Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Current approaches and future opportunities for climate-smart protected areas

Abstract

The Global Biodiversity Framework’s target of protecting 30% of land, waters and seas by 2030 requires critical discussion of where to establish new protected areas. Spatial prioritization — the process of identifying priority areas — has increasingly recognized that climate change will affect the efficacy of protected areas, as species move to track shifting climate niches. In this Review, we synthesize the current climate-smart approaches: those strategies aimed at designing protected areas that are more resilient to climate change. Such approaches include protecting species’ future habitats, protecting climate refugia, protecting areas that facilitate climate connectivity and protecting areas that promote adaptation potential. To implement these approaches, challenges include uncertainty and gaps in underlying data. We provide actionable guidance for applying these climate-smart approaches in different contexts and highlight promising ways to integrate advances in climate change ecology into conservation planning.

Key points

  • Conservation planning increasingly integrates a growing breadth of approaches that incorporate the effects of climate change on biodiversity.

  • Protecting species’ future habitats by considering range shifts remains the dominant approach, but non-species-specific approaches are gaining traction.

  • No single climate-smart approach can account for climate-change impacts on biodiversity, but adopting multiple, even conflicting, approaches could buffer against effects of climate change more effectively.

  • Protecting climate refugia can serve as a strong foundation for robust climate-smart protected area networks, which can be supplemented by protecting additional areas to facilitate climate connectivity.

  • Climate-smart spatial prioritizations are feasible on land at national to subnational scales where there are detailed data, but in data-poor areas approaches based on metrics of climate change and species traits offer viable alternatives.

  • Climate-smart conservation planning could be improved by integrating approaches across spatial scales, promoting transboundary conservation planning, and exchanging ideas across realms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Six steps to climate-smart systematic conservation planning.
Fig. 2: Current climate-smart spatial prioritization approaches.

Similar content being viewed by others

References

  1. Epps, M. & Chazot, C. (eds) The High Seas Biodiversity Treaty: an introduction to the Agreement under the United Nations Convention on the Law of the Sea on the conservation and sustainable use of marine biological diversity of areas beyond national jurisdiction. IUCN https://iucn.org/sites/default/files/2024-01/iucn-bbnj-treaty-policy-brief.pdf (2023).

  2. Fitzsimons, J., Stolton, S., Dudley, N. & Mitchell, B. Defining ‘long-term’ for protected areas and other effective area-based conservation measures. Technical Note No. 14. IUCN WCPA https://iucn.org/sites/default/files/2024-09/iucn-wcpa-technical-note-14.pdf (2024).

  3. Dudley, N., Rao, M., Zeng, Y. & Watson, J. E. M. Protected and conserved areas are irreplaceable tools for meeting linked targets on biodiversity and climate. Technical Note No. 15. IUCN WCPA https://iucn.org/sites/default/files/2024-09/iucn-wcpa-technical-note-15.pdf (2024).

  4. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H. O. et al.) (Cambridge Univ. Press, 2022).

  5. Pörtner, H.-O. et al. Overcoming the coupled climate and biodiversity crises and their societal impacts. Science 380, eabl4881 (2023).

    Article  Google Scholar 

  6. Hoffmann, S. & Beierkuhnlein, C. Climate change exposure and vulnerability of the global protected area estate from an international perspective. Divers. Distrib. 26, 1496–1509 (2020).

    Article  Google Scholar 

  7. Smith, J. G. et al. A marine protected area network does not confer community structure resilience to a marine heatwave across coastal ecosystems. Glob. Change Biol. 29, 5634–5651 (2023).

    Article  CAS  Google Scholar 

  8. Dobrowski, S. Z. et al. Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes. Commun. Earth Environ. 2, 1–11 (2021).

    Article  Google Scholar 

  9. Wilson, K. L., Tittensor, D. P., Worm, B. & Lotze, H. K. Incorporating climate change adaptation into marine protected area planning. Glob. Change Biol. 26, 3251–3267 (2020).

    Article  Google Scholar 

  10. Frazão Santos, C. et al. Key components of sustainable climate-smart ocean planning. npj Ocean Sustain. 3, 10 (2024).

    Article  Google Scholar 

  11. Reside, A. E., Butt, N. & Adams, V. M. Adapting systematic conservation planning for climate change. Biodivers. Conserv. 27, 1–29 (2018).

    Article  Google Scholar 

  12. Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).

    Article  CAS  Google Scholar 

  13. Pressey, R. L. & Bottrill, M. C. Opportunism, threats, and the evolution of systematic conservation planning. Conserv. Biol. 22, 1340–1345 (2008).

    Article  Google Scholar 

  14. Donelson, J. M. et al. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Phil. Trans. R. Soc. B 374, 20180186 (2019).

    Article  Google Scholar 

  15. Boyce, D. G. et al. A climate risk index for marine life. Nat. Clim. Change 12, 854–862 (2022).

    Article  Google Scholar 

  16. Haight, J. & Hammill, E. Protected areas as potential refugia for biodiversity under climatic change. Biol. Conserv. 241, 108258 (2020).

    Article  Google Scholar 

  17. Jones, K. R., Watson, J. E. M., Possingham, H. P. & Klein, C. J. Incorporating climate change into spatial conservation prioritisation: a review. Biol. Conserv. 194, 121–130 (2016).

    Article  Google Scholar 

  18. Kunming–Montreal Global Biodiversity Framework agreed at the 15th meeting of the Conference of Parties to the UN Convention on Biological Diversity. CBD/COP/15/L.25. CBD https://www.cbd.int/article/cop15-final-text-kunming-montreal-gbf-221222 (2022).

  19. Frazão et al. Taking climate-smart governance to the high seas. Science 384, 734–737 (2024).

    Article  Google Scholar 

  20. Agreement under the United Nations Convention on the Law of the Sea on the Conservation and Sustainable Use of Marine Biological Diversity of Areas beyond National Jurisdiction. United Nations https://www.un.org/bbnjagreement/en (2023).

  21. The World Database on Protected Areas (WDPA). Protected Planet https://www.protectedplanet.net/ (2024).

  22. Corelli, V., Boerder, K., Hunter, K. L., Lavoie, I. & Tittensor, D. P. The biodiversity adaptation gap: management actions for marine protected areas in the face of climate change. Conserv. Lett. 17, e13003 (2024).

    Article  Google Scholar 

  23. Pressey, R. L. & Bottrill, M. C. Approaches to landscape- and seascape-scale conservation planning: convergence, contrasts and challenges. Oryx 43, 464–475 (2009).

    Article  Google Scholar 

  24. Auber, A. et al. A functional vulnerability framework for biodiversity conservation. Nat. Commun. 13, 4774 (2022).

    Article  CAS  Google Scholar 

  25. Magris, R. A. et al. A blueprint for securing Brazil’s marine biodiversity and supporting the achievement of global conservation goals. Divers. Distrib. 27, 198–215 (2021).

    Article  Google Scholar 

  26. McLeod, E. et al. Integrating climate and ocean change vulnerability into conservation planning. Coast. Manag. 40, 651–672 (2012).

    Article  Google Scholar 

  27. Yang, L. et al. Effects of climate and land-cover change on the conservation status of gibbons. Conserv. Biol. 37, e14045 (2023).

    Article  Google Scholar 

  28. Prieto-Torres, D. A. et al. Analyzing individual drivers of global changes promotes inaccurate long-term policies in deforestation hotspots: the case of Gran Chaco. Biol. Conserv. 269, 109536 (2022).

    Article  Google Scholar 

  29. Brito-Morales, I. et al. Towards climate-smart, three-dimensional protected areas for biodiversity conservation in the high seas. Nat. Clim. Change 12, 402–407 (2022).

    Article  Google Scholar 

  30. Webster, M. S., Marra, P. P., Haig, S. M., Bensch, S. & Holmes, R. T. Links between worlds: unraveling migratory connectivity. TREE 17, 76–83 (2002).

    Google Scholar 

  31. Keeley, A. T. H. et al. New concepts, models, and assessments of climate-wise connectivity. Environ. Res. Lett. 13, 073002 (2018).

    Article  Google Scholar 

  32. Pendoley, K. L., Schofield, G., Whittock, P. A., Ierodiaconou, D. & Hays, G. C. Protected species use of a coastal marine migratory corridor connecting marine protected areas. Mar. Biol. 161, 1455–1466 (2014).

    Article  Google Scholar 

  33. Álvarez-Romero, J. G. et al. Designing connected marine reserves in the face of global warming. Glob. Change Biol. 24, e671–e691 (2018).

    Article  Google Scholar 

  34. Webster, M. S. et al. Who should pick the winners of climate change? TREE 32, 167–173 (2017).

    Google Scholar 

  35. Lawler, J. J. Climate change adaptation strategies for resource management and conservation planning. Ann. NY Acad. Sci. 1162, 79–98 (2009).

    Article  Google Scholar 

  36. O’Regan, S. M., Archer, S. K., Friesen, S. K. & Hunter, K. L. A global assessment of climate change adaptation in marine protected area management plans. Front. Mar. Sci. 8, 711085 (2021).

    Article  Google Scholar 

  37. Carroll, C. & Ray, J. C. Maximizing the effectiveness of national commitments to protected area expansion for conserving biodiversity and ecosystem carbon under climate change. Glob. Change Biol. 27, 3395–3414 (2021).

    Article  Google Scholar 

  38. Carvalho, S. B., Torres, J., Tarroso, P. & Velo-Antón, G. Genes on the edge: a framework to detect genetic diversity imperiled by climate change. Glob. Change Biol. 25, 4034–4047 (2019).

    Article  Google Scholar 

  39. Thurman, L. L. et al. Persist in place or shift in space? Evaluating the adaptive capacity of species to climate change. Front. Ecol. Environ. 18, 520–528 (2020).

    Article  Google Scholar 

  40. Babcock, R. C. et al. Severe continental-scale impacts of climate change are happening now: extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 6, 411 (2019).

    Article  Google Scholar 

  41. Liczner, A. R., Schuster, R., Richardson, L. L. & Colla, S. R. Identifying conservation priority areas for North American bumble bee species in Canada under current and future climate scenarios. Conserv. Sci. Pract. 5, e12994 (2023).

    Article  Google Scholar 

  42. Maxwell, S. L., Reside, A., Trezise, J., McAlpine, C. A. & Watson, J. E. M. Retention and restoration priorities for climate adaptation in a multi-use landscape. Glob. Ecol. Conserv. 18, e00649 (2019).

    Google Scholar 

  43. Velazco, S. J. E., Svenning, J.-C., Ribeiro, B. R. & Laureto, L. M. O. On opportunities and threats to conserve the phylogenetic diversity of Neotropical palms. Divers. Distrib. 27, 512–523 (2021).

    Article  Google Scholar 

  44. Franklin, J. Species distribution modelling supports the study of past, present and future biogeographies. J. Biogeogr. 50, 1533–1545 (2023).

    Article  Google Scholar 

  45. Robinson, N. M., Nelson, W. A., Costello, M. J., Sutherland, J. E. & Lundquist, C. J. A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Front. Mar. Sci. 4, 421 (2017).

    Article  Google Scholar 

  46. Hendriks, I. E. & Duarte, C. M. Allocation of effort and imbalances in biodiversity research. J. Exp. Mar. Bio. Ecol. 360, 15–20 (2008).

    Article  Google Scholar 

  47. The Global Biodiversity Information Facility (GBIF). GBIF https://www.gbif.org (2024).

  48. Visalli, M. E. et al. Data-driven approach for highlighting priority areas for protection in marine areas beyond national jurisdiction. Mar. Policy 122, 103927 (2020).

    Article  Google Scholar 

  49. Kaschner, K. et al. AquaMaps: predicted range maps for aquatic species. AquaMaps https://www.aquamaps.org/ (2019).

  50. Morelli, T. L. et al. Managing climate change refugia for climate adaptation. PLoS ONE 11, e0159909 (2016).

    Article  Google Scholar 

  51. Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).

    Article  Google Scholar 

  52. Theodoridis, S. et al. Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals. Nat. Commun. 11, 2557 (2020).

    Article  CAS  Google Scholar 

  53. Mokany, K. et al. Past, present and future refugia for Tasmania’s palaeoendemic flora. J. Biogeogr. 44, 1537–1546 (2017).

    Article  Google Scholar 

  54. Stralberg, D. et al. Macrorefugia for North American trees and songbirds: climatic limiting factors and multi-scale topographic influences. Glob. Ecol. Biogeogr. 27, 690–703 (2018).

    Article  Google Scholar 

  55. Carroll, C. et al. Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change. Glob. Change Biol. 23, 4508–4520 (2017).

    Article  Google Scholar 

  56. Hannah, L. et al. Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. TREE 29, 390–397 (2014).

    Google Scholar 

  57. Giraldo-Ospina, A., Kendrick, G. A. & Hovey, R. K. Depth moderates loss of marine foundation species after an extreme marine heatwave: could deep temperate reefs act as a refuge? Proc. R. Soc. B 287, 20200709 (2020).

    Article  Google Scholar 

  58. Graham, V., Baumgartner, J. B., Beaumont, L. J., Esperón-Rodríguez, M. & Grech, A. Prioritizing the protection of climate refugia: designing a climate-ready protected area network. JEPM 62, 2588–2606 (2019).

    Google Scholar 

  59. Serra-Diaz, J. M. et al. Bioclimatic velocity: the pace of species exposure to climate change. Divers. Distrib. 20, 169–180 (2014).

    Article  Google Scholar 

  60. Wilmot, E. et al. Characterizing mauka-to-makai connections for aquatic ecosystem conservation on Maui, Hawai‘i. Ecol. Inform. 70, 101704 (2022).

    Article  Google Scholar 

  61. Buenafe, K. C. V. et al. A metric-based framework for climate-smart conservation planning. Ecol. Appl. 33, e2852 (2023).

    Article  Google Scholar 

  62. Doxa, A. et al. 4D marine conservation networks: combining 3D prioritization of present and future biodiversity with climatic refugia. Glob. Change Biol. 28, 4577–4588 (2022).

    Article  CAS  Google Scholar 

  63. Chollett, I. et al. Planning for resilience: incorporating scenario and model uncertainty and trade-offs when prioritizing management of climate refugia. Glob. Change Biol. 28, 4054–4068 (2022).

    Article  CAS  Google Scholar 

  64. Oliver, E. C. J. et al. Marine heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).

    Article  Google Scholar 

  65. Ruthrof, K. X. et al. Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Sci. Rep. 8, 13094 (2018).

    Article  Google Scholar 

  66. Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 12, 13 (2019).

    Article  Google Scholar 

  67. Pigot, A. L., Merow, C., Wilson, A. & Trisos, C. H. Abrupt expansion of climate change risks for species globally. Nat. Ecol. Evol. 7, 1060–1071 (2023).

    Article  Google Scholar 

  68. Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).

    Article  Google Scholar 

  69. Dixon, A. M., Forster, P. M., Heron, S. F., Stoner, A. M. K. & Beger, M. Future loss of local-scale thermal refugia in coral reef ecosystems. PLoS Clim. 1, e0000004 (2022).

    Article  Google Scholar 

  70. Iglesias, M. C. et al. Climate- and fire-smart landscape scenarios call for redesigning protection regimes to achieve multiple management goals. J. Environ. Manage. 322, 116045 (2022).

    Article  Google Scholar 

  71. Ribeiro, B. R., Sales, L. P. & Loyola, R. Strategies for mammal conservation under climate change in the Amazon. Biodivers. Conserv. 27, 1943–1959 (2018).

    Article  Google Scholar 

  72. Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–U111 (2009).

    Article  CAS  Google Scholar 

  73. Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).

    Article  Google Scholar 

  74. Hu, X., Wei, L., Cheng, Q., Wu, X. & Ni, J. Adjusting the protected areas on the Tibetan Plateau under changing climate. Glob. Ecol. Conserv. 45, e02514 (2023).

    Google Scholar 

  75. Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C. & Nielsen, S. E. Velocity of climate change algorithms for guiding conservation and management. Glob. Change Biol. 21, 997–1004 (2015).

    Article  Google Scholar 

  76. Dobrowski, S. Z. & Parks, S. A. Climate change velocity underestimates climate change exposure in mountainous regions. Nat. Commun. 7, 12349 (2016).

    Article  CAS  Google Scholar 

  77. Triviño, M., Kujala, H., Araújo, M. B. & Cabeza, M. Planning for the future: identifying conservation priority areas for Iberian birds under climate change. Landsc. Ecol. 33, 659–673 (2018).

    Article  Google Scholar 

  78. Carroll, C., Dunk, J. R. & Moilanen, A. Optimizing resiliency of reserve networks to climate change: multispecies conservation planning in the Pacific Northwest, USA. Glob. Change Biol. 16, 891–904 (2010).

    Article  Google Scholar 

  79. Han, X., Huettmann, F., Guo, Y., Mi, C. & Wen, L. Conservation prioritization with machine learning predictions for the black-necked crane Grus nigricollis, a flagship species on the Tibetan Plateau for 2070. Reg. Environ. Change 18, 2173–2182 (2018).

    Article  Google Scholar 

  80. Parks, S. A., Holsinger, L. M., Abatzoglou, J. T., Littlefield, C. E. & Zeller, K. A. Protected areas not likely to serve as steppingstones for species undergoing climate-induced range shifts. Glob. Change Biol. 29, 2681–2696 (2023).

    Article  CAS  Google Scholar 

  81. McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. Proc. Natl Acad. Sci. 113, 7195–7200 (2016).

    Article  CAS  Google Scholar 

  82. Carroll, C., Parks, S. A., Dobrowski, S. Z. & Roberts, D. R. Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Glob. Change Biol. 24, 5318–5331 (2018).

    Article  Google Scholar 

  83. Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).

    Article  CAS  Google Scholar 

  84. Lawler, J. J. et al. Planning for climate change through additions to a national protected area network: implications for cost and configuration. Phil. Trans. R. Soc. B 375, 20190117 (2020).

    Article  Google Scholar 

  85. Stralberg, D., Carroll, C. & Nielsen, S. E. Toward a climate‐informed North American protected areas network: incorporating climate‐change refugia and corridors in conservation planning. Conserv. Lett. 13, e12712 (2020).

    Article  Google Scholar 

  86. Dickson, B. G. et al. Circuit-theory applications to connectivity science and conservation. Conserv. Biol. 33, 239–249 (2019).

    Article  Google Scholar 

  87. Alagador, D., Cerdeira, J. O. & Araújo, M. B. Shifting protected areas: scheduling spatial priorities under climate change. J. Appl. Ecol. 51, 703–713 (2014).

    Article  Google Scholar 

  88. Lin, Y. et al. Climate-driven connectivity loss impedes species adaptation to warming in the deep ocean. Nat. Clim. Change 15, 315–320 (2025).

    Article  Google Scholar 

  89. Richardson, A. J. & Buenafe, K. C. V. A deep dive into climate connectivity. Nat. Clim. Change 15, 248–249 (2025).

    Article  Google Scholar 

  90. McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89, 2712–2724 (2008).

    Article  Google Scholar 

  91. McClure, M. L., Hansen, A. J. & Inman, R. M. Connecting models to movements: testing connectivity model predictions against empirical migration and dispersal data. Landsc. Ecol. 31, 1419–1432 (2016).

    Article  Google Scholar 

  92. Petsas, P., Doxa, A., Almpanidou, V. & Mazaris, A. D. Global patterns of sea surface climate connectivity for marine species. Commun. Earth Environ. 3, 240 (2022).

    Article  Google Scholar 

  93. Alagador, D., Cerdeira, J. O. & Araújo, M. B. Climate change, species range shifts and dispersal corridors: an evaluation of spatial conservation models. Methods Ecol. Evol. 7, 853–866 (2016).

    Article  Google Scholar 

  94. Beger, M. et al. Demystifying ecological connectivity for actionable spatial conservation planning. TREE 37, 1079–1091 (2022).

    Google Scholar 

  95. Kindlmann, P. & Burel, F. Connectivity measures: a review. Landsc. Ecol. 23, 879–890 (2008).

    Google Scholar 

  96. Burgess, M. G., Becker, S. L., Langendorf, R. E., Fredston, A. & Brooks, C. M. Climate change scenarios in fisheries and aquatic conservation research. ICES J. Mar. Sci. 80, 1163–1178 (2023).

    Article  Google Scholar 

  97. Abe, H., Kumagai, N. H. & Yamano, H. Priority coral conservation areas under global warming in the Amami Islands, Southern Japan. Coral Reefs 41, 1637–1650 (2022).

    Article  Google Scholar 

  98. Chauvier-Mendes, Y. et al. Transnational conservation to anticipate future plant shifts in Europe. Nat. Ecol. Evol. 8, 454–466 (2024).

    Article  Google Scholar 

  99. Magris, R. A., Pressey, R. L., Mills, M., Vila-Nova, D. A. & Floeter, S. Integrated conservation planning for coral reefs: designing conservation zones for multiple conservation objectives in spatial prioritisation. Glob. Ecol. Conserv. 11, 53–68 (2017).

    Google Scholar 

  100. Colton, M. A. et al. Coral conservation in a warming world must harness evolutionary adaptation. Nat. Ecol. Evol. 6, 1405–1407 (2022).

    Article  Google Scholar 

  101. Walsworth, T. E. et al. Management for network diversity speeds evolutionary adaptation to climate change. Nat. Clim. Change 9, 632–636 (2019).

    Article  Google Scholar 

  102. Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. 5, 1499–1509 (2021).

    Article  Google Scholar 

  103. Hanson, J. O. et al. Conservation planning for adaptive and neutral evolutionary processes. J. Appl. Ecol. 57, 2159–2169 (2020).

    Article  Google Scholar 

  104. Hanson, J. O., Rhodes, J. R., Riginos, C. & Fuller, R. A. Environmental and geographic variables are effective surrogates for genetic variation in conservation planning. Proc. Natl Acad. Sci. USA 114, 12755–12760 (2017).

    Article  CAS  Google Scholar 

  105. Game, E. T., Lipsett-Moore, G., Saxon, E., Peterson, N. & Sheppard, S. Incorporating climate change adaptation into national conservation assessments. Glob. Change Biol. 17, 3150–3160 (2011).

    Article  Google Scholar 

  106. Magris, R. A., Heron, S. F. & Pressey, R. L. Conservation planning for coral reefs accounting for climate warming disturbances. PLoS ONE 10, e0140828 (2015).

    Article  Google Scholar 

  107. Makino, A. et al. Spatio-temporal marine conservation planning to support high-latitude coral range expansion under climate change. Divers. Distrib. 20, 859–871 (2014).

    Article  Google Scholar 

  108. Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. 5, eaay9969 (2019).

    Article  Google Scholar 

  109. Kleypas, J. A. et al. Larval connectivity across temperature gradients and its potential effect on heat tolerance in coral populations. Glob. Change Biol. 22, 3539–3549 (2016).

    Article  Google Scholar 

  110. Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).

    Article  CAS  Google Scholar 

  111. Mumby, P. J. et al. Reserve design for uncertain responses of coral reefs to climate change. Ecol. Lett. 14, 132–140 (2011).

    Article  Google Scholar 

  112. Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc. R. Soc. B 285, 20172746 (2018).

    Article  Google Scholar 

  113. Thomassen, H. A. et al. Mapping evolutionary process: a multi-taxa approach to conservation prioritization. Evol. Appl. 4, 397–413 (2011).

    Article  Google Scholar 

  114. Toczydlowski, R. H. et al. Poor data stewardship will hinder global genetic diversity surveillance. Proc. Natl Acad. Sci. 118, e2107934118 (2021).

    Article  CAS  Google Scholar 

  115. Wilson, K. A. et al. Conservation research is not happening where it is most needed. PLoS Biol. 14, e1002413 (2016).

    Article  Google Scholar 

  116. Jarnevich, C. S., Stohlgren, T. J., Kumar, S., Morisette, J. T. & Holcombe, T. R. Caveats for correlative species distribution modeling. Ecol. Inform. 29, 6–15 (2015).

    Article  Google Scholar 

  117. Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. & Zelinka, M. Climate simulations: recognize the ‘hot model’ problem. Nature 605, 26–29 (2022).

    Article  CAS  Google Scholar 

  118. Polasky, S., Carpenter, S. R., Folke, C. & Keeler, B. Decision-making under great uncertainty: environmental management in an era of global change. TREE 26, 398–404 (2011).

    Google Scholar 

  119. Schoeman, D. S. et al. Demystifying global climate models for use in the life sciences. TREE 38, 843–858 (2023).

    Google Scholar 

  120. Tapiador, F. J., Navarro, A., Moreno, R., Sánchez, J. L. & García-Ortega, E. Regional climate models: 30 years of dynamical downscaling. Atmos. Res. 235, 104785 (2020).

    Article  Google Scholar 

  121. Liao, H., Wang, C. & Song, Z. ENSO phase-locking biases from the CMIP5 to CMIP6 models and a possible explanation. Deep. Sea Res. II 189–190, 104943 (2021).

    Article  Google Scholar 

  122. Ekström, M., Grose, M. R. & Whetton, P. H. An appraisal of downscaling methods used in climate change research. Wiley Interdisc. Rev. Clim. 6, 301–319 (2015).

    Article  Google Scholar 

  123. Keil, P., Wilson, A. M. & Jetz, W. Uncertainty, priors, autocorrelation and disparate data in downscaling of species distributions. Divers. Distrib. 20, 797–812 (2014).

    Article  Google Scholar 

  124. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  125. Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article  Google Scholar 

  126. Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).

    Article  Google Scholar 

  127. Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).

    Article  Google Scholar 

  128. Harris, R. M. B. et al. Climate projections for ecologists. Wiley Interdisc. Rev. Clim. 5, 621–637 (2014).

    Article  Google Scholar 

  129. Alagador, D. & Cerdeira, J. O. Revisiting the minimum set cover, the maximal coverage problems and a maximum benefit area selection problem to make climate‐change‐concerned conservation plans effective. Methods Ecol. Evol. 11, 1325–1337 (2020).

    Article  Google Scholar 

  130. Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).

    Article  CAS  Google Scholar 

  131. Bryndum-Buchholz, A. et al. Climate-change impacts and fisheries management challenges in the North Atlantic Ocean. Mar. Ecol. Prog. Ser. 648, 1–17 (2020).

    Article  Google Scholar 

  132. Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    Article  CAS  Google Scholar 

  133. Perez-Navarro, M. A. et al. Comparing climatic suitability and niche distances to explain populations responses to extreme climatic events. Ecography 2022, e06263 (2022).

    Article  Google Scholar 

  134. Abatzoglou, J. T., Dobrowski, S. Z. & Parks, S. A. Multivariate climate departures have outpaced univariate changes across global lands. Sci. Rep. 10, 3891 (2020).

    Article  CAS  Google Scholar 

  135. Martel, J.-L. et al. CMIP5 and CMIP6 model projection comparison for hydrological impacts over North America. Geophys. Res. Lett. 49, e2022GL098364 (2022).

    Article  Google Scholar 

  136. Game, E. T., Watts, M. E., Wooldridge, S. & Possingham, H. P. Planning for persistence in marine reserves: a question of catastrophic importance. Ecol. Appl. 18, 670–680 (2008).

    Article  Google Scholar 

  137. Kujala, H., Moilanen, A., Araújo, M. B. & Cabeza, M. Conservation planning with uncertain climate change projections. PLoS ONE 8, e53315 (2013).

    Article  CAS  Google Scholar 

  138. Giakoumi, S. et al. Advances in systematic conservation planning to meet global biodiversity goals. TREE https://doi.org/10.1016/j.tree.2024.12.002 (2025).

  139. de los Ríos, C., Watson, J. E. M. & Butt, N. Persistence of methodological, taxonomical, and geographical bias in assessments of species’ vulnerability to climate change: a review. Glob. Ecol. Conserv. 15, e00412 (2018).

    Google Scholar 

  140. Runting, R. K. et al. Reducing risk in reserve selection using Modern Portfolio Theory: coastal planning under sea-level rise. J. Appl. Ecol. 55, 2193–2203 (2018).

    Article  Google Scholar 

  141. Powers, R. P. et al. A conservation assessment of Canada’s boreal forest incorporating alternate climate change scenarios. Remote Sens. Ecol. Conserv. 3, 202–216 (2017).

    Article  Google Scholar 

  142. Butt, N. et al. A trait-based framework for assessing the vulnerability of marine species to human impacts. Ecosphere 13, e3919 (2022).

    Article  Google Scholar 

  143. Miatta, M., Bates, A. E. & Snelgrove, P. V. R. Incorporating biological traits into conservation strategies. Ann. Rev. Mar. Sci. 13, 421–443 (2021).

    Article  Google Scholar 

  144. Boyce, D. G. et al. Operationalizing climate risk in a global warming hotspot. npj Ocean Sustain. 3, 33 (2024).

    Article  Google Scholar 

  145. Beger, M. et al. Integrating regional conservation priorities for multiple objectives into national policy. Nat. Commun. 6, 8208 (2015).

    Article  CAS  Google Scholar 

  146. Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).

    Article  CAS  Google Scholar 

  147. Butt, N. & Gallagher, R. Using species traits to guide conservation actions under climate change. Clim. Change 151, 317–332 (2018).

    Article  Google Scholar 

  148. Rojas, I. M. et al. A landscape-scale framework to identify refugia from multiple stressors. Conserv. Biol. 36, e13834 (2022).

    Article  Google Scholar 

  149. Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    Article  CAS  Google Scholar 

  150. Trisovic, A., Lau, M. K., Pasquier, T. & Crosas, M. A large-scale study on research code quality and execution. Sci. Data 9, 60 (2022).

    Article  Google Scholar 

  151. Tulloch, A. I. T. et al. A decision tree for assessing the risks and benefits of publishing biodiversity data. Nat. Ecol. Evol. 2, 1209–1217 (2018).

    Article  Google Scholar 

  152. Ramírez, F., Sbragaglia, V., Soacha, K., Coll, M. & Piera, J. Challenges for marine ecological assessments: completeness of findable, accessible, interoperable, and reusable biodiversity data in European Seas. Front. Mar. Sci. 8, 802235 (2022).

    Article  Google Scholar 

  153. Daigle, R. M. et al. Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect. Methods Ecol. Evol. 11, 570–579 (2020).

    Article  Google Scholar 

  154. Everett, J. D. et al. Weddell Sea Marine Protected Area (WSMPA) Phase 2. Norwegian Polar Institute https://mathmarecol.shinyapps.io/WSMPA2/ (2024).

  155. Pınarbaşı, K., Galparsoro, I. & Borja, Á. End users’ perspective on decision support tools in marine spatial planning. Mar. Policy 108, 103658 (2019).

    Article  Google Scholar 

  156. Boussarie, G., Kopp, D., Lavialle, G., Mouchet, M. & Morfin, M. Marine spatial planning to solve increasing conflicts at sea: a framework for prioritizing offshore windfarms and marine protected areas. J. Environ. Manage. 339, 117857 (2023).

    Article  Google Scholar 

  157. Sinclair, S. P. et al. The use, and usefulness, of spatial conservation prioritizations. Conserv. Lett. 11, e12459 (2018).

    Article  Google Scholar 

  158. Balbar, A. C. & Metaxas, A. The current application of ecological connectivity in the design of marine protected areas. Glob. Ecol. Conserv. 17, e00569 (2019).

    Google Scholar 

  159. Samsing, F., Johnsen, I., Treml, E. A. & Dempster, T. Identifying ‘firebreaks’ to fragment dispersal networks of a marine parasite. Int. J. Parasitol. 49, 277–286 (2019).

    Article  Google Scholar 

  160. Molinos, J. G. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).

    Article  Google Scholar 

  161. Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. TREE 33, 441–457 (2018).

    Google Scholar 

  162. Maxwell, S. M. et al. Dynamic ocean management: defining and conceptualizing real-time management of the ocean. Mar. Pol. 58, 42–50 (2015).

    Article  Google Scholar 

  163. Vigo, M. et al. Dynamic marine spatial planning for conservation and fisheries benefits. Fish Fish. 25, 630–646 (2024).

    Article  Google Scholar 

  164. Erisman, B. et al. Fish spawning aggregations: where well-placed management actions can yield big benefits for fisheries and conservation. Fish Fish. 18, 128–144 (2017).

    Article  Google Scholar 

  165. Runge, C. A. et al. Protected areas and global conservation of migratory birds. Science 350, 1255–1258 (2015).

    Article  CAS  Google Scholar 

  166. Anderson, J. J., Gurarie, E., Bracis, C., Burke, B. J. & Laidre, K. L. Modeling climate change impacts on phenology and population dynamics of migratory marine species. Ecol. Modell. 264, 83–97 (2013).

    Article  Google Scholar 

  167. Asch, R. G., Stock, C. A. & Sarmiento, J. L. Climate change impacts on mismatches between phytoplankton blooms and fish spawning phenology. Glob. Change Biol. 25, 2544–2559 (2019).

    Article  Google Scholar 

  168. Gill, J. A., Alves, J. A. & Gunnarsson, T. G. Mechanisms driving phenological and range change in migratory species. Phil. Trans. R. Soc. B 374, 20180047 (2019).

    Article  Google Scholar 

  169. Robinson, R. A. et al. Travelling through a warming world: climate change and migratory species. Endanger. Species Res. 7, 87–99 (2009).

    Article  Google Scholar 

  170. Meek, M. H. et al. Understanding local adaptation to prepare populations for climate change. BioScience 73, 36–47 (2023).

    Article  Google Scholar 

  171. Gilbert, S. L. et al. Conservation triage at the trailing edge of climate envelopes. Conserv. Biol. 34, 289–292 (2020).

    Article  Google Scholar 

  172. Schoepf, V. et al. Corals at the edge of environmental limits: a new conceptual framework to re-define marginal and extreme coral communities. Sci. Total. Environ. 884, 163688 (2023).

    Article  CAS  Google Scholar 

  173. Nielsen, E. S. et al. Molecular ecology meets systematic conservation planning. TREE 38, 143–155 (2023).

    Google Scholar 

  174. Schwalm, D. et al. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach. Glob. Change Biol. 22, 1572–1584 (2016).

    Article  Google Scholar 

  175. Chardon, N. I., Pironon, S., Peterson, M. L. & Doak, D. F. Incorporating intraspecific variation into species distribution models improves distribution predictions, but cannot predict species traits for a wide-spread plant species. Ecography 43, 60–74 (2020).

    Article  Google Scholar 

  176. Theodoridis, S., Patsiou, T. S., Randin, C. & Conti, E. Forecasting range shifts of a cold-adapted species under climate change: are genomic and ecological diversity within species crucial for future resilience? Ecography 41, 1357–1369 (2018).

    Article  Google Scholar 

  177. Thomassen, H. A. et al. Modeling environmentally associated morphological and genetic variation in a rainforest bird, and its application to conservation prioritization. Evol. Appl. 3, 1–16 (2010).

    Article  Google Scholar 

  178. McClanahan, T. R. et al. Diversification of refugia types needed to secure the future of coral reefs subject to climate change. Cons. Biol. 38, e14108 (2024).

    Article  Google Scholar 

  179. Hällfors, M. H. et al. Addressing potential local adaptation in species distribution models: implications for conservation under climate change. Ecol. Appl. 26, 1154–1169 (2016).

    Article  Google Scholar 

  180. Duncanson, L. et al. The effectiveness of global protected areas for climate change mitigation. Nat. Commun. 14, 2908 (2023).

    Article  CAS  Google Scholar 

  181. Dabalà, A. et al. Priority areas to protect mangroves and maximise ecosystem services. Nat. Commun. 14, 5863 (2023).

    Article  Google Scholar 

  182. Neugarten, R. A. et al. Mapping the planet’s critical areas for biodiversity and nature’s contributions to people. Nat. Commun. 15, 261 (2024).

    Article  CAS  Google Scholar 

  183. Serrano, O. et al. Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nat. Commun. 10, 4313 (2019).

    Article  Google Scholar 

  184. Sonntag, S., Pongratz, J., Reick, C. H. & Schmidt, H. Reforestation in a high-CO2 world — higher mitigation potential than expected, lower adaptation potential than hoped for. Geophys. Res. Lett. 43, 6546–6553 (2016).

    Article  CAS  Google Scholar 

  185. Abarca, H. et al. Spatial prioritisation of management zones in protected areas for the integration of multiple objectives. Biodivers. Conserv. 31, 1197–1215 (2022).

    Article  Google Scholar 

  186. Schupp, M. F. et al. Toward a common understanding of ocean multi-use. Front. Mar. Sci. 6, 165 (2019).

    Article  Google Scholar 

  187. Pinsky, M. L., Rogers, L. A., Morley, J. W. & Frölicher, T. L. Ocean planning for species on the move provides substantial benefits and requires few trade-offs. Sci. Adv. 6, eabb8428 (2020).

    Article  Google Scholar 

  188. Buotte, P. C., Law, B. E., Ripple, W. J. & Berner, L. T. Carbon sequestration and biodiversity co-benefits of preserving forests in the western United States. Ecol. Appl. 30, e02039 (2020).

    Article  Google Scholar 

  189. Reside, A. E., VanDerWal, J. & Moran, C. Trade-offs in carbon storage and biodiversity conservation under climate change reveal risk to endemic species. Biol. Conserv. 207, 9–16 (2017).

    Article  Google Scholar 

  190. Howarth, C. & Robinson, E. J. Z. Effective climate action must integrate climate adaptation and mitigation. Nat. Clim. Change 14, 300–301 (2024).

    Article  Google Scholar 

  191. Lawler, J., Watson, J. & Game, E. Conservation in the face of climate change: recent developments. F1000Res https://doi.org/10.12688/f1000research.6490.1 (2015).

  192. Meehan, M. C., Ban, N. C., Devillers, R., Singh, G. G. & Claudet, J. How far have we come? A review of MPA network performance indicators in reaching qualitative elements of Aichi Target 11. Conserv. Lett. 13, e12746 (2020).

    Article  Google Scholar 

  193. Morrison, T. H. Evolving polycentric governance of the Great Barrier Reef. Proc. Natl Acad. Sci. USA 114, E3013–E3021 (2017).

    Article  CAS  Google Scholar 

  194. Ban, N. C. et al. Systematic conservation planning: a better recipe for managing the high seas for biodiversity conservation and sustainable use. Conserv. Lett. 7, 41–54 (2014).

    Article  Google Scholar 

  195. Metaxas, A., Lacharité, M. & de Mendonça, S. N. Hydrodynamic connectivity of habitats of deep-water corals in Corsair Canyon, northwest Atlantic: a case for cross-boundary conservation. Front. Mar. Sci. 6, 554 (2019).

    Article  Google Scholar 

  196. Arafeh-Dalmau, N. et al. Integrating climate adaptation and transboundary management: guidelines for designing climate-smart marine protected areas. One Earth 6, 1523–1541 (2023).

    Article  Google Scholar 

  197. Boothroyd, A., Adams, V., Alexander, K. & Hill, N. Benefits and risks of incremental protected area planning in the Southern Ocean. Nat. Sustain. 6, 696–705 (2023).

    Article  Google Scholar 

  198. Pulp Mills on the River Uruguay (Argentina v. Uruguay). International Court of Justice https://www.icj-cij.org/case/135 (2010).

  199. Harris, J. L., Estradivari, E., Fox, H. E., McCarthy, O. S. & Ahmadia, G. N. Planning for the future: incorporating global and local data to prioritize coral reef conservation. Aquat. Conserv. 27, 65–77 (2017).

    Article  Google Scholar 

  200. Adams, V. M. et al. Scheduling incremental actions to build a comprehensive national protected area network for Papua New Guinea. Conserv. Sci. Pract. 3, e354 (2021).

    Article  Google Scholar 

  201. Gaymer, C. F. et al. Merging top-down and bottom-up approaches in marine protected areas planning: experiences from around the globe. Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 128–144 (2014).

    Article  Google Scholar 

  202. Li, B. V. & Pimm, S. L. How China expanded its protected areas to conserve biodiversity. Curr. Biol. 30, R1334–R1340 (2020).

    Article  CAS  Google Scholar 

  203. Lagabrielle, E., Lombard, A. T., Harris, J. M. & Livingstone, T.-C. Multi-scale multi-level marine spatial planning: a novel methodological approach applied in South Africa. PLoS ONE 13, e0192582 (2018).

    Article  Google Scholar 

  204. Pressey, R. L., Mills, M., Weeks, R. & Day, J. C. The plan of the day: managing the dynamic transition from regional conservation designs to local conservation actions. Biol. Conserv. 166, 155–169 (2013).

    Article  Google Scholar 

  205. Kadykalo, A. N., Cooke, S. J. & Young, N. The role of western-based scientific, Indigenous and local knowledge in wildlife management and conservation. People Nat. 3, 610–626 (2021).

    Article  Google Scholar 

  206. Cámara-Leret, R. & Dennehy, Z. Information gaps in indigenous and local knowledge for science-policy assessments. Nat. Sustain. 2, 736–741 (2019).

    Article  Google Scholar 

  207. Chaplin-Kramer, R. et al. Transformation for inclusive conservation: evidence on values, decisions, and impacts in protected areas. Curr. Opin. Environ. Sustain. 64, 101347 (2023).

    Article  Google Scholar 

  208. Lynch, A. J. et al. Managing for RADical ecosystem change: applying the resist–accept–direct (RAD) framework. Front. Ecol. Environ. 19, 461–469 (2021).

    Article  Google Scholar 

  209. Ward, N. K. et al. Reimagining large river management using the resist–accept–direct (RAD) framework in the Upper Mississippi River. Ecol. Process. 12, 48 (2023).

    Article  Google Scholar 

  210. Handler, S. D., Ledee, O. E., Hoving, C. L., Zuckerberg, B. & Swanston, C. W. A menu of climate change adaptation actions for terrestrial wildlife management. Wildl. Soc. Bull. 46, e1331 (2022).

    Article  Google Scholar 

  211. Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).

    Article  Google Scholar 

  212. Foden, W. B. et al. Climate change vulnerability assessment of species. Wiley Interdisc. Rev. Clim. 10, e551 (2019).

    Article  Google Scholar 

  213. Muhling, B. A. et al. Predictability of species distributions deteriorates under novel environmental conditions in the California Current System. Front. Mar. Sci. 7, 589 (2020).

    Article  Google Scholar 

  214. Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    Article  Google Scholar 

  215. Patrício, A. R., Hawkes, L. A., Monsinjon, J. R., Godley, B. J. & Fuentes, M. M. P. B. Climate change and marine turtles: recent advances and future directions. Endanger. Species Res. 44, 363–395 (2021).

    Article  Google Scholar 

  216. Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. https://doi.org/10.1029/2011GL050087 (2012).

  217. García-Roselló, E., González-Dacosta, J. & Lobo, J. M. The biased distribution of existing information on biodiversity hinders its use in conservation, and we need an integrative approach to act urgently. Biol. Conserv. 283, 110118 (2023).

    Article  Google Scholar 

  218. Di Marco, M. et al. Changing trends and persisting biases in three decades of conservation science. Glob. Ecol. Conserv. 10, 32–42 (2017).

    Google Scholar 

  219. Tulloch, V. J. D. et al. Minimizing cross-realm threats from land-use change: a national-scale conservation framework connecting land, freshwater and marine systems. Biol. Conserv. 254, 108954 (2021).

    Article  Google Scholar 

  220. Makino, A. et al. The effect of applying alternate IPCC climate scenarios to marine reserve design for range changing species. Conserv. Lett. 8, 320–328 (2015).

    Article  Google Scholar 

  221. Rose, N.-A. & Burton, P. J. Using bioclimatic envelopes to identify temporal corridors in support of conservation planning in a changing climate. For. Ecol. Manag. 258, S64–S74 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Possingham for providing constructive comments on this manuscript. J.O.H. was supported by Environment and Climate Change Canada (ECCC) and the Natural Sciences and Engineering Research Council (NSERC). K.L.S. was supported by an Australian Research Council Discovery Early Career Researcher Award (DECRA). S.N. was supported through a QUEX scholarship, a joint initiative of The University of Queensland and the University of Exeter.

Author information

Authors and Affiliations

Authors

Contributions

K.C.V.B. and A.P. researched data for the article. K.C.V.B., A.J.R., D.C.D., A.M., D.S.S., J.D.E., J.O.H. and L.K.B. contributed substantially to discussion of the content. K.C.V.B., with help from D.C.D., A.J.R., D.S.S., S.W.K., S.N. and A.D., wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Kristine Camille V. Buenafe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks Vanessa Adams, Derek Tittensor and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buenafe, K.C.V., Dunn, D.C., Metaxas, A. et al. Current approaches and future opportunities for climate-smart protected areas. Nat. Rev. Biodivers. 1, 284–297 (2025). https://doi.org/10.1038/s44358-025-00041-0

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44358-025-00041-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing