introduction events.
- Sentinel gardens
-
Plantation of a variety of host plant species, which can provide early warning of non-native insect species that can use them as hosts.
- Slippage
-
Introduction of a known quarantine pest that was not detected at port.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bertelsmeier, C., Bonnamour, A., Garnas, J.R. et al. Temporal dynamics and global flows of insect invasions in an era of globalization. Nat. Rev. Biodivers. 1, 90–103 (2025). https://doi.org/10.1038/s44358-025-00016-1
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s44358-025-00016-1


