Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phylogenomics and comparative genomic perspective on the avian radiation

Abstract

Adaptive radiation is a pivotal driver of macroevolution, substantially contributing to the diversity of life by promoting rapid phenotypic and ecological adaptations. In birds, neoavian species account for over 95% of modern avian diversity, emerging from an explosive radiation event near the Cretaceous–Palaeogene boundary. In this Review, we explore the current challenges in resolving the avian tree of life and examine the key drivers of their radiation. We discuss the emerging consensus from phylogenomic studies using whole-genome data to illuminate the early diversification of Neoaves. Additionally, we discuss how the radiation of birds has influenced their diversity, emphasizing the interconnected macroevolution of phenotypic traits and genomic characteristics. Finally, we discuss the multiple impacts of climate change on bird populations, highlighting how evolutionary history informs and enhances our understanding of avian resilience to environmental change. This Review underscores the critical importance of integrating genomic data with trait-based analysis to explore unresolved questions pertaining to the adaptive radiation of birds, and sets the stage for future research on how contemporary ecological pressures might continue to shape avian diversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phylogenomic incongruence in the avian tree.
Fig. 2: Evolutionary scenarios that contribute to gene trees and species tree conflicts.
Fig. 3: Radiation hypotheses and ecological factors associated with the evolution of avian life history traits.
Fig. 4: Morphological and genomic innovations contributing to the avian radiation.
Fig. 5: Tempo and mode of avian morphological evolution.
Fig. 6: Trends in avian genomic evolution.
Fig. 7: Lineage-specific responses to climate change can aid in predicting avian demographic sensitivity.

Similar content being viewed by others

References

  1. Simpson, G. G. The Major Features of Evolution (Columbia Univ. Press, 1953).

  2. Haas, O. & Simpson, G. Analysis of some phylogenetic terms, with attempts at redefinition. Proc. Am. Phil. Soc. 90, 319–349 (1946).

    CAS  Google Scholar 

  3. Mayr, E. What Evolution Is (Basic Books, 2001).

  4. Gavrilets, S. & Losos, J. B. Adaptive radiation: contrasting theory with data. Science 323, 732–737 (2009).

    Article  CAS  Google Scholar 

  5. Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639 (2010).

    Article  Google Scholar 

  6. Futuyma, D. J. Ecology, speciation, and adaptive radiation: the long view. Evolution 62, 2446–2449 (2008).

    Article  Google Scholar 

  7. Schweber, S. S. Darwin and the political economists: divergence of character. J. Hist. Biol. 13, 195–289 (1980).

    Article  CAS  Google Scholar 

  8. Rieseberg, L. H., Archer, M. A. & Wayne, R. K. Transgressive segregation, adaptation and speciation. Heredity 83, 363–372 (1999).

    Article  Google Scholar 

  9. Baker, J. M. Adaptive speciation: the role of natural selection in mechanisms of geographic and non-geographic speciation. Stud. Hist. Phil. Biol. Biomed. Sci. 36, 303–326 (2005).

    Article  Google Scholar 

  10. Grant, P. R. & Grant, B. R. Adaptive radiation of Darwin’s finches: recent data help explain how this famous group of Galápagos birds evolved, although gaps in our understanding remain. Am. Sci. 90, 130–139 (2002).

    Article  Google Scholar 

  11. Lerner, H. R. L., Meyer, M., James, H. F., Hofreiter, M. & Fleischer, R. C. Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers. Curr. Biol. 21, 1838–1844 (2011).

    Article  CAS  Google Scholar 

  12. Losos, J. B., Glor, R. E., Kolbe, J. J. & Nicholson, K. Adaptation, speciation, and convergence: a hierarchical analysis of adaptive radiation in Caribbean Anolis lizards. Ann. Mo. Bot. Gard. 93, 24–33 (2006).

    Article  Google Scholar 

  13. Seehausen, O. African cichlid fish: a model system in adaptive radiation research. Proc. Biol. Sci. 273, 1987–1998 (2006).

    Google Scholar 

  14. Briggs, D. E. G. The Cambrian explosion. Curr. Biol. 25, R864–R868 (2015).

    Article  CAS  Google Scholar 

  15. Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

    Article  CAS  Google Scholar 

  16. Yang, A. S. Modularity, evolvability, and adaptive radiations: a comparison of the hemi- and holometabolous insects. Evol. Dev. 3, 59–72 (2001).

    Article  CAS  Google Scholar 

  17. Feduccia, A. Explosive evolution in tertiary birds and mammals. Science 267, 637–638 (1995).

    Article  CAS  Google Scholar 

  18. Gill, F., Donsker, D. & Rasmussen, P. (eds). IOC World Bird List (v 15.1). International Ornithological Congress http://www.worldbirdnames.org/ (2025).

  19. Owen, P. III On the archeopteryx of von Meyer, with a description of the fossil remains of a long-tailed species, from the lithographic stone of Solenhofen. Phil. Trans. R. Soc. Lond. 153, 33–47 (1863).

    Google Scholar 

  20. Chen, P. J., Dong, Z. M. & Zhen, S. N. An exceptionally well-preserved theropod dinosaur from the Yixian formation of China. Nature 391, 147–152 (1998).

    Article  CAS  Google Scholar 

  21. Ji, Q. & Ji, S. A. On the discovery of the earliest bird fossil in China (Sinosauropteryx gen. nov.) and the origin of birds. Chin. Geol. 233, 30–33 (1996).

    Google Scholar 

  22. Dyke, G. J. & Nudds, R. L. The fossil record and limb disparity of enantiornithines, the dominant flying birds of the Cretaceous. Lethaia 42, 248–254 (2009).

    Article  Google Scholar 

  23. Longrich, N. R., Tokaryk, T. & Field, D. J. Mass extinction of birds at the Cretaceous–Paleogene (K–Pg) boundary. Proc. Natl Acad. Sci. USA 108, 15253–15257 (2011).

    Article  CAS  Google Scholar 

  24. Cooper, A. & Penny, D. Mass survival of birds across the Cretaceous–Tertiary boundary: molecular evidence. Science 275, 1109–1113 (1997).

    Article  CAS  Google Scholar 

  25. Brown, J. W., Rest, J. S., García-Moreno, J., Sorenson, M. D. & Mindell, D. P. Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biol. 6, 6 (2008).

    Article  Google Scholar 

  26. Wu, S. et al. Genomes, fossils, and the concurrent rise of modern birds and flowering plants in the Late Cretaceous. Proc. Natl Acad. Sci. USA 121, e2319696121 (2024).

    Article  CAS  Google Scholar 

  27. Feduccia, A. ‘Big bang’ for tertiary birds? Trends Ecol. Evol. 18, 172–176 (2003).

    Article  Google Scholar 

  28. Claramunt, S. & Cracraft, J. A new time tree reveals earth history’s imprint on the evolution of modern birds. Sci. Adv. 1, e1501005 (2015).

    Article  Google Scholar 

  29. Field, D. J. et al. Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction. Curr. Biol. 28, 1825–1831.e2 (2018).

    Article  CAS  Google Scholar 

  30. Stiller, J. et al. Complexity of avian evolution revealed by family-level genomes. Nature 629, 851–860 (2024).

    Article  CAS  Google Scholar 

  31. McCormack, J. E. et al. A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLoS ONE 8, e54848 (2013).

    Article  CAS  Google Scholar 

  32. Brown, J. W., Wang, N. & Smith, S. A. The development of scientific consensus: analyzing conflict and concordance among avian phylogenies. Mol. Phylogenet. Evol. 116, 69–77 (2017).

    Article  Google Scholar 

  33. Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).

    Article  CAS  Google Scholar 

  34. Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014).

    Article  CAS  Google Scholar 

  35. Suh, A. The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves. Zool. Scr. 45, 50–62 (2016).

    Article  Google Scholar 

  36. Suh, A., Smeds, L. & Ellegren, H. The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian birds. PLoS Biol. 13, e1002224 (2015).

    Article  Google Scholar 

  37. Barker, F. K., Cibois, A., Schikler, P., Feinstein, J. & Cracraft, J. Phylogeny and diversification of the largest avian radiation. Proc. Natl Acad. Sci. USA 101, 11040–11045 (2004).

    Article  CAS  Google Scholar 

  38. Feng, S. et al. Dense sampling of bird diversity increases power of comparative genomics. Nature 587, 252–257 (2020).

    Article  CAS  Google Scholar 

  39. Germain, R. R. et al. Species-specific traits mediate avian demographic responses under past climate change. Nat. Ecol. Evol. 7, 862–872 (2023).

    Article  Google Scholar 

  40. Campagna, L. & Toews, D. P. L. The genomics of adaptation in birds. Curr. Biol. 32, R1173–R1186 (2022).

    Article  CAS  Google Scholar 

  41. Tobias, J. A., Ottenburghs, J. & Pigot, A. L. Avian diversity: speciation, macroevolution, and ecological function. Annu. Rev. Ecol. Evol. Syst. 51, 533–560 (2020).

    Article  Google Scholar 

  42. Berv, J. S. et al. Genome and life-history evolution link bird diversification to the end-Cretaceous mass extinction. Sci. Adv. 10, eadp0114 (2024).

    Article  CAS  Google Scholar 

  43. Sheldon, F. H. & Bledsoe, A. H. Avian molecular systematics, 1970s to 1990s. Annu. Rev. Ecol. Syst. 24, 243–278 (1993).

    Article  Google Scholar 

  44. Wink, M. in Avian Genomics in Ecology and Evolution: From the Lab into the Wild (ed. Kraus, R. H. S.) 7–19 (Springer, 2019).

  45. Cracraft, J. et al. in Assembling the Tree of Life (eds Cracraft, J. & Donoghue, M. J.) 468–489 (Oxford Univ. Press, 2004).

  46. Zhang, G. et al. Comparative genomic data of the avian phylogenomics project. Gigascience 3, 26 (2014).

    Article  Google Scholar 

  47. Armstrong, J. et al. Progressive cactus is a multiple-genome aligner for the thousand-genome era. Nature 587, 246–251 (2020).

    Article  CAS  Google Scholar 

  48. Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).

    Article  CAS  Google Scholar 

  49. Kuhl, H. et al. An unbiased molecular approach using 3′-UTRs resolves the avian family-level tree of life. Mol. Biol. Evol. 38, 108–127 (2021).

    Article  CAS  Google Scholar 

  50. Bejerano, G. et al. Ultraconserved elements in the human genome. Science 304, 1321–1325 (2004).

    Article  CAS  Google Scholar 

  51. Margulies, E. H., Blanchette, M., NISC Comparative Sequencing Program Haussler, D. & Green, E. D. Identification and characterization of multi-species conserved sequences. Genome Res. 13, 2507–2518 (2003).

    Article  CAS  Google Scholar 

  52. Faircloth, B. C. et al. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst. Biol. 61, 717–726 (2012).

    Article  Google Scholar 

  53. Lemmon, A. R., Emme, S. A. & Lemmon, E. M. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61, 727–744 (2012).

    Article  CAS  Google Scholar 

  54. Hosner, P. A., Faircloth, B. C., Glenn, T. C., Braun, E. L. & Kimball, R. T. Avoiding missing data biases in phylogenomic inference: an empirical study in the landfowl (Aves: Galliformes). Mol. Biol. Evol. 33, 1110–1125 (2016).

    Article  CAS  Google Scholar 

  55. Batista, R. et al. Phylogenomics and biogeography of the world’s thrushes (Aves, Turdus): new evidence for a more parsimonious evolutionary history. Proc. Biol. Sci. 287, 20192400 (2020).

    Google Scholar 

  56. McCullough, J. M., Joseph, L., Moyle, R. G. & Andersen, M. J. Ultraconserved elements put the final nail in the coffin of traditional use of the genus Meliphaga (Aves: Meliphagidae). Zool. Scr. 48, 411–418 (2019).

    Article  Google Scholar 

  57. Tsai, W. L. E. et al. Museum genomics reveals the speciation history of Dendrortyx wood-partridges in the Mesoamerican highlands. Mol. Phylogenet. Evol. 136, 29–34 (2019).

    Article  Google Scholar 

  58. Kirchman, J. J. et al. Phylogeny based on ultra-conserved elements clarifies the evolution of rails and allies (Ralloidea) and is the basis for a revised classification. Ornithology 138, ukab042 (2021).

    Article  Google Scholar 

  59. Andersen, M. J. et al. Ultraconserved elements resolve genus-level relationships in a major Australasian bird radiation (Aves: Meliphagidae). EMU Aust. Orn. 119, 218–232 (2019).

    Article  Google Scholar 

  60. Hruska, J. P. et al. Ultraconserved elements resolve the phylogeny and corroborate patterns of molecular rate variation in herons (Aves: Ardeidae). Ornithology 140, ukad005 (2023).

    Article  Google Scholar 

  61. Schield, D. R. et al. Phylogeny and historical biogeography of the swallow family (Hirundinidae) inferred from comparisons of thousands of UCE loci. Mol. Phylogenet. Evol. 197, 108111 (2024).

    Article  CAS  Google Scholar 

  62. Kimball, R. T., Hosner, P. A. & Braun, E. L. A phylogenomic supermatrix of Galliformes (landfowl) reveals biased branch lengths. Mol. Phylogenet. Evol. 158, 107091 (2021).

    Article  Google Scholar 

  63. McCullough, J. M., Moyle, R. G., Smith, B. T. & Andersen, M. J. A Laurasian origin for a pantropical bird radiation is supported by genomic and fossil data (Aves: Coraciiformes). Proc. Biol. Sci. 286, 20190122 (2019).

    Google Scholar 

  64. Nabholz, B., Künstner, A., Wang, R., Jarvis, E. D. & Ellegren, H. Dynamic evolution of base composition: causes and consequences in avian phylogenomics. Mol. Biol. Evol. 28, 2197–2210 (2011).

    Article  CAS  Google Scholar 

  65. Zhang, G. et al. Genomics: bird sequencing project takes off. Nature 522, 34 (2015).

    Article  CAS  Google Scholar 

  66. Braun, E. L., Cracraft, J. & Houde, P. in Avian Genomics in Ecology and Evolution: From the Lab into the Wild (ed. Kraus, R. H. S.) 151–210 (Springer, 2019).

  67. Bravo, G. A., Schmitt, C. J. & Edwards, S. V. What have we learned from the first 500 avian genomes? Annu. Rev. Ecol. Evol. Syst. 52, 611–639 (2021).

    Article  Google Scholar 

  68. Reddy, S. et al. Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. Syst. Biol. 66, 857–879 (2017).

    Article  CAS  Google Scholar 

  69. Braun, E. L. & Kimball, R. T. Data types and the phylogeny of Neoaves. Birds 2, 1–22 (2021).

    Article  Google Scholar 

  70. Gibb, G. C., Kardailsky, O., Kimball, R. T., Braun, E. L. & Penny, D. Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations. Mol. Biol. Evol. 24, 269–280 (2007).

    Article  CAS  Google Scholar 

  71. Guillerme, T. et al. Innovation and elaboration on the avian tree of life. Sci. Adv. 9, eadg1641 (2023).

    Article  Google Scholar 

  72. Mirarab, S. et al. A region of suppressed recombination misleads neoavian phylogenomics. Proc. Natl Acad. Sci. USA 121, e2319506121 (2024).

    Article  CAS  Google Scholar 

  73. Degnan, J. H. & Salter, L. A. Gene tree distributions under the coalescent process. Evolution 59, 24–37 (2005).

    Google Scholar 

  74. Slatkin, M. & Pollack, J. L. Subdivision in an ancestral species creates asymmetry in gene trees. Mol. Biol. Evol. 25, 2241–2246 (2008).

    Article  CAS  Google Scholar 

  75. Hoelzer, G. A. & Meinick, D. J. Patterns of speciation and limits to phylogenetic resolution. Trends Ecol. Evol. 9, 104–107 (1994).

    Article  CAS  Google Scholar 

  76. Gatesy, J. & Springer, M. S. Phylogenomic coalescent analyses of avian retroelements infer zero-length branches at the base of Neoaves, emergent support for controversial clades, and ancient introgressive hybridization in Afroaves. Genes 13, 1167 (2022).

    Article  CAS  Google Scholar 

  77. Zhang, D. et al. Most genomic loci misrepresent the phylogeny of an avian radiation because of ancient gene flow. Syst. Biol. 70, 961–975 (2021).

    Article  Google Scholar 

  78. Seehausen, O. Hybridization and adaptive radiation. Trends Ecol. Evol. 19, 198–207 (2004).

    Article  Google Scholar 

  79. Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 14363 (2017).

    Article  CAS  Google Scholar 

  80. Edelman, N. B. et al. Genomic architecture and introgression shape a butterfly radiation. Science 366, 594–599 (2019).

    Article  CAS  Google Scholar 

  81. Singhal, S. et al. The dynamics of introgression across an avian radiation. Evol. Lett. 5, 568–581 (2021).

    Article  Google Scholar 

  82. Cole, T. L. et al. Genomic insights into the secondary aquatic transition of penguins. Nat. Commun. 13, 3912 (2022).

    Article  CAS  Google Scholar 

  83. Ottenburghs, J. et al. Avian introgression in the genomic era. Avian Res. 8, 30 (2017).

    Article  Google Scholar 

  84. Ottenburghs, J., Ydenberg, R. C., Van Hooft, P., Van Wieren, S. E. & Prins, H. H. T. The avian hybrids project: gathering the scientific literature on avian hybridization. Ibis 157, 892–894 (2015).

    Article  Google Scholar 

  85. Lanier, H. C. & Knowles, L. L. Is recombination a problem for species-tree analyses? Syst. Biol. 61, 691–701 (2012).

    Article  Google Scholar 

  86. Liu, L. BEST: Bayesian estimation of species trees under the coalescent model. Bioinformatics 24, 2542–2543 (2008).

    Article  CAS  Google Scholar 

  87. Heled, J. & Drummond, A. J. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27, 570–580 (2010).

    Article  CAS  Google Scholar 

  88. McCormack, J. E., Huang, H. & Knowles, L. L. Maximum likelihood estimates of species trees: how accuracy of phylogenetic inference depends upon the divergence history and sampling design. Syst. Biol. 58, 501–508 (2009).

    Article  Google Scholar 

  89. Forsberg, R., Drummond, A. J. & Hein, J. Tree measures and the number of segregating sites in time-structured population samples. BMC Genet. 6, 35 (2005).

    Article  Google Scholar 

  90. Steenwyk, J. L., Li, Y., Zhou, X., Shen, X.-X. & Rokas, A. Incongruence in the phylogenomics era. Nat. Rev. Genet. 24, 834–850 (2023).

    Article  CAS  Google Scholar 

  91. Whelan, S. The genetic code can cause systematic bias in simple phylogenetic models. Phil. Trans. R. Soc. B 363, 4003–4011 (2008).

    Article  Google Scholar 

  92. Bergsten, J. A review of long-branch attraction. Cladistics 21, 163–193 (2005).

    Article  Google Scholar 

  93. Felsenstein, J. Distance methods for inferring phylogenies: a justification. Evolution 38, 16–24 (1984).

    Article  Google Scholar 

  94. Schluter, D. The Ecology of Adaptive Radiation (Oxford Univ. Press, 2000).

  95. Yoder, J. B. et al. Ecological opportunity and the origin of adaptive radiations. J. Evol. Biol. 23, 1581–1596 (2010).

    Article  CAS  Google Scholar 

  96. Stroud, J. T. & Losos, J. B. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47, 507–532 (2016).

    Article  Google Scholar 

  97. Schenk, J. J., Rowe, K. C. & Steppan, S. J. Ecological opportunity and incumbency in the diversification of repeated continental colonizations by muroid rodents. Syst. Biol. 62, 837–864 (2013).

    Article  Google Scholar 

  98. Burbrink, F. T., Ruane, S. & Pyron, R. A. When are adaptive radiations replicated in areas? Ecological opportunity and unexceptional diversification in West Indian dipsadine snakes (Colubridae: Alsophiini). J. Biogeogr. 39, 465–475 (2012).

    Article  Google Scholar 

  99. Mitchell, K. J., Cooper, A. & Phillips, M. J. Comment on ‘Whole-genome analyses resolve early branches in the tree of life of modern birds’. Science 349, 1460 (2015).

    Article  CAS  Google Scholar 

  100. Cracraft, J. et al. Response to comment on ‘Whole-genome analyses resolve early branches in the tree of life of modern birds’. Science 349, 1460 (2015).

    Article  CAS  Google Scholar 

  101. Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science 327, 1214–1218 (2010).

    Article  CAS  Google Scholar 

  102. Morgan, J. V., Bralower, T. J., Brugger, J. & Wünnemann, K. The Chicxulub impact and its environmental consequences. Nat. Rev. Earth Environ. 3, 338–354 (2022).

    Article  CAS  Google Scholar 

  103. Senel, C. B. et al. Chicxulub impact winter sustained by fine silicate dust. Nat. Geosci. 16, 1033–1040 (2023).

    Article  CAS  Google Scholar 

  104. Schoene, B. et al. U–Pb constraints on pulsed eruption of the Deccan traps across the end-Cretaceous mass extinction. Science 363, 862–866 (2019).

    Article  CAS  Google Scholar 

  105. Sprain, C. J. et al. The eruptive tempo of Deccan volcanism in relation to the Cretaceous–Paleogene boundary. Science 363, 866–870 (2019).

    Article  CAS  Google Scholar 

  106. Paton, T., Haddrath, O. & Baker, A. J. Complete mitochondrial DNA genome sequences show that modern birds are not descended from transitional shorebirds. Proc. Biol. Sci. 269, 839–846 (2002).

    Article  CAS  Google Scholar 

  107. Jablonski, D. Survival without recovery after mass extinctions. Proc. Natl Acad. Sci. USA 99, 8139–8144 (2002).

    Article  CAS  Google Scholar 

  108. Houde, P., Braun, E. L. & Zhou, L. Deep-time demographic inference suggests ecological release as driver of neoavian adaptive radiation. Diversity 12, 164 (2020).

    Article  Google Scholar 

  109. Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208, 1095–1108 (1980).

    Article  CAS  Google Scholar 

  110. Vellekoop, J. et al. Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary. Proc. Natl Acad. Sci. USA 111, 7537–7541 (2014).

    Article  CAS  Google Scholar 

  111. Gallagher, W. B. et al. On the last mosasaurs: late maastrichtian mosasaurs and the Cretaceous–Paleogene boundary in New Jersey. Bull. Soc. Geol. Fr. 183, 145–150 (2012).

    Article  Google Scholar 

  112. D’Hondt, S. Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 295–317 (2005).

    Article  Google Scholar 

  113. Landman, N. H. et al. Ammonite extinction and nautilid survival at the end of the Cretaceous. Geology 42, 707–710 (2014).

    Article  CAS  Google Scholar 

  114. Robertson, D. S., Lewis, W. M., Sheehan, P. M. & Toon, O. B. K–Pg extinction patterns in marine and freshwater environments: the impact winter model. J. Geophys. Res. Biogeosci. 118, 1006–1014 (2013).

    Article  Google Scholar 

  115. Sheehan, P. M. & Fastovsky, D. E. Major extinctions of land-dwelling vertebrates at the Cretaceous–Tertiary boundary, eastern Montana. Geology 20, 556–560 (1992).

    Article  Google Scholar 

  116. Archibald, D. J. & Bryant, L. J. in Global Catastrophes in Earth History; an Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality 549–562 (GeoScienceWorld, 1990).

  117. MacLeod, N. et al. The Cretaceous–Tertiary biotic transition. J. Geol. Soc. 154, 265–292 (1997).

    Article  Google Scholar 

  118. Feduccia, A. Avian extinction at the end of the Cretaceous: assessing the magnitude and subsequent explosive radiation. Cretac. Res. 50, 1–15 (2014).

    Article  Google Scholar 

  119. Olson, S. L. & Parris, D. C. The Cretaceous Birds of New Jersey (Smithsonian Institution, 1987).

  120. Feduccia, A. Tertiary bird history: notes and comments. Short Courses Paleontol. 7, 179–189 (1994).

    Article  Google Scholar 

  121. Feduccia, A. The Origin and Evolution of Birds (Yale Univ. Press, 1996).

  122. Mayr, G. Paleogene Fossil Birds (Springer, 2009).

  123. Mayr, E. Ecological factors in speciation. Evolution 1, 263 (1947).

    Article  Google Scholar 

  124. Dobzhansky, T. Genetics and the Origin of Species (Columbia Univ. Press, 1937).

  125. Wu, A. C. & Palopoli, M. Genetics of postmating reproductive isolation in animals. Annu. Rev. Genet. 28, 283–308 (1994).

    Article  CAS  Google Scholar 

  126. Manuel, S. & Liu, Y. in Bird Species: How They Arise, Modify and Vanish (ed. Tietze, D. T.) 129–145 (Springer, 2018).

  127. Upchurch, P. Gondwanan break-up: legacies of a lost world? Trends Ecol. Evol. 23, 229–236 (2008).

    Article  Google Scholar 

  128. Hedges, S. B., Parker, P. H., Sibley, C. G. & Kumar, S. Continental breakup and the ordinal diversification of birds and mammals. Nature 381, 226–229 (1996).

    Article  CAS  Google Scholar 

  129. Illera, J. C., Rando, J. C., Melo, M., Valente, L. & Stervander, M. Avian island radiations shed light on the dynamics of adaptive and nonadaptive radiation. Cold Spring Harb. Persp. Biol. 16, a041451 (2024).

    Article  Google Scholar 

  130. Glor, R. E. Remarkable new evidence for island radiation in birds. Mol. Ecol. 20, 4823–4826 (2011).

    Article  Google Scholar 

  131. Oliveros, C. H. et al. Rapid Laurasian diversification of a pantropical bird family during the Oligocene–Miocene transition. Ibis 162, 137–152 (2020).

    Article  Google Scholar 

  132. Moyle, R. G. et al. Tectonic collision and uplift of Wallacea triggered the global songbird radiation. Nat. Commun. 7, 12709 (2016).

    Article  Google Scholar 

  133. McLoughlin, S. The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Aust. J. Bot. 49, 271 (2001).

    Article  Google Scholar 

  134. Cracraft, J. Avian evolution, Gondwana biogeography and the Cretaceous–Tertiary mass extinction event. Proc. Biol. Sci. 268, 459–469 (2001).

    Article  CAS  Google Scholar 

  135. Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl Acad. Sci. USA 95, 8420–8427 (1998).

    Article  CAS  Google Scholar 

  136. Simpson, G. G. Tempo and Mode in Evolution (Columbia Univ. Press, 1944).

  137. Erwin, D. H. A conceptual framework of evolutionary novelty and innovation. Biol. Rev. 96, 1–15 (2021).

    Article  Google Scholar 

  138. Dumont, E. R. et al. Morphological innovation, diversification and invasion of a new adaptive zone. Proc. Biol. Sci. 279, 1797–1805 (2012).

    Google Scholar 

  139. Rabosky, D. L. Phylogenetic tests for evolutionary innovation: the problematic link between key innovations and exceptional diversification. Phil. Trans. R. Soc. B 372, 20160417 (2017).

    Article  Google Scholar 

  140. Martin, C. H. & Richards, E. J. The paradox behind the pattern of rapid adaptive radiation: how can the speciation process sustain itself through an early burst? Annu. Rev. Ecol. Evol. Syst. 50, 569–593 (2019).

    Article  Google Scholar 

  141. Jablonski, D. Evolvability and macroevolution: overview and synthesis. Evol. Biol. 49, 265–291 (2022).

    Article  Google Scholar 

  142. Donoghue, M. J. & Sanderson, M. J. Confluence, synnovation, and depauperons in plant diversification. N. Phytol. 207, 260–274 (2015).

    Article  Google Scholar 

  143. Jablonski, D. Approaches to macroevolution: 1. General concepts and origin of variation. Evol. Biol. 44, 427–450 (2017).

    Article  Google Scholar 

  144. Shubin, N., Tabin, C. & Carroll, S. Deep homology and the origins of evolutionary novelty. Nature 457, 818–823 (2009).

    Article  CAS  Google Scholar 

  145. Carroll, S. B., Grenier, J. K. & Weatherbee, S. D. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design (Blackwell, 2001).

  146. Bi, X. et al. Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes. Cell 184, 1377–1391.e14 (2021).

    Article  CAS  Google Scholar 

  147. Xu, X. et al. Four-winged dinosaurs from China. Nature 421, 335–340 (2003).

    Article  CAS  Google Scholar 

  148. Zhou, Z. The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence. Sci. Nat. 91, 455–471 (2004).

    Article  CAS  Google Scholar 

  149. Wang, X. et al. Insights into the evolution of rachis dominated tail feathers from a new basal enantiornithine (Aves: Ornithothoraces). Biol. J. Linn. Soc. Lond. 113, 805–819 (2014).

    Article  Google Scholar 

  150. Zhou, Z. Dinosaur evolution: feathers up for selection. Curr. Biol. 24, R751–R753 (2014).

    Article  CAS  Google Scholar 

  151. Brush, A. H. Evolving a protofeather and feather diversity. Am. Zool. 40, 631–639 (2000).

    Google Scholar 

  152. Brusatte, S. L., O’Connor, J. K. & Jarvis, E. D. The origin and diversification of birds. Curr. Biol. 25, R888–R898 (2015).

    Article  CAS  Google Scholar 

  153. Xu, X. et al. An integrative approach to understanding bird origins. Science 346, 1253293 (2014).

    Article  Google Scholar 

  154. Orkney, A. & Hedrick, B. P. Small body size is associated with increased evolutionary lability of wing skeleton proportions in birds. Nat. Commun. 15, 4208 (2024).

    Article  CAS  Google Scholar 

  155. Lee, M. S. Y., Cau, A., Naish, D. & Dyke, G. J. Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science 345, 562–566 (2014).

    Article  CAS  Google Scholar 

  156. Newton, I. The role of food in limiting bird numbers. Ardea 55, 11–30 (2002).

    Article  Google Scholar 

  157. Blanckenhorn, W. U. The evolution of body size: what keeps organisms small? Q. Rev. Biol. 75, 385–407 (2000).

    Article  CAS  Google Scholar 

  158. Gaston, K. & Blackburn, T. Birds, body size and the threat of extinction. Phil. Trans. R. Soc. B 347, 205–212 (1995).

    Article  Google Scholar 

  159. Benson, R. B. J. et al. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol. 12, e1001853 (2014).

    Article  Google Scholar 

  160. Moen, D. & Morlon, H. From dinosaurs to modern bird diversity: extending the time scale of adaptive radiation. PLoS Biol. 12, e1001854 (2014).

    Article  Google Scholar 

  161. Wang, M., O’Connor, J. K., Xu, X. & Zhou, Z. A new Jurassic scansoriopterygid and the loss of membranous wings in theropod dinosaurs. Nature 569, 256–259 (2019).

    Article  CAS  Google Scholar 

  162. Xu, X., You, H., Du, K. & Han, F. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 475, 465–470 (2011).

    Article  CAS  Google Scholar 

  163. Wang, M. & Zhou, Z. Low morphological disparity and decelerated rate of limb size evolution close to the origin of birds. Nat. Ecol. Evol. 7, 1257–1266 (2023).

    Article  Google Scholar 

  164. Chan, N. R. Morphospaces of functionally analogous traits show ecological separation between birds and pterosaurs. Proc. Biol. Sci. 284, 20171556 (2017).

    Google Scholar 

  165. Wang, S. et al. Digital restoration of the pectoral girdles of two early Cretaceous birds and implications for early-flight evolution. eLife 11, e76086 (2022).

    Article  CAS  Google Scholar 

  166. Bout, R. G. & Zweers, G. A. The role of cranial kinesis in birds. Comp. Biochem. Physiol. A 131, 197–205 (2001).

    Article  CAS  Google Scholar 

  167. Lautenschlager, S., Witmer, L. M., Altangerel, P. & Rayfield, E. J. Edentulism, beaks, and biomechanical innovations in the evolution of theropod dinosaurs. Proc. Natl Acad. Sci. USA 110, 20657–20662 (2013).

    Article  CAS  Google Scholar 

  168. Huxley, T. H. On the classification of birds; and on the taxonomic value of the modifications of certain of the cranial bones observed in that class. J. Anat. Physiol. 2, 390 (1867).

    Google Scholar 

  169. Gussekloo, S. W., Vosselman, M. G. & Bout, R. G. Three-dimensional kinematics of skeletal elements in avian prokinetic and rhynchokinetic skulls determined by Roentgen stereophotogrammetry. J. Exp. Biol. 204, 1735–1744 (2001).

    Article  CAS  Google Scholar 

  170. Zusi, R. L. Patterns of diversity in the avian skull. Skull 2, 391–437 (1993).

    Google Scholar 

  171. Field, D. J., Burton, M. G., Benito, J., Plateau, O. & Navalón, G. Whence the birds: 200 years of dinosaurs, avian antecedents. Biol. Lett. 21, 20240500 (2025).

    Article  Google Scholar 

  172. Benito, J., Kuo, P.-C., Widrig, K. E., Jagt, J. W. M. & Field, D. J. Cretaceous ornithurine supports a neognathous crown bird ancestor. Nature 612, 100–105 (2022).

    Article  CAS  Google Scholar 

  173. Zweers, G. A. Pecking of the pigeon (Columba Livia L.). Behaviour 81, 173–229 (1982).

    Article  Google Scholar 

  174. Zusi, R. L. A functional and evolutionary analysis of rhynchokinesis in birds. Smithson. Contrib. Zool. 395, 1–40 (1984).

    Google Scholar 

  175. Herrel, A., Podos, J., Huber, S. K. & Hendry, A. P. Bite performance and morphology in a population of Darwin’s finches: implications for the evolution of beak shape. Funct. Ecol. 19, 43–48 (2005).

    Article  Google Scholar 

  176. Sheard, C. et al. Beak shape and nest material use in birds. Phil. Trans. R. Soc. B 378, 20220147 (2023).

    Article  Google Scholar 

  177. Widrig, K. & Field, D. J. The evolution and fossil record of palaeognathous birds (Neornithes: Palaeognathae). Diversity 14, 105 (2022).

    Article  Google Scholar 

  178. Zweers, G. A., Berge, J. C. V. & Berkhoudt, H. Evolutionary patterns of avian trophic diversification. Zool. Anal. Complex. Syst. 100, 25–57 (1997).

    Google Scholar 

  179. Wang, M., Stidham, T. A., O’Connor, J. K. & Zhou, Z. Insight into the evolutionary assemblage of cranial kinesis from a Cretaceous bird. eLife 11, e81337 (2022).

    Article  CAS  Google Scholar 

  180. Hu, H. et al. Evolution of the vomer and its implications for cranial kinesis in Paraves. Proc. Natl Acad. Sci. USA 116, 19571–19578 (2019).

    Article  CAS  Google Scholar 

  181. Field, D. J., Benito, J., Chen, A., Jagt, J. W. M. & Ksepka, D. T. Late Cretaceous neornithine from Europe illuminates the origins of crown birds. Nature 579, 397–401 (2020).

    Article  CAS  Google Scholar 

  182. Yu, Y., Zhang, C. & Xu, X. Deep time diversity and the early radiations of birds. Proc. Natl Acad. Sci. USA 118, e2019865118 (2021).

    Article  CAS  Google Scholar 

  183. Gussekloo, S. W. S. et al. Functional and evolutionary consequences of cranial fenestration in birds. Evolution 71, 1327–1338 (2017).

    Article  Google Scholar 

  184. Zhang, G. et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346, 1311–1320 (2014).

    Article  CAS  Google Scholar 

  185. Gregory, T. R. et al. Eukaryotic genome size databases. Nucleic Acids Res. 35, D332–D338 (2007).

    Article  CAS  Google Scholar 

  186. Botero-Castro, F., Figuet, E., Tilak, M.-K., Nabholz, B. & Galtier, N. Avian genomes revisited: hidden genes uncovered and the rates versus traits paradox in birds. Mol. Biol. Evol. 34, 3123–3131 (2017).

    Article  CAS  Google Scholar 

  187. Gregory, T. R. A bird’s-eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class Aves. Evolution 56, 121–130 (2002).

    CAS  Google Scholar 

  188. Wright, N. A., Gregory, T. R. & Witt, C. C. Metabolic ‘engines’ of flight drive genome size reduction in birds. Proc. Biol. Sci. 281, 20132780 (2014).

    Google Scholar 

  189. Wicker, T. et al. The repetitive landscape of the chicken genome. Genome Res. 15, 126–136 (2005).

    Article  Google Scholar 

  190. Kapusta, A. & Suh, A. Evolution of bird genomes-a transposon’s-eye view. Ann. NY Acad. Sci. 1389, 164–185 (2017).

    Article  Google Scholar 

  191. Chen, G. et al. Adaptive expansion of ERVK solo-LTRs is associated with passeriformes speciation events. Nat. Commun. 15, 3151 (2024).

    Article  CAS  Google Scholar 

  192. Kapusta, A., Suh, A. & Feschotte, C. Dynamics of genome size evolution in birds and mammals. Proc. Natl Acad. Sci. USA 114, E1460–E1469 (2017).

    Article  CAS  Google Scholar 

  193. Seki, R. et al. Functional roles of Aves class-specific cis-regulatory elements on macroevolution of bird-specific features. Nat. Commun. 8, 14229 (2017).

    Article  CAS  Google Scholar 

  194. Xiong, Y. & Lei, F. SLC2A12 of SLC2 gene family in bird provides functional compensation for the loss of SLC2A4 gene in other vertebrates. Mol. Biol. Evol. 38, 1276–1291 (2021).

    Article  CAS  Google Scholar 

  195. Meredith, R. W., Zhang, G., Gilbert, M. T. P., Jarvis, E. D. & Springer, M. S. Evidence for a single loss of mineralized teeth in the common avian ancestor. Science 346, 1254390 (2014).

    Article  Google Scholar 

  196. Louchart, A. & Viriot, L. From snout to beak: the loss of teeth in birds. Trends Ecol. Evol. 26, 663–673 (2011).

    Article  Google Scholar 

  197. Hieronymus, T. L. & Witmer, L. M. Homology and evolution of avian compound rhamphothecae. Auk 127, 590–604 (2010).

    Article  Google Scholar 

  198. Zhou, Z. & Zhang, F. Discovery of an ornithurine bird and its implication for early Cretaceous avian radiation. Proc. Natl Acad. Sci. USA 102, 18998–19002 (2005).

    Article  CAS  Google Scholar 

  199. Zhou, Z. & Zhang, F. A beaked basal ornithurine bird (Aves, Ornithurae) from the lower Cretaceous of China. Zool. Scr. 35, 363–373 (2006).

    Article  CAS  Google Scholar 

  200. Zhou, Z. & Li, F. Z. Z. A new lower Cretaceous bird from China and tooth reduction in early avian evolution. Proc. Biol. Sci. 277, 219–227 (2010).

    Google Scholar 

  201. Weber, C. et al. Temperature-dependent sex determination is mediated by pSTAT3 repression of Kdm6b. Science 368, 303–306 (2020).

    Article  CAS  Google Scholar 

  202. Zhu, Z., Younas, L. & Zhou, Q. Evolution and regulation of animal sex chromosomes. Nat. Rev. Genet. 26, 59–74 (2025).

    Article  Google Scholar 

  203. Miller, D., Summers, J. & Silber, S. Environmental versus genetic sex determination: a possible factor in dinosaur extinction? Fertil. Steril. 81, 954–964 (2004).

    Article  CAS  Google Scholar 

  204. Coyne, J. A., Kay, E. H. & Pruett-Jones, S. The genetic basis of sexual dimorphism in birds. Evolution 62, 214–219 (2008).

    Google Scholar 

  205. Kennedy, J. D., Marki, P. Z., Fjeldså, J. & Rahbek, C. The association between morphological and ecological characters across a global passerine radiation. J. Anim. Ecol. 89, 1094–1108 (2020).

    Article  Google Scholar 

  206. Maglianesi, M. A., Blüthgen, N., Böhning-Gaese, K. & Schleuning, M. Morphological traits determine specialization and resource use in plant–hummingbird networks in the neotropics. Ecology 95, 3325–3334 (2014).

    Article  Google Scholar 

  207. Madrigal-Roca, L. J. Assessing the predictive value of morphological traits on primary lifestyle of birds through the extreme gradient boosting algorithm. PLoS ONE 19, e0295182 (2024).

    Article  CAS  Google Scholar 

  208. Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).

    Article  Google Scholar 

  209. Cooney, C. R. & Thomas, G. H. Heterogeneous relationships between rates of speciation and body size evolution across vertebrate clades. Nat. Ecol. Evol. 5, 101–110 (2021).

    Article  Google Scholar 

  210. Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4, 1958 (2013).

    Article  Google Scholar 

  211. Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344–347 (2017).

    Article  CAS  Google Scholar 

  212. Lovette, I. J., Bermingham, E. & Ricklefs, R. E. Clade-specific morphological diversification and adaptive radiation in Hawaiian songbirds. Proc. Biol. Sci. 269, 37–42 (2002).

    Article  Google Scholar 

  213. Chira, A. M. et al. Correlates of rate heterogeneity in avian ecomorphological traits. Ecol. Lett. 21, 1505–1514 (2018).

    Article  CAS  Google Scholar 

  214. Navalón, G., Bjarnason, A., Griffiths, E. & Benson, R. B. J. Environmental signal in the evolutionary diversification of bird skeletons. Nature 611, 306–311 (2022).

    Article  Google Scholar 

  215. Eliason, C. M., Proffitt, J. V. & Clarke, J. A. Early diversification of avian limb morphology and the role of modularity in the locomotor evolution of crown birds. Evolution 77, 342–354 (2023).

    Article  Google Scholar 

  216. Olsen, A. M. Feeding ecology is the primary driver of beak shape diversification in waterfowl. Funct. Ecol. 31, 1985–1995 (2017).

    Article  Google Scholar 

  217. Smith, M. L., Yanega, G. M. & Ruina, A. Elastic instability model of rapid beak closure in hummingbirds. J. Theor. Biol. 282, 41–51 (2011).

    Article  CAS  Google Scholar 

  218. Manegold, A. & Töpfer, T. The systematic position of Hemicircus and the stepwise evolution of adaptations for drilling, tapping and climbing up in true woodpeckers (Picinae, Picidae). J. Zool. Syst. Evol. Res. 51, 72–82 (2013).

    Article  Google Scholar 

  219. Savile, D. B. O. Adaptive evolution in the avian wing. Evolution 11, 212–224 (1957).

    Article  Google Scholar 

  220. Foth, C. & Rauhut, O. W. M. The Evolution of Feathers: from their Origin to the Present (Springer, 2020).

  221. Claramunt, S., Derryberry, E. P., Remsen, J. V. Jr & Brumfield, R. T. High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proc. Biol. Sci. 279, 1567–1574 (2012).

    Google Scholar 

  222. Arango, A. et al. Hand-wing index as a surrogate for dispersal ability: the case of the Emberizoidea (Aves: Passeriformes) radiation. Biol. J. Linn. Soc. Lond. 137, 137–144 (2022).

    Article  Google Scholar 

  223. Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020).

    Article  CAS  Google Scholar 

  224. Tigano, A. & Friesen, V. L. Genomics of local adaptation with gene flow. Mol. Ecol. 25, 2144–2164 (2016).

    Article  Google Scholar 

  225. Yamasaki, T. & Kobayashi, Y. Evolving dispersal ability causes rapid adaptive radiation. Sci. Rep. 14, 15734 (2024).

    Article  CAS  Google Scholar 

  226. Agnarsson, I., Cheng, R.-C. & Kuntner, M. A multi-clade test supports the intermediate dispersal model of biogeography. PLoS ONE 9, e86780 (2014).

    Article  Google Scholar 

  227. Edelsparre, A. H., Fitzpatrick, M. J., Saastamoinen, M. & Teplitsky, C. Evolutionary adaptation to climate change. Evol. Lett. 8, 1–7 (2024).

    Article  Google Scholar 

  228. Weeks, B. C. & Claramunt, S. Dispersal has inhibited avian diversification in Australasian archipelagoes. Proc. Biol. Sci. 281, 20141257 (2014).

    Google Scholar 

  229. Venail, P. A. et al. Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities. Nature 452, 210–214 (2008).

    Article  CAS  Google Scholar 

  230. Székely, T., Freckleton, R. P. & Reynolds, J. D. Sexual selection explains Rensch’s rule of size dimorphism in shorebirds. Proc. Natl Acad. Sci. USA 101, 12224–12227 (2004).

    Article  Google Scholar 

  231. Valcu, M., Valcu, C. & Kempenaers, B. Extra-pair paternity and sexual dimorphism in birds. J. Evol. Biol. 36, 764–779 (2023).

    Article  Google Scholar 

  232. West-Eberhard, M. J. Sexual selection, social competition, and speciation. Q. Rev. Biol. 58, 155–183 (1983).

    Article  Google Scholar 

  233. Edelaar, P. in Bird Species: How They Arise, Modify and Vanish (ed. Tietze, D. T.) 195–215 (Springer, 2018).

  234. Caron, F. S. & Pie, M. R. The macroevolution of sexual size dimorphism in birds. Biol. J. Linn. Soc. Lond. 144, blad168 (2024).

    Article  Google Scholar 

  235. Cally, J. G., Stuart-Fox, D., Holman, L., Dale, J. & Medina, I. Male-biased sexual selection, but not sexual dichromatism, predicts speciation in birds. Evolution 75, 931–944 (2021).

    Article  Google Scholar 

  236. Darwin, C. The Descent of Man, and Selection in Relation to Sex (D. Appleton, 1872).

  237. Andersson, M. B. Sexual Selection (Princeton Univ. Press, 1994).

  238. Carballo, L., Delhey, K., Valcu, M. & Kempenaers, B. Body size and climate as predictors of plumage colouration and sexual dichromatism in parrots. J. Evol. Biol. 33, 1543–1557 (2020).

    Article  Google Scholar 

  239. Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).

    Article  CAS  Google Scholar 

  240. Tobias, J. A., Montgomerie, R. & Lyon, B. E. The evolution of female ornaments and weaponry: social selection, sexual selection and ecological competition. Phil. Trans. R. Soc. B 367, 2274–2293 (2012).

    Article  Google Scholar 

  241. Bergeron, L. A. et al. Evolution of the germline mutation rate across vertebrates. Nature 615, 285–291 (2023).

    Article  CAS  Google Scholar 

  242. Takagi, N. & Sasaki, M. A phylogenetic study of bird karyotypes. Chromosoma 46, 91–120 (1974).

    Article  CAS  Google Scholar 

  243. Kretschmer, R., Ferguson-Smith, M. A. & de Oliveira, E. H. C. Karyotype evolution in birds: from conventional staining to chromosome painting. Genes 9, 181 (2018).

    Article  Google Scholar 

  244. McQueen, H. A., Siriaco, G. & Bird, A. P. Chicken microchromosomes are hyperacetylated, early replicating, and gene rich. Genome Res. 8, 621–630 (1998).

    Article  CAS  Google Scholar 

  245. Knief, U. & Forstmeier, W. Mapping centromeres of microchromosomes in the zebra finch (Taeniopygia guttata) using half-tetrad analysis. Chromosoma 125, 757–768 (2016).

    Article  Google Scholar 

  246. Griffin, D. K. et al. Insights into avian molecular cytogenetics-with reptilian comparisons. Mol. Cytogenet. 17, 24 (2024).

    Article  Google Scholar 

  247. Waters, P. D. et al. Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proc. Natl Acad. Sci. USA 118, e2112494118 (2021).

    Article  CAS  Google Scholar 

  248. Burt, D. W. Origin and evolution of avian microchromosomes. Cytogenet. Genome Res. 96, 97–112 (2002).

    Article  CAS  Google Scholar 

  249. Huang, Z. et al. Recurrent chromosome reshuffling and the evolution of neo-sex chromosomes in parrots. Nat. Commun. 13, 944 (2022).

    Article  CAS  Google Scholar 

  250. Xu, L. et al. Evolution and expression patterns of the neo-sex chromosomes of the crested ibis. Nat. Commun. 15, 1670 (2024).

    Article  CAS  Google Scholar 

  251. Livernois, A. M., Graves, J. A. M. & Waters, P. D. The origin and evolution of vertebrate sex chromosomes and dosage compensation. Heredity 108, 50–58 (2012).

    Article  CAS  Google Scholar 

  252. Smeds, L. et al. Evolutionary analysis of the female-specific avian W chromosome. Nat. Commun. 6, 7330 (2015).

    Article  CAS  Google Scholar 

  253. Ponnikas, S., Sigeman, H., Abbott, J. K. & Hansson, B. Why do sex chromosomes stop recombining? Trends Genet. 34, 492–503 (2018).

    Article  CAS  Google Scholar 

  254. Rutkowska, J., Lagisz, M. & Nakagawa, S. The long and the short of avian W chromosomes: no evidence for gradual W shortening. Biol. Lett. 8, 636–638 (2012).

    Article  Google Scholar 

  255. Ogawa, A., Murata, K. & Mizuno, S. The location of Z- and W-linked marker genes and sequence on the homomorphic sex chromosomes of the ostrich and the emu. Proc. Natl Acad. Sci. USA 95, 4415–4418 (1998).

    Article  CAS  Google Scholar 

  256. Tsuda, Y., Nishida-Umehara, C., Ishijima, J., Yamada, K. & Matsuda, Y. Comparison of the Z and W sex chromosomal architectures in elegant crested tinamou (Eudromia elegans) and ostrich (Struthio camelus) and the process of sex chromosome differentiation in palaeognathous birds. Chromosoma 116, 159–173 (2007).

    Article  Google Scholar 

  257. Wang, Z. et al. Temporal genomic evolution of bird sex chromosomes. BMC Evol. Biol. 14, 250 (2014).

    Article  Google Scholar 

  258. Zhou, Q. et al. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 346, 1246338 (2014).

    Article  Google Scholar 

  259. Nunes, G. T. et al. Sex determination and sexual size dimorphism in the red-billed tropicbird (Phaethon aethereus) and white-tailed tropicbird (P. lepturus). Waterbirds 36, 348–352 (2013).

    Article  Google Scholar 

  260. Gan, H. M. et al. Genomic evidence of neo-sex chromosomes in the eastern yellow robin. Gigascience 8, giz111 (2019).

    Article  Google Scholar 

  261. Sigeman, H. et al. Avian neo-sex chromosomes reveal dynamics of recombination suppression and W degeneration. Mol. Biol. Evol. 38, 5275–5291 (2021).

    Article  CAS  Google Scholar 

  262. Sigeman, H., Zhang, H., Ali Abed, S. & Hansson, B. A novel neo-sex chromosome in Sylvietta brachyura (Macrosphenidae) adds to the extraordinary avian sex chromosome diversity among Sylvioidea songbirds. J. Evol. Biol. 35, 1797–1805 (2022).

    Article  CAS  Google Scholar 

  263. Shogren, E. H. et al. Recent secondary contact, genome-wide admixture, and asymmetric introgression of neo-sex chromosomes between two Pacific island bird species. PLoS Genet. 20, e1011360 (2024).

    Article  CAS  Google Scholar 

  264. Gregory, T. R., Andrews, C. B., McGuire, J. A. & Witt, C. C. The smallest avian genomes are found in hummingbirds. Proc. Biol. Sci. 276, 3753–3757 (2009).

    CAS  Google Scholar 

  265. Ji, Y. et al. Orthologous microsatellites, transposable elements, and DNA deletions correlate with generation time and body mass in neoavian birds. Sci. Adv. 8, eabo0099 (2022).

    Article  CAS  Google Scholar 

  266. Zhao, H., Li, J. & Zhang, J. Molecular evidence for the loss of three basic tastes in penguins. Curr. Biol. 25, R141–R142 (2015).

    Article  CAS  Google Scholar 

  267. Jenouvrier, S. Impacts of climate change on avian populations. Glob. Change Biol. 19, 2036–2057 (2013).

    Article  Google Scholar 

  268. Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 7, 205–208 (2017).

    Article  Google Scholar 

  269. IPCC Working Group I. Climate Change 2013 — the Physical Science Basis. Contribution of Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2014).

  270. WWF. Living Planet Report 2016. Risk and Resilience in a New Era (WWF International, 2016).

  271. IUCN. IUCN 2016: International Union for Conservation of Nature Annual Report 2016 (IUCN, 2017).

  272. Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).

    Article  CAS  Google Scholar 

  273. Jiguet, F., Gadot, A.-S., Julliard, R., Newson, S. E. & Couvet, D. Climate envelope, life history traits and the resilience of birds facing global change. Glob. Change Biol. 13, 1672–1684 (2007).

    Article  Google Scholar 

  274. Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).

    Article  Google Scholar 

  275. Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).

    Article  Google Scholar 

  276. Mason, L. R. et al. Population responses of bird populations to climate change on two continents vary with species’ ecological traits but not with direction of change in climate suitability. Clim. Change 157, 337–354 (2019).

    Article  Google Scholar 

  277. McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).

    Article  Google Scholar 

  278. Hadly, E. A., Kohn, M. H., Leonard, J. A. & Wayne, R. K. A genetic record of population isolation in pocket gophers during Holocene climatic change. Proc. Natl Acad. Sci. USA 95, 6893–6896 (1998).

    Article  CAS  Google Scholar 

  279. Finkel, Z. V., Katz, M. E., Wright, J. D., Schofield, O. M. E. & Falkowski, P. G. Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic. Proc. Natl Acad. Sci. USA 102, 8927–8932 (2005).

    Article  CAS  Google Scholar 

  280. Smith, F. A., Betancourt, J. L. & Brown, J. H. Evolution of body size in the woodrat over the past 25,000 years of climate change. Science 270, 2012–2014 (1995).

    Article  CAS  Google Scholar 

  281. Bribiesca, R., Herrera-Alsina, L., Ruiz-Sanchez, E., Sánchez-González, L. A. & Schondube, J. E. Body mass as a supertrait linked to abundance and behavioral dominance in hummingbirds: a phylogenetic approach. Ecol. Evol. 9, 1623–1637 (2019).

    Article  Google Scholar 

  282. Brown, J. H. & Maurer, B. A. Body size, ecological dominance and Cope’s rule. Nature 324, 248–250 (1986).

    Article  Google Scholar 

  283. White, E. P., Morgan Ernest, S. K., Kerkhoff, A. J. & Enquist, B. J. Relationships between body size and abundance in ecology. Trends Ecol. Evol. 22, 323–330 (2007).

    Article  Google Scholar 

  284. Woodward, G. et al. Body size in ecological networks. Trends Ecol. Evol. 20, 402–409 (2005).

    Article  Google Scholar 

  285. Navalón, G., Bright, J. A., Marugán-Lobón, J. & Rayfield, E. J. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. Evolution 73, 422–435 (2019).

    Article  Google Scholar 

  286. Bowman, R. I. Morphological Differentiation and Adaptation in the Galápagos Finches (Univ. California Press, 1961).

  287. Grant, P. R. Ecology and Evolution of Darwin’s Finches (Princeton Univ. Press, 1999).

  288. Timpane-Padgham, B. L., Beechie, T. & Klinger, T. A systematic review of ecological attributes that confer resilience to climate change in environmental restoration. PLoS ONE 12, e0173812 (2017).

    Article  Google Scholar 

  289. Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    Article  CAS  Google Scholar 

  290. Germain, R. R. et al. Changes in the functional diversity of modern bird species over the last million years. Proc. Natl Acad. Sci. USA 120, e2201945119 (2023).

    Article  Google Scholar 

  291. Gu, Z. et al. Climate-driven flyway changes and memory-based long-distance migration. Nature 591, 259–264 (2021).

    Article  CAS  Google Scholar 

  292. Walsh, H. E., Kidd, M. G., Moum, T. & Friesen, V. L. Polytomies and the power of phylogenetic inference. Evolution 53, 932–937 (1999).

    Article  CAS  Google Scholar 

  293. Whitfield, J. B. & Lockhart, P. J. Deciphering ancient rapid radiations. Trends Ecol. Evol. 22, 258–265 (2007).

    Article  Google Scholar 

  294. Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).

    Article  CAS  Google Scholar 

  295. Rands, C. M. et al. Insights into the evolution of Darwin’s finches from comparative analysis of the Geospiza magnirostris genome sequence. BMC Genom. 14, 95 (2013).

    Article  CAS  Google Scholar 

  296. Stryjewski, K. F. & Sorenson, M. D. Mosaic genome evolution in a recent and rapid avian radiation. Nat. Ecol. Evol. 1, 1912–1922 (2017).

    Article  Google Scholar 

  297. Charlesworth, B., Lande, R. & Slatkin, M. A neo-Darwinian commentary on macroevolution. Evolution 36, 474–498 (1982).

    Google Scholar 

  298. Simons, A. M. The continuity of microevolution and macroevolution. J. Evol. Biol. 15, 688–701 (2002).

    Article  Google Scholar 

  299. Dawkins, R. The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe without Design (Norton, 1896).

  300. Wimsatt, W. C. Aggregativity: reductive heuristics for finding emergence. Phil. Sci. 64, S372–S384 (1997).

    Article  Google Scholar 

  301. Stanley, S. M. Macroevolution: Pattern and Process (W. H. Freeman, 1979).

  302. Erwin, D. H. Macroevolution is more than repeated rounds of microevolution. Evol. Dev. 2, 78–84 (2000).

    Article  CAS  Google Scholar 

  303. Gould, S. J. The paradox of the first tier: an agenda for paleobiology. Paleobiology 11, 2–12 (1985).

    Article  Google Scholar 

  304. Bennett, K. D. Evolution and Ecology: The Pace of Life (Cambridge Univ. Press, 1997).

  305. Fain, M. G. & Houde, P. Parallel radiations in the primary clades of birds. Evolution 58, 2558–2573 (2004).

    Google Scholar 

  306. Padian, K. & Chiappe, L. M. The origin and early evolution of birds. Biol. Rev. 73, 1–42 (1998).

    Article  Google Scholar 

  307. Senter, P. Scapular orientation in theropods and basal birds, and the origin of flapping flight. Acta Palaeontol. Pol. 51, 305–313 (2006).

    Google Scholar 

  308. Ahmad, S. F., Singchat, W., Jehangir, M., Panthum, T. & Srikulnath, K. Consequence of paradigm shift with repeat landscapes in reptiles: powerful facilitators of chromosomal rearrangements for diversity and evolution. Genes 11, 827 (2020).

    Article  CAS  Google Scholar 

  309. Snyder, C. W. Evolution of global temperature over the past two million years. Nature 538, 226–228 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

G.Z. contributed substantially to discussion of content. All authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Guojie Zhang  (张国捷).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Animal Genome Size Database: https://www.genomesize.com

GPlates Web Service: https://gwsdoc.gplates.org

Glossary

Avialan

Any member of the clade Avialae, which includes all modern birds and their most immediate extinct relatives among non-avian dinosaurs; the term has been extensively used in studies of Mesozoic avian evolution.

Coalesce

The process by which alleles merge into a single ancestral lineage when traced backwards in evolutionary time.

Crown group

A crown group is a monophyletic clade that contains the most recent common ancestor of all extant members, and all of that ancestor’s descendants.

Exaptation

The evolutionary process by which a trait that originally evolved for one function is subsequently co-opted for a different purpose; exaptations differ from adaptations in that the latter are directly shaped by natural selection for their current role.

Loci

A locus refers to a specific, defined position on a chromosome, typically corresponding to a gene or other functional DNA element.

Phalanges

The bones that constitute the digits of the limbs — specifically, the fingers in the forelimbs (wings) and the toes in the hindlimbs (feet) of vertebrates, including birds.

Polytomy

A condition in a phylogenetic tree in which a single node gives rise to three or more lineages, indicating either simultaneous divergence or unresolved evolutionary relationships.

Protobirds

Also referred to as stem birds, this term denotes transitional forms in the evolutionary continuum from non-avian theropod dinosaurs to crown-group birds; it has been frequently used in palaeontological literature to describe early avialan-grade taxa.

Rhamphotheca

The keratinous sheath covering the bony structure of a bird’s beak.

Syngameon

A group of closely related taxa that frequently engage in natural hybridization and lack complete reproductive isolation; the concept has been applied to various avian groups exhibiting reticulate evolution and gene flow across species boundaries.

Syntenic structure

The conserved order and orientation of genes or genomic segments on chromosomes, either across different species or within duplicated regions of the same genome; syntenic relationships provide insight into chromosomal evolution, genome rearrangements and deep homology.

Target capture

A targeted DNA enrichment technique designed to isolate and sequence specific genomic regions of interest; it enables the retrieval of relatively long DNA fragments — often up to tens of thousands of base pairs — for downstream analyses such as phylogenomics or comparative genomics.

Transposable elements

(TEs). Mobile genetic elements capable of changing their position within the genome.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Xie, Y. & Zhang, G. Phylogenomics and comparative genomic perspective on the avian radiation. Nat. Rev. Biodivers. 1, 439–460 (2025). https://doi.org/10.1038/s44358-025-00062-9

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44358-025-00062-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing