Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The status, threats and conservation of Critically Endangered species

Abstract

Over 47,000 species on the Red List of the International Union for Conservation of Nature are assessed as being at risk of extinction, including more than 10,000 Critically Endangered (CR) species. In this Review, we focus on the status, geographical and taxonomic patterns, and threats to CR species, and the actions needed for their conservation and restoration. Just 16 countries host more than half of all CR species. Although many CR species benefit from protected areas, two-fifths require targeted species-based interventions, such as ex situ actions and conservation translocations. Further, although conservation actions are associated with improved outcomes for CR species, including reduced extinction risk, actions in place have been documented for fewer than half of these species. In addition, the assessment of conservation status is incomplete for many species and subject to taxonomic and geographical bias; as more species are assessed the number of CR species is expected to increase. To address these challenges, the conservation community has improved approaches to planning and prioritization, developed tools and metrics, and enhanced capacity to deliver conservation actions. Nevertheless, greater political ambition and substantial financial investments are needed to resource the work of governments, institutions, communities and Indigenous peoples if we are to save and recover CR species.

Key points

  • Critically Endangered (CR) species are those closest to extinction and represent a potential single point of failure for achieving the Kunming–Montreal Global Biodiversity Framework, because many CR species require urgent management actions to ensure their recovery.

  • The protection and cost-effective conservation of Key Biodiversity Areas, including Alliance for Zero Extinction sites, has benefited the species for which these areas have been identified, including CR species of birds, mammals and amphibians.

  • Expanded use of the International Union for Conservation of Nature’s Green Status of Species and emphasis on functional recovery will renew the focus on both the recovery of species and their contribution to ecosystem function and services, while providing a robust method of tracking the progress of recovering species’ populations towards ‘healthy and resilient levels’, as enshrined in Goal A of the Global Biodiversity Framework.

  • Uptake of conservation metrics and tools by government and the private sector would enable the identification of areas where investments in threat abatement or restoration activities could yield the greatest positive impact on species conservation.

  • Updating estimates of costs and shortfalls for effectively conserving CR species and the sites they depend upon is urgently required but should not preclude or delay efforts to scale up resources aimed at the conservation of CR species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classifying Critically Endangered species.
Fig. 2: Distribution of Critically Endangered species.
Fig. 3: Changes in Red List category over time.
Fig. 4: Threats to Critically Endangered species.
Fig. 5: Conservation actions for Critically Endangered species.

Similar content being viewed by others

References

  1. Waters, C. N. & Turner, S. D. Defining the onset of the Anthropocene. Science 378, 706–708 (2022).

    Article  CAS  Google Scholar 

  2. Lacher, T. E. Jr & Pyare, S. (eds). Biodiversity Vol. 3. In The Encyclopedia of the Anthropocene (eds DellaSala, D. A. & Goldstein, M. I.) (Elsevier, 2018).

  3. Turvey, S. T. & Crees, J. J. Extinction in the Anthropocene. Curr. Biol. 29, 982–986 (2019).

    Article  Google Scholar 

  4. Ceballos, G. & Ehrlich, P. R. Mutilation of the tree of life via mass extinction of animal genera. Proc. Natl Acad. Sci. USA 120, e2306987120 (2023).

    Article  CAS  Google Scholar 

  5. De Grammont, P. C. & Cuarón, A. D. An evaluation of threatened species categorization systems used on the American continent. Conserv. Biol. 20, 14–27 (2006).

    Article  Google Scholar 

  6. Smart, J. S., Hilton-Taylor, C. & Mittermeier, R. A. (eds) The IUCN Red List: 50 Years of Conservation (CEMEX/IUCN/Earth in Focus, 2014).

  7. Rodrigues, A. S. L., Pilgrim, J. D., Lamoreux, J. F., Hoffmann, M. & Brooks, T. M. The value of the IUCN Red List for conservation. Trends Ecol. Evol. 21, 71–76 (2006).

    Article  Google Scholar 

  8. Hilton-Taylor, C. in The IUCN Red List: 50 Years of Conservation (eds Smart, J. S. et al.) 9–27 (CEMEX/IUCN/Earth in Focus, 2014).

  9. The IUCN Red List of Threatened Species, Version 2025-1. IUCN https://www.iucnredlist.org (2025).

  10. Mace, G. M. & Lande, R. Assessing extinction threats: toward a reevaluation of IUCN threatened species categories. Conserv. Biol. 5, 148–157 (1991).

    Article  Google Scholar 

  11. The International Union for Conservation of Nature (IUCN). IUCN Red List Categories (IUCN, 1994).

    Google Scholar 

  12. Mace, G. M. et al. Quantification of extinction risk: the background to IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).

    Article  Google Scholar 

  13. The International Union for Conservation of Nature (IUCN). IUCN Red List Categories and Criteria Version 3.1, 2nd edn (IUCN, 2012).

  14. IUCN Standards and Petitions Committee. Guidelines for Using the IUCN Red List Categories and Criteria. Version 16. IUCN https://www.iucnredlist.org/documents/RedListGuidelines.pdf (2024).

  15. Senior, R. A. et al. Global shortfalls in documented actions to conserve biodiversity. Nature 630, 387–391 (2024).

    Article  CAS  Google Scholar 

  16. Gascon, C. et al. The importance and benefits of species. Curr. Biol. 25, R431–R438 (2015).

    Article  CAS  Google Scholar 

  17. Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).

    Article  CAS  Google Scholar 

  18. Lacher, T. E. Jr. et al. The functional role of mammals in ecosystems. J. Mammal. 100, 942–964 (2019).

    Article  Google Scholar 

  19. Toussaint, A. et al. Extinction of threatened vertebrates will lead to idiosyncratic changes in functional diversity across the world. Nat. Commun. 12, 5162 (2021).

    Article  CAS  Google Scholar 

  20. Vaughn, C. C. Biodiversity losses and ecosystem function in freshwaters: emerging conclusions and research directions. BioScience 60, 25–35 (2010).

    Article  Google Scholar 

  21. Akçakaya, H. R. et al. Inferring extinctions. III: A cost–benefit framework for listing extinct species. Biol. Conserv. 214, 336–342 (2017).

    Article  Google Scholar 

  22. Butchart, S. H. M. et al. Which bird species have gone extinct? A novel quantitative classification approach. Biol. Conserv. 227, 9–18 (2018).

    Article  Google Scholar 

  23. Lindken, T. et al. What factors influence the rediscovery of lost tetrapod species? Glob. Change Biol. 30, e17107 (2024).

    Article  Google Scholar 

  24. Gumbs, R. et al. Global conservation status of the jawed vertebrate tree of life. Nat. Commun. 15, 1101 (2024).

    Article  CAS  Google Scholar 

  25. Carmona, C. P. et al. Erosion of global functional diversity across the tree of life. Sci. Adv. 7, eabf2675 (2021).

    Article  Google Scholar 

  26. Rodríguez-Caro, R. C. et al. Anthropogenic impacts on threatened species erode functional diversity in chelonians and crocodilians. Nat. Commun. 14, 1542 (2023).

    Article  Google Scholar 

  27. Hochkirch, A. et al. A multi-taxon analysis of European Red Lists reveals major threats to biodiversity. PLoS ONE 18, e0293083 (2023).

    Article  CAS  Google Scholar 

  28. Bachman, S. P., Brown, M. J. M., Leão, T. C. C., Lughadha, E. N. & Walker, B. E. Extinction risk predictions for the world’s flowering plants to support their conservation. N. Phytol. 242, 797–80 (2024).

    Article  Google Scholar 

  29. Blackburn, T. M., Cassey, P., Duncan, R. P., Evans, K. L. & Gaston, K. J. Avian extinction and mammalian introductions on oceanic islands. Science 305, 1955–1958 (2004).

    Article  CAS  Google Scholar 

  30. Biber, E. Patterns of endemic extinctions among island bird species. Ecography 25, 661–676 (2002).

    Article  Google Scholar 

  31. Leclerc, C., Courchamp, R. & Bellard, C. Insular threat associations within taxa worldwide. Sci. Rep. 8, 6393 (2018).

    Article  Google Scholar 

  32. Tershy, B. R., Shen, K.-W., Newton, K. M., Holmes, N. D. & Croll, D. A. The importance of islands for the protection of biological and linguistic diversity. BioScience 65, 592–597 (2015).

    Article  Google Scholar 

  33. Spatz, D. R. et al. Globally threatened vertebrates on islands with invasive species. Sci. Adv. 3, e1603080 (2017).

    Article  Google Scholar 

  34. Rønsted, N. et al. Extinction risk of the endemic vascular flora of Kauai, Hawaii, based on IUCN assessments. Conserv. Biol. 36, e13896 (2022).

    Article  Google Scholar 

  35. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  CAS  Google Scholar 

  36. Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

    Article  CAS  Google Scholar 

  37. Cox, N. et al. A global reptile assessment highlights shared conservation needs of tetrapods. Nature 605, 285–290 (2022).

    Article  CAS  Google Scholar 

  38. Richman, N. I. et al. Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea). Phil. Trans. R. Soc. B 370, 20140060 (2015).

    Article  Google Scholar 

  39. Miranda, F. et al. Monitoring extinction risk and threats of the world’s fishes based on the Sampled Red List Index. Rev. Fish. Biol. Fish. 32, 975–991 (2022).

    Article  Google Scholar 

  40. Prakash, V. et al. Catastrophic collapse of Indian white-backed Gyps bengalensis and long billed Gyps indicus vulture populations. Biol. Conserv. 109, 381–390 (2003).

    Article  Google Scholar 

  41. Butchart, S. H. M. et al. Measuring trends in extinction risk: a review of two decades of development and application of the Red List Index. Phil. Trans. R. Soc. 380, 20230206 (2025).

    Article  Google Scholar 

  42. Simkins, A. T. et al. Past conservation efforts reveal which actions lead to positive outcomes for species. PLoS Biol. 23, e3003051 (2024).

    Article  Google Scholar 

  43. Butchart, S. H. M. et al. Measuring global trends in the status of biodiversity: Red List Indices for birds. PLoS Biol. 2, 2294–2304 (2004).

    Article  CAS  Google Scholar 

  44. Butchart, S. H. M. et al. Using Red List Indices to measure progress towards the 2010 target and beyond. Phil. Trans. R. Soc. B 360, 255–268 (2005).

    Article  CAS  Google Scholar 

  45. Butchart, S. H. M. et al. Improvements to the Red List Index. PLoS ONE 2, e140 (2007).

    Article  Google Scholar 

  46. Hoffmann, M. et al. The changing fates of the world’s mammals. Phil. Trans. R. Soc. B 366, 2598–26101509 (2011).

    Article  Google Scholar 

  47. Salafsky, N. et al. A standard lexicon for biodiversity conservation: unified classifications of the threats and actions. Conserv. Biol. 22, 897–911 (2008).

    Article  Google Scholar 

  48. Salafsky, N. et al. Classification of direct threats to the conservation of ecosystems and species. Conserv. Biol. 31, e14434 (2024).

    Google Scholar 

  49. Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).

    Article  CAS  Google Scholar 

  50. Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. The ravages of guns, nets, and bulldozers. Nature 536, 143–145 (2016).

    Article  CAS  Google Scholar 

  51. Joppa, L. N. et al. Filling in biodiversity threat gaps. Science 362, 416–418 (2016).

    Article  Google Scholar 

  52. Lips, K. Overview of chytrid emergence and impacts on amphibians. Phil. Trans. R. Soc. B 371, 37120150465 (2016).

    Article  Google Scholar 

  53. IUCN Red List for birds. BirdLife International https://datazone.birdlife.org/species/search (2024).

  54. Foden, W. B. & Young, B. E. (eds). IUCN SSC Guidelines for Assessing Species’ Vulnerability to Climate Change. Occasional Paper of the IUCN Species Survival Commission No. 59 (IUCN, 2016).

  55. Mancini, G. et al. A standard approach for including climate change responses in IUCN Red List assessments. Conserv. Biol. 202, e14227 (2024).

    Article  Google Scholar 

  56. Foden, W. B. et al. Climate change vulnerability assessment of species. Wiley Interdisc. Rev. Clim. Change 10, e551 (2019).

    Article  Google Scholar 

  57. Böhm, M. et al. Hot and bothered: using trait-based approaches to assess climate change vulnerability in reptiles. Biol. Conserv. 204, 32–41 (2016).

    Article  Google Scholar 

  58. Gardali, T., Seavy, N. E., DiGaudio, R. T. & Comrack, L. A. A climate change vulnerability assessment of California’s at-risk birds. PLoS ONE 7, e29507 (2012).

    Article  CAS  Google Scholar 

  59. Hagger, V., Fisher, D., Schmidt, S. & Blomberg, S. Assessing the vulnerability of an assemblage of subtropical rainforest vertebrate species to climate change in South-East Queensland. Aust. Ecol. 38, 465–475 (2013).

    Article  Google Scholar 

  60. Roach, N. S., Castellanos, A. & Lacher, T. E. Jr. Assessing the vulnerability of endemic Colombian amphibian species to climate change in an isolated montane ecosystem. Trop. Conserv. Sci. https://doi.org/10.1177/19400829231225236 (2024).

    Article  Google Scholar 

  61. Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).

    Article  CAS  Google Scholar 

  62. Raimondo, D. et al. Aloe pearsonii. The IUCN Red List of threatened species 2022: e.T110772051A110772076. IUCN https://www.iucnredlist.org/species/110772051/110772076 (2022).

  63. Swart, E. et al. Aloe pillansii. The IUCN Red List of threatened species 2022: e.T31016A110113558. IUCN https://www.iucnredlist.org/species/31016/110113558 (2022).

  64. Preston-Allen, R. et al. Geography, taxonomy, extinction risk and exposure of fully migratory birds to droughts and cyclones. Glob. Ecol. Biogeogr. 33, 63–73 (2024).

    Article  Google Scholar 

  65. Gonçalves, F. et al. A global map of species at risk of extinction due to natural hazards. Proc. Natl Acad. Sci. USA 121, e2321068121 (2024).

    Article  Google Scholar 

  66. Palmer, C. A., Martin, T. E., Durand, S. & Lamont, M. First observations of the impacts of hurricane Maria on the endemic Imperial Amazon. Oryx 52, 410–411 (2018).

    Article  Google Scholar 

  67. Orynbayev, M. et al. Biological characterization of Pasturella multicoda present in the Saiga population. BMC Microbiol. 19, 37 (2019).

    Article  Google Scholar 

  68. Cheng, T. L. et al. The scope and severity of white-nose syndrome on hibernating bats in North America. Conserv. Biol. 35, 1586–1597 (2021).

    Article  Google Scholar 

  69. Lovett, G. M. et al. Nonnative forest insects and pathogens in the United States: impacts and policy options. Ecol. Appl. 26, 1437–1455 (2016).

    Article  Google Scholar 

  70. Bolam, F. C. et al. Over half of threatened species require targeted recovery actions to avert human-induced extinction. Front. Ecol. Environ. 21, 64–70 (2023).

    Article  Google Scholar 

  71. Collar, N. J. & Butchart, S. H. M. Conservation breeding and avian diversity: chances and challenges. Int. Zool. Yearb. 48, 7–28 (2014).

    Article  Google Scholar 

  72. The International Union for Conservation of Nature (IUCN). Rules of Procedure: IUCN Red List assessment process 2017–2020 (version 3.0). IUCN https://www.iucnredlist.org/resources/rules-of-procedure (2016).

  73. Di Marco, M. et al. Changing trends and persisting biases in three decades of conservation science. Glob. Ecol. Conserv. 10, 32–42 (2017).

    Google Scholar 

  74. The International Union for Conservation of Nature (IUCN). A Global Standard for the Identification of Key Biodiversity Areas, Version 1.0 1st edn (IUCN, 2016).

    Google Scholar 

  75. Boyd, C. et al. Spatial scale and the conservation of threatened species. Conserv. Lett. 1, 37–43 (2008).

    Article  Google Scholar 

  76. Langhammer, P. F. et al. The positive impact of conservation action. Science 384, 453–458 (2024).

    Article  CAS  Google Scholar 

  77. Luedtke, J. A. et al. Ongoing declines for the world’s amphibians in the face of emerging threats. Nature 622, 308–314 (2023).

    Article  CAS  Google Scholar 

  78. Jones, H. P. et al. Invasive mammal eradication on islands results in substantial conservation gains. Proc. Natl Acad. Sci. USA 113, 4033–4038 (2016).

    Article  CAS  Google Scholar 

  79. Spatz, D. R. et al. The global contribution of invasive vertebrate eradication as a key island restoration tool. Sci. Rep. 12, 13391 (2022).

    Article  CAS  Google Scholar 

  80. Bolam, F. C. et al. How many bird and mammal extinctions has recent conservation prevented? Conserv. Lett. 14, e12762 (2021).

    Article  Google Scholar 

  81. BirdLife International. Leucopsar rothschildi. The IUCN Red List of Threatened Species 2021: e.T22710912A183006359. IUCN https://www.iucnredlist.org/species/22710912/183006359 (2021).

  82. Squires, T. M. et al. The road to recovery: conservation management for the Critically Endangered Bali myna shows signs of success. Oryx 58, 367–377 (2024).

    Article  Google Scholar 

  83. Hoffmann, M. et al. The difference conservation makes to extinction risk of the world’s ungulates. Conserv. Biol. 29, 1303–1313 (2015).

    Article  Google Scholar 

  84. Coonan, T. J. et al. On the fast track to recovery: island foxes on the northern Channel Islands. Monogr. Western North Am. Nat. 7, 373–381 (2014).

    Article  Google Scholar 

  85. Sutherland, W. J. et al. Building a tool to overcome barriers in research-implementation spaces: the Conservation Evidence database. Biol. Conserv. 238, 108199 (2019).

    Article  Google Scholar 

  86. Eisenhauer, N. & Hines, J. Invertebrate biodiversity and conservation. Curr. Biol. 31, R1141–R1224 (2021).

    Article  Google Scholar 

  87. Guénard, B. et al. Limited and biased global conservation funding means most threatened species remain unsupported. Proc. Natl Acad. Sci. USA 122, e2412479122 (2025).

    Article  Google Scholar 

  88. Cardoso, P., Erwin, T. L., Borges, P. A. V. & New. T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).

    Article  Google Scholar 

  89. Mace, G. M., Possingham, H. P. & Leader-Wiliams, N. in Key Topics in Conservation Biology (eds MacDonald, D. W. & Service, K.) 17–34 (Blackwell, 2007).

  90. Wiedenfeld, D. A. Conservation resource allocation, small population resiliency, and the fallacy of conservation triage. Conserv. Biol. 35, 1388–1395 (2021).

    Article  Google Scholar 

  91. Lamoreux, J. et al. Value of the IUCN Red List. Trends Ecol. Evol. 18, 214–215 (2003).

    Article  Google Scholar 

  92. The International Union for Conservation of Nature (IUCN). Guidelines for appropriate uses of IUCN Red List Data. Version 4.0. IUCN https://www.iucnredlist.org/resources/guidelines-for-appropriate-uses-of-red-list-data (2022).

  93. Possingham, H. P. et al. Limits to the use of threatened species lists. Trends Ecol. Evol. 17, 503–507 (2002).

    Article  Google Scholar 

  94. Martin, T. G. et al. Prioritizing recovery funding to maximize conservation of endangered species. Conserv. Lett. 11, e12604 (2018).

    Article  Google Scholar 

  95. Ricketts, T. et al. Pinpointing and preventing imminent extinctions. Proc. Natl Acad. Sci. USA 102, 18497–18501 (2005).

    Article  CAS  Google Scholar 

  96. Key Biodiversity Areas (KBA). KBA data. KBA https://www.keybiodiversityareas.org/kba-data (2025).

  97. Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. M. Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 2, e296 (2007).

    Article  Google Scholar 

  98. Gumbs, R. et al. The EDGE2 protocol: advancing the prioritization of Evolutionarily Distinct and Globally Threatened species for practical conservation action. PLoS Biol. 21, e3001991 (2023).

    Article  CAS  Google Scholar 

  99. Johnson, K. et al. A process for assessing and prioritizing species conservation needs: going beyond the Red List. Oryx 54, 125–132 (2020).

    Article  Google Scholar 

  100. McGowan, P. J., Garson, P. J. & Carroll, J. P. Action plans: do they help conservation? Bird. Conserv. Int. 8, 317–323 (1998).

    Article  Google Scholar 

  101. Fuller, R. et al. What does IUCN species action planning contribute to the conservation process? Biol. Conserv. 112, 343–349 (2003).

    Article  Google Scholar 

  102. Lees, C. M. et al. Science-based, stakeholder-inclusive and participatory conservation planning helps reverse the decline of threatened species. Biol. Conserv. 260, 10194 (2021).

    Article  Google Scholar 

  103. Reuter, K. E. et al. Impact and lessons learned from a half-century of primate conservation action planning. Diversity 14, 751 (2022).

    Article  Google Scholar 

  104. Byers, O., Lees, C., Wilcken, J. & Schwitzer, C. The One Plan Approach: the philosophy and implementation of CBSG’s approach to integrated species conservation planning. WAZA Mag. 14, 2–5 (2013).

    Google Scholar 

  105. Valencia, L. M. & Fonte, L. F. M. Harlequin toad (Atelopus) conservation action plan (2021–2041). Atelopus Survival Initiative https://www.atelopus.org/_files/ugd/9db650_60f3e6095cbf4b1dabb7376a4fb88366.pdf (2021).

  106. Linder, J. M. et al. Red colobus (Piliocolobus) conservation action plan 2021–2026. IUCN https://portals.iucn.org/library/sites/library/files/documents/2021-015-En.pdf (2021).

  107. Couch, C. et al. Piloting development of species conservation action plans in Guinea. Oryx 57, 497–506 (2023).

    Article  Google Scholar 

  108. IUCN SSC Amphibian Specialist Group. Amphibian conservation action plan: a status review and roadmap for global amphibian conservation. IUCN https://www.iucn-amphibians.org/resources/acap/ (2024).

  109. State of the World’s Amphibians: The Second Global Amphibian Assessment. Re:wild https://www.iucn-amphibians.org/wp-content/uploads/sites/4/2023/10/SOTWA-final-10.4.23.pdf (2023).

  110. Canessa, S. et al. Risk aversion and uncertainty create a conundrum for planning recovery of a critically endangered species. Conserv. Sci. Pract. 2, e138 (2020).

    Article  Google Scholar 

  111. Pritchard, R. A. et al. Identifying cost-effective recovery actions for a critically endangered species. Conserv. Sci. Pract. 4, e546 (2022).

    Article  Google Scholar 

  112. Reynolds, S. A. et al. The potential for AI to revolutionize conservation: a horizon scan. Trends Ecol. Evol. 40, 191–207 (2025).

    Article  Google Scholar 

  113. Margules, C. & Sarkar, S. Systematic Conservation Planning (Cambridge Univ. Press, 2007).

    Google Scholar 

  114. Rivers, M. The global tree assessment — Red Listing the world’s trees. BGjournal 14, 16–19 (2017).

    Google Scholar 

  115. Sayer, C. A. et al. One-quarter of freshwater fauna threatened with extinction. Nature 638, 138–145 (2025).

    Article  CAS  Google Scholar 

  116. Polidoro, B. A. et al. in Wildlife in a Changing World: an Analysis of the 2008 IUCN Red List of Threatened Species (eds Vié, J.-C., Hilton-Taylor, C. & Stuart, S. N.) 55–65 (IUCN, 2009).

  117. Mueller, G. M. et al. What do the first 597 global fungal Red List assessments tell us about the threat status of fungi? Diversity 14, 736 (2022).

    Article  Google Scholar 

  118. Harpalani, M., Parvathy, S., Kanagavel, A., Eluvathingal, L. M. & Tapley, B. Note on range extension, local knowledge and conservation status of the Critically Endangered Anamalai gliding frog Rhacophorus pseudomalabaricus in the Cardamom Hills of Western Ghats, India. Herpetol. Bull. 133, 1–6 (2015).

    Google Scholar 

  119. Aubert, G. & Dudley, N. Progress on implementing the Kunming–Montreal Global Biodiversity Framework. PE 754.196. European Parliament, Policy Department for Economic, Scientific and Quality of Life Policies, Directorate-General for Internal Policies https://www.europarl.europa.eu/RegData/etudes/IDAN/2024/754196/IPOL_IDA(2024)754196_EN.pdf (2023).

  120. Hummel, K. & Jobst, D. An overview of corporate sustainability reporting legislation in the European Union. Account. Eur. 21, 320–355 (2024).

    Article  Google Scholar 

  121. Mair, L. et al. A metric for spatially explicit contributions to science-based species targets. Nat. Ecol. Evol. 5, 836–844 (2021).

    Article  Google Scholar 

  122. Eyres, A. et al. LIFE: a metric for mapping the impact of land-cover change on global extinctions. Phil. Trans. R. Soc. B https://doi.org/10.1098/rstb.2023.0327 (2025).

  123. Akçakaya, H. R. et al. Quantifying species recovery and conservation success to develop an IUCN Green List of Species. Conserv. Biol. 32, 1128–1138 (2018).

    Article  Google Scholar 

  124. Papworth, S. K., Rist, J., Coad, L. & Milner-Gulland, E. J. Evidence for shifting baseline syndrome in conservation. Conserv. Biol. 2, 93–100 (2009).

    Google Scholar 

  125. Sanderson, E. W. How many animals do we want to save? The many ways of setting population target levels for conservation. BioScience 56, 911–922 (2006).

    Article  Google Scholar 

  126. Redford, K. H. et al. What does it mean to successfully conserve a (vertebrate) species? BioScience 61, 39–48 (2011).

    Article  Google Scholar 

  127. Grace, M. K. et al. Testing a global standard for quantifying species recovery and assessing conservation impact. Conserv. Biol. 35, 1833–1849 (2021).

    Article  Google Scholar 

  128. McNeely, J. A. Expanding Partnerships in Conservation (Island Press, 1995).

    Google Scholar 

  129. Berkes, F. Community-based conservation in a globalized world. Proc. Natl Acad. Sci. USA 104, 15188–15193 (2007).

    Article  CAS  Google Scholar 

  130. Gavin, M. C. et al. Effective biodiversity conservation requires dynamic, pluralistic, partnership-based approaches. Sustainability 10, 1846 (2018).

    Article  Google Scholar 

  131. Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).

    Article  CAS  Google Scholar 

  132. Donald, P. F. et al. Important bird and biodiversity areas (IBAs): the development and characteristics of a global inventory of key sites for biodiversity. Bird Conserv. Int. 29, 177–198 (2019).

    Article  Google Scholar 

  133. Rodríguez, J. P. Reverse the Red: achieving global biodiversity targets at national level. Oryx 55, 1–2 (2021).

    Article  Google Scholar 

  134. García, N. et al. Reverse the Red’s Approach to Conservation Status Improvement (CSI) Guidelines for Practitioners. Reverse the Red https://www.reversethered.org/conservation-status-improvement (2023).

  135. Laird, S. A. Biodiversity and Traditional Knowledge: Equitable Partnerships in Practice (Earthscan, 2002).

    Google Scholar 

  136. Andrade, G. S. M. & Rhodes, J. R. Protected areas and local communities: an inevitable partnership toward successful conservation strategies? Ecol. Soc. https://www.jstor.org/stable/26269207 (2012).

  137. Jonas, H. D. et al. Equitable and effective area-based conservation: towards the conserved areas program. PARKS: Int. J. Protect. Areas Conserv. 27, 71–84 (2021).

    Article  Google Scholar 

  138. Garnett, S. Y. et al. A spatial overview of the global importance of indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).

    Article  Google Scholar 

  139. Simkins, A. T. et al. Rates of tree cover loss in key biodiversity areas on Indigenous people’s lands. Conserv. Biol. https://doi.org/10.0000/cobi.14195 (2023).

  140. The International Union for Conservation of Nature (IUCN). Global Species Action Plan. IUCN https://www.google.com/url?q=https://portals.iucn.org/library/sites/library/files/documents/2023-029-En.pdf (2023).

  141. McGowan, P. J. K. et al. Understanding and achieving species elements in the Kunming–Montreal global biodiversity framework. BioScience 74, 614–623 (2024).

    Article  Google Scholar 

  142. Challendar, D. W. S. et al. Identifying species likely threatened by international trade on the IUCN Red List can inform CITES trade measures. Nat. Ecol. Evol. 7, 1211–1220 (2023).

    Article  Google Scholar 

  143. Maggs, G., Appleton, M. R., Long, B., & Young, R. P. A Global Register of Competencies for Threatened Species Recovery Practitioners (IUCN, 2021).

  144. Appleton, M. R. et al. How should conservation be professionalized? Oryx 56, 654–663 (2021).

    Article  Google Scholar 

  145. Deutz, A. et al. Financing nature: closing the global biodiversity financing gap. The Paulson Institute, The Nature Conservancy, and the Cornell Atkinson Center for Sustainability https://www.paulsoninstitute.org/conservation/financing-nature-report/ (2020).

  146. McCarthy, D. P. et al. Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338, 946–949 (2012).

    Article  CAS  Google Scholar 

  147. Black, S., Liu, A. A., Parry, I. W. H., & Vernon, N. IMF Fossil Fuel Subsidies Data: 2023 Update (International Monetary Fund, 2023).

  148. Medina, C. & Scales, I. R. Finance and biodiversity conservation: insights from rhinoceros conservation and the first wildlife conservation bond. Oryx 58, 90–99 (2023).

    Article  Google Scholar 

  149. Sutherland, W. Transforming Conservation: A Practical Guide to Evidence and Decision Making (Open Book, 2022).

  150. Joseph, L. N., Maloney, R. F. & Possingham, H. P. Optimal allocation of resources among threatened species: a project prioritization protocol. Conserv. Biol. 23, 328–338 (2009).

    Article  Google Scholar 

  151. Brazill-Boast, J. et al. A large-scale application of project prioritization to threatened species investment by a government agency. PLoS ONE 13, e0201413 (2018).

    Article  Google Scholar 

  152. Butchart, S. H. M. et al. Protecting important sites for biodiversity contributes to meeting global conservation targets. PLoS ONE 7, e32529 (2012).

    Article  CAS  Google Scholar 

  153. Luther, D. A. et al. Conservation actions benefit the most threatened species: a 13-year assessment of alliance for zero extinction species. Conserv. Sci. Pract. 3, e510 (2021).

    Article  Google Scholar 

  154. Langhammer, P. F et al. Identification and gap analysis of Key Biodiversity Areas: targets for comprehensive protected area systems. IUCN https://portals.iucn.org/library/efiles/documents/pag-015.pdf (2007).

  155. Ledger, S. E. H. et al. Past, present, and future of the living planet index. npj Biodivers. 2, 12 (2023).

    Article  Google Scholar 

  156. Gregory, R. D. & van Strien, A. Wild bird indicators: using composite population trends of birds as measures of environmental health. Ornithol. Sci. 9, 3–22 (2010).

    Article  Google Scholar 

  157. Akçakaya, H. R., Hoffmann, M., Milner-Gulland, E. J., Grace, M. K. & Long, B. A global indicator of species recovery. Conserv. Biol. 39, e70077 (2025).

    Article  Google Scholar 

  158. Plumptre, A. et al. Strengths and complementarity of systematic conservation planning and Key Biodiversity area approaches for spatial planning. Conserv. Biol. 39, e14400 (2024).

    Article  Google Scholar 

  159. Smith, R. J. et al. Synergies between the key biodiversity area and systematic conservation planning approaches. Conserv. Lett. 12, e12625 (2019).

    Article  Google Scholar 

  160. Lansley, T., Crowe, O. Butchart, S. H. M., Edwards, D. P. & Thomas, G. Effectiveness of key biodiversity areas in representing global avian diversity. Conserv. Biol. https://doi.org/10.1111/cobi.70000 (2025).

  161. International Finance Corporation. Biodiversity Finance Metrics for Impact Reporting Supplement to IFC Biodiversity Finance Reference Guide. International Finance Corporation https://www.ifc.org/content/dam/ifc/doc/2024/ifc-biodiversity-finance-metrics-for-impact-reporting.pdf (2024).

  162. Rondinini, C., Di Marco, M., Visconti, P., Butchart, S. H. M. & Boitani, L. Update or outdate: long-term viability of the IUCN Red List. Conserv. Lett. https://doi.org/10.1111/conl.12040 (2014).

  163. Cazalis, V. et al. Accelerating and standardising IUCN Red List assessments with sRedList. Biol. Conserv. 298, 110761 (2024).

    Article  Google Scholar 

  164. Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786 (2004).

    Article  CAS  Google Scholar 

  165. Stephenson, P. J. et al. Measuring the impact of conservation: the growing importance of monitoring fauna, flora and funga. Diversity 14, 824 (2022).

    Article  CAS  Google Scholar 

  166. Lacher, T. E. Jr., Boitani, L. & Fonseca, G. A. B. The IUCN global assessments: partnerships, collaboration and data sharing for biodiversity science and policy. Conserv. Lett. 5, 327–333 (2012).

    Article  Google Scholar 

  167. Cazalis, V. et al. Bridging the research-implementation gap in IUCN Red List assessments. Trends Ecol. Evol. 37, 359–370 (2022).

    Article  Google Scholar 

  168. Azam, C. S., Gigot, G., Witte, I. & Schatz, B. National and subnational Red Lists in European and Mediterranean countries: current state and use for conservation. Endang. Species Res. 30, 255–266 (2016).

    Article  Google Scholar 

  169. National Red List Working Group (NRLWG) of the IUCN Red List Scientific Committee. Guidelines for Establishing a National Red List Programme. IUCN https://www.iucnredlist.org/resources/national-guidelines-step-by-step (2024).

  170. The International Union for Conservation of Nature (IUCN). Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. IUCN SSC https://iucn.org/resources/publication/guidelines-application-iucn-red-list-criteria-regional-and-national-levels (2012).

Download references

Acknowledgements

A.T.S. is supported through the Natural Environment Research Council’s C-CLEAR Doctoral Training Partnership (grant NE/S007164/1).

Author information

Authors and Affiliations

Authors

Contributions

T.E.L., S.H.M.B., R.G., B.L., A.T.S. and M.H. wrote the manuscript. T.E.L., S.H.M.B., R.G., B.L., C.L.-G., D.R., S.S., A.T.S. and M.H. reviewed and/or edited the manuscript before submission, and all authors researched data for the article and made a substantial contribution to discussion of content.

Corresponding author

Correspondence to Thomas E. Lacher Jr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks Robert Heinsohn, Zhigang Jiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Agreement on the Conservation of African-Eurasian Migratory Waterbirds: https://www.cms.int/en/legalinstrument/aewa

Alliance for Zero Extinction: https://zeroextinction.org

Amphibian coordinating and fundraising group: www.amphibians.org

Conservation Evidence: www.conservationevidence.com

Conservation Leadership Programme: https://www.conservationleadershipprogramme.org/

Durrell Conservation Academy: https://training.durrell.org/

EDGE Fellowship Programme: https://www.edgeofexistence.org/edge-fellows/

Equator Principles: https://equator-principles.com/resources

Evolutionarily Distinct and Globally Endangered species: https://www.edgeofexistence.org

Fonseca Leadership Fund: https://www.thegef.org/fonseca-leadership-program

GBF Targets: https://www.cbd.int/gbf/targets

Global Species Action Plan: https://iucn.org/resources/grey-literature/global-species-action-plan

Green Status: www.iucnredlist.org/about/green-status-species

Harlequin toads: www.atelopus.org

Indigenous and local knowledge: https://www.iucnredlist.org/resources/ilk

Integrated Biodiversity Assessment Tool: https://ibat-alliance.org

International Finance Corporation’s Performance Standard: https://www.ifc.org/en/insights-reports/2012/ifc-performance-standard-6

IUCN Conservation Actions In-Place Classification Scheme: https://nc.iucnredlist.org/redlist/content/attachment_files/dec_2012_guidance_conservation_actions_in_place_classification_scheme.pdf

IUCN Conservation Actions Needed Classification Scheme: https://www.iucnredlist.org/resources/conservation-actions-classification-scheme

IUCN Threats Classification Scheme: https://www.iucnredlist.org/resources/threat-classification-scheme

Kunming–Montreal Global Biodiversity Framework: https://www.cbd.int/gbf

Red colobus monkeys: www.redcolobusnetwork.org

Red List Categories: https://www.iucnredlist.org/about/regional

Red List Criteria: https://www.iucnredlist.org/resources/summary-sheet

Reverse the Red: https://www.reversethered.org/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacher, T.E., Butchart, S.H.M., Gumbs, R. et al. The status, threats and conservation of Critically Endangered species. Nat. Rev. Biodivers. 1, 421–438 (2025). https://doi.org/10.1038/s44358-025-00059-4

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44358-025-00059-4

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene