Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Effects of microclimate variation on insect persistence under global change

Abstract

The direct and indirect effects of climate change expose insect populations to environmental conditions that can approach or exceed their physiological limits. The complex life cycles of many insect species, with their elaborate networks of biotic interactions, can add to their vulnerability. In this Perspective, we argue that the negative effects of extreme weather can be offset if insects are able to use favourable microclimates. Microclimatic diversity can be modelled, measured remotely or measured within habitats at scales relevant to insect life cycles. Microclimatic availability within habitats can improve opportunities for adaptive or plastic responses to extremes, potentially moving insect populations towards a more favourable balance between extinction and colonization that can allow species to maintain or shift their geographical ranges over time. Management plans for insects should promote microclimate heterogeneity, as well as the maintenance or creation of microclimates relevant to target species, such as shaded areas and variable topography that reduce temperature and increase moisture availability. Consideration of microclimates is a potentially useful way to advance insect conservation in this period of rapid climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Insects experience climatic variation at broad and local spatial scales.
Fig. 2: Thermal and hydric microclimates can provide refugia and facilitate range-expansion opportunities.
Fig. 3: Favourable microclimates for insects in natural, agricultural and urban areas.

Similar content being viewed by others

References

  1. International Union for Conservation of Nature (IUCN). The IUCN Red List of Threatened Species. IUCN https://www.iucnredlist.org (2025).

  2. Wilson, R. J. & Fox, R. Insect responses to global change offer signposts for biodiversity and conservation. Ecol. Entomol. 46, 699–717 (2021).

    Article  Google Scholar 

  3. Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102 (2022).

    Article  CAS  Google Scholar 

  4. Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).

    Article  CAS  Google Scholar 

  5. Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).

    Article  CAS  Google Scholar 

  6. Stemkovski, M. et al. Disorder or a new order: how climate change affects phenological variability. Ecology 104, e3846 (2023).

    Article  Google Scholar 

  7. Outhwaite, C. L., Cooke, R., Millard, J. & Bladon, A. J. in Routledge Handbook of Insect Conservation (eds Pryke, J. S. et al.) Ch. 8 (Routledge, 2024).

  8. Müller, J. et al. Weather explains the decline and rise of insect biomass over 34 years. Nature 628, 349–354 (2024).

    Article  Google Scholar 

  9. Ghisbain, G. et al. Projected decline in European bumblebee populations in the twenty-first century. Nature 628, 337–341 (2024).

    Article  CAS  Google Scholar 

  10. Kemppinen, J. et al. Microclimate, an important part of ecology and biogeography. Glob. Ecol. Biogeogr. 33, e13834 (2024).

    Article  Google Scholar 

  11. Schultz, N. M., Lawrence, P. J. & Lee, X. Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. J. Geophys. Res. Biogeosci. 122, 903–917 (2017).

    Article  Google Scholar 

  12. De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).

    Article  Google Scholar 

  13. Wright, A. J. & Francia, R. M. Plant traits, microclimate temperature and humidity: a research agenda for advancing nature-based solutions to a warming and drying climate. J. Ecol. 112, 2462–2470 (2024).

    Article  Google Scholar 

  14. Pincebourde, S. & Casas, J. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl Acad. Sci. USA 116, 5588–5596 (2019).

    Article  CAS  Google Scholar 

  15. Pincebourde, S. & Woods, H. A. Climate uncertainty on leaf surfaces: the biophysics of leaf microclimates and their consequences for leaf-dwelling organisms. Funct. Ecol. 26, 844–853 (2012).

    Article  Google Scholar 

  16. Stange, E. E. & Ayres, M. P. in eLS https://doi.org/10.1002/9780470015902.a0022555 (John Wiley & Sons, 2010).

  17. Kingsolver, J. G. et al. Complex life cycles and the responses of insects to climate change. Integr. Comp. Biol. 51, 719–732 (2011).

    Article  Google Scholar 

  18. Shah, A. A., Dillon, M. E., Hotaling, S. & Woods, H. A. High elevation insect communities face shifting ecological and evolutionary landscapes. Curr. Opin. Insect Sci. 41, 1–6 (2020).

    Article  Google Scholar 

  19. Bridle, J. et al. How should we bend the curve of biodiversity loss to build a just and sustainable future? Phil. Trans. R. Soc. B 380, 20230205 (2025).

    Article  Google Scholar 

  20. Benk, G., Thompson, P. J., Hu, X. P. & Appel, A. G. Water loss and desiccation tolerance of the two yearly generations of adult and nymphal kudzu bugs, Megacopta cribraria (Hemiptera: Plataspidae). Environ. Entomol. 49, 651–659 (2020).

    Article  CAS  Google Scholar 

  21. Klinges, D. H. et al. Proximal microclimate: moving beyond spatiotemporal resolution improves ecological predictions. Glob. Ecol. Biogeogr. 33, e13884 (2024).

    Article  Google Scholar 

  22. Bowden, J. J. et al. High-Arctic butterflies become smaller with rising temperatures. Biol. Lett. 11, 20150574 (2015).

    Article  Google Scholar 

  23. Lembrechts, J. J., Nijs, I. & Lenoir, J. Incorporating microclimate into species distribution models. Ecography 42, 1267–1279 (2019).

    Article  Google Scholar 

  24. Greiser, C., von Schmalensee, L., Lindestad, O., Gotthard, K. & Lehmann, P. Microclimatic variation affects developmental phenology, synchrony and voltinism in an insect population. Funct. Ecol. 36, 3036–3048 (2022).

    Article  CAS  Google Scholar 

  25. Budelli, G. et al. Ionotropic receptors specify the morphogenesis of phasic sensors controlling rapid thermal preference in Drosophila. Neuron 101, 738–747 (2019).

    Article  CAS  Google Scholar 

  26. Enjin, A. Humidity sensing in insects — from ecology to neural processing. Curr. Opin. Insect Sci. 24, 1–6 (2017).

    Article  Google Scholar 

  27. González-Tokman, D. et al. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol. Rev. 95, 802–821 (2020).

    Article  Google Scholar 

  28. Kaun, K. R. et al. Natural variation in food acquisition mediated via a Drosophila cGMP-dependent protein kinase. J. Exp. Biol. 210, 3547–3558 (2007).

    Article  CAS  Google Scholar 

  29. Simões, J. M. et al. Robustness and plasticity in Drosophila heat avoidance. Nat. Commun. 12, 2044 (2021).

    Article  Google Scholar 

  30. Parmesan, C. & Singer, M. C. Mosaics of climatic stress across species’ ranges: tradeoffs cause adaptive evolution to limits of climatic tolerance. Phil. Trans. R. Soc. B 377, 20210003 (2022).

    Article  Google Scholar 

  31. Kazenel, M. R., Wright, K. W., Griswold, T., Whitney, K. D. & Rudgers, J. A. Heat and desiccation tolerances predict bee abundance under climate change. Nature 628, 342–348 (2024).

    Article  CAS  Google Scholar 

  32. Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).

    Article  CAS  Google Scholar 

  33. Buckley, L. B., Huey, R. B. & Kingsolver, J. G. Asymmetry of thermal sensitivity and the thermal risk of climate change. Glob. Ecol. Biogeogr. 31, 2231–2244 (2022).

    Article  Google Scholar 

  34. Parks, S. A., Carroll, C., Dobrowski, S. Z. & Allred, B. W. Human land uses reduce climate connectivity across North America. Glob. Change Biol. 26, 2944–2955 (2020).

    Article  Google Scholar 

  35. Benoit, J. B., McCluney, K. E., DeGennaro, M. J. & Dow, J. A. T. Dehydration dynamics in terrestrial arthropods: from water sensing to trophic interactions. Annu. Rev. Entomol. 68, 129–149 (2023).

    Article  CAS  Google Scholar 

  36. Sinclair, B. J., Saruhashi, S. & Terblanche, J. S. Integrating water balance mechanisms into predictions of insect responses to climate change. J. Exp. Biol. 227, jeb247167 (2024).

    Article  Google Scholar 

  37. Sinclair, B. J., Williams, C. M. & Terblanche, J. S. Variation in thermal performance among insect populations. Physiol. Biochem. Zool. 85, 594–606 (2012).

    Article  Google Scholar 

  38. MacLean, H. J. et al. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. Phil. Trans. R. Soc. B 374, 20180548 (2019).

    Article  Google Scholar 

  39. Franken, O., Huizinga, M., Ellers, J. & Berg, M. P. Heated communities: large inter- and intraspecific variation in heat tolerance across trophic levels of a soil arthropod community. Oecologia 186, 311–322 (2018).

    Article  Google Scholar 

  40. Kerr, J. T. Racing against change: understanding dispersal and persistence to improve species’ conservation prospects. Proc. R. Soc. B 287, 20202061 (2020).

    Article  CAS  Google Scholar 

  41. Bretzlaff, T., Kerr, J. T. & Darveau, C.-A. High temperature sensitivity of bumblebee castes and the colony-level costs of thermoregulation in Bombus impatiens. J. Therm. Biol. 117, 103710 (2023).

    Article  Google Scholar 

  42. Watson, M. J. & Kerr, J. T. Climate-driven body size changes in birds and mammals reveal environmental tolerance limits. Glob. Change Biol. 31, e70241 (2025).

    Article  CAS  Google Scholar 

  43. Rezende, E. L., Castañeda, L. E. & Santos, M. Tolerance landscapes in thermal ecology. Funct. Ecol. 28, 799–809 (2014).

    Article  Google Scholar 

  44. Diamond, S. E. et al. A physiological trait-based approach to predicting the responses of species to experimental climate warming. Ecology 93, 2305–2312 (2012).

    Article  Google Scholar 

  45. Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).

    Article  Google Scholar 

  46. Lembrechts, J. J. et al. Comparing temperature data sources for use in species distribution models: from in-situ logging to remote sensing. Glob. Ecol. Biogeogr. 28, 1578–1596 (2019).

    Article  Google Scholar 

  47. Kearney, M. R., Gillingham, P. K., Bramer, I., Duffy, J. P. & Maclean, I. M. D. A method for computing hourly, historical, terrain-corrected microclimate anywhere on earth. Meth. Ecol. Evol. 11, 38–43 (2020).

    Article  Google Scholar 

  48. Kearney, M. R. et al. Microclimate modelling at macro scales: a test of a general microclimate model integrated with gridded continental-scale soil and weather data. Meth. Ecol. Evol. 5, 273–286 (2014).

    Article  Google Scholar 

  49. Maclean, I. M. D., Mosedale, J. R. & Bennie, J. J. Microclima: an R package for modelling meso- and microclimate. Meth. Ecol. Evol. 10, 280–290 (2019).

    Article  Google Scholar 

  50. Kearney, M. R. & Porter, W. P. NicheMapR — an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).

    Article  Google Scholar 

  51. Maclean, I. M. D. & Klinges, D. H. Microclimc: a mechanistic model of above, below and within-canopy microclimate. Ecol. Model. 451, 109567 (2021).

    Article  Google Scholar 

  52. Kearney, M. R., Isaac, A. P. & Porter, W. P. microclim: global estimates of hourly microclimate based on long-term monthly climate averages. Sci. Data 1, 140006 (2014).

    Article  Google Scholar 

  53. Ednie, G. & Kerr, J. T. High resolution thermal remote sensing and the limits of species’ tolerance. PeerJ 10, e13911 (2022).

    Article  Google Scholar 

  54. Bramer, I. et al. in Advances in Ecological Research (eds Bohan, D. A. et al.) Ch. 3 (Academic Press, 2018).

  55. De Frenne, P. et al. Ten practical guidelines for microclimate research in terrestrial ecosystems. Meth. Ecol. Evol. 16, 269–294 (2025).

    Article  Google Scholar 

  56. Lembrechts, J. J. et al. SoilTemp: a global database of near-surface temperature. Glob. Change Biol. 26, 6616–6629 (2020).

    Article  Google Scholar 

  57. Jayaramu, Y. et al. Sensing the dependable surficial signatures of temporal groundwater variations in arid coastal regions through geospatial techniques with respect to microclimate changes. Environ. Res. 250, 118483 (2024).

    Article  CAS  Google Scholar 

  58. Faye, E., Rebaudo, F., Yánez-Cajo, D., Cauvy-Fraunié, S. & Dangles, O. A toolbox for studying thermal heterogeneity across spatial scales: from unmanned aerial vehicle imagery to landscape metrics. Meth. Ecol. Evol. 7, 437–446 (2016).

    Article  Google Scholar 

  59. Li, Z.-L. et al. Soil moisture retrieval from remote sensing measurements: current knowledge and directions for the future. Earth Sci. Rev. 218, 103673 (2021).

    Article  Google Scholar 

  60. Rhodes, M. W., Bennie, J. J., Spalding, A., ffrench-Constant, R. H. & Maclean, I. M. D. Recent advances in the remote sensing of insects. Biol. Rev. 97, 343–360 (2022).

    Article  Google Scholar 

  61. Kulu, E. Satellite constellations — 2024 survey, trends and economic sustainability. In 79th International Astronautical Congress, IAC-24.E6.1.13 (International Astronautical Federation, 2024).

  62. Suggitt, A. J. et al. Conducting robust ecological analyses with climate data. Oikos 126, 1533–1541 (2017).

    Article  Google Scholar 

  63. Duffy, J. P., Anderson, K., Fawcett, D., Curtis, R. J. & Maclean, I. M. D. Drones provide spatial and volumetric data to deliver new insights into microclimate modelling. Landsc. Ecol. 36, 685–702 (2021).

    Article  Google Scholar 

  64. Zellweger, F., Frenne, P. D., Lenoir, J., Rocchini, D. & Coomes, D. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34, 327–341 (2019).

    Article  Google Scholar 

  65. Bonafoni, S., Anniballe, R., Gioli, B. & Toscano, P. Downscaling landsat land surface temperature over the urban area of Florence. Eur. J. Remote Sens. 49, 553–569 (2016).

    Article  Google Scholar 

  66. Pu, R. Assessing scaling effect in downscaling land surface temperature in a heterogenous urban environment. Int. J. Appl. Earth Obs. Geoinf. 96, 102256 (2021).

    Google Scholar 

  67. Zawadzka, J., Corstanje, R., Harris, J. & Truckell, I. Downscaling Landsat-8 land surface temperature maps in diverse urban landscapes using multivariate adaptive regression splines and very high resolution auxiliary data. Int. J. Digital Earth 13, 899–914 (2020).

    Article  Google Scholar 

  68. Zellweger, F. et al. Microclimate mapping using novel radiative transfer modelling. Biogeosciences 21, 605–623 (2024).

    Article  Google Scholar 

  69. McLaughlin, B. C. et al. Hydrologic refugia, plants, and climate change. Glob. Change Biol. 23, 2941–2961 (2017).

    Article  Google Scholar 

  70. Lembrechts, J. J. et al. Global maps of soil temperature. Glob. Change Biol. 28, 3110–3144 (2022).

    Article  CAS  Google Scholar 

  71. Thorat, L. & Nath, B. B. Insects with survival kits for desiccation tolerance under extreme water deficits. Front. Physiol. 9, 1843 (2018).

    Article  Google Scholar 

  72. Karger, D. N., Wilson, A. M., Mahony, C., Zimmermann, N. E. & Jetz, W. Global daily 1 km land surface precipitation based on cloud cover-informed downscaling. Sci. Data 8, 307 (2021).

    Article  Google Scholar 

  73. Karthikeyan, L. & Mishra, A. K. Multi-layer high-resolution soil moisture estimation using machine learning over the United States. Remote Sens. Environ. 266, 112706 (2021).

    Article  Google Scholar 

  74. Diamond, S. E. & Yilmaz, A. R. The role of tolerance variation in vulnerability forecasting of insects. Curr. Opin. Insect Sci. 29, 85–92 (2018).

    Article  Google Scholar 

  75. Riddell, E. A., Mutanen, M. & Ghalambor, C. K. Hydric effects on thermal tolerances influence climate vulnerability in a high-latitude beetle. Glob. Change Biol. 29, 5184–5198 (2023).

    Article  CAS  Google Scholar 

  76. Vives-Ingla, M. et al. Interspecific differences in microhabitat use expose insects to contrasting thermal mortality. Ecol. Monogr. 93, e1561 (2023).

    Article  Google Scholar 

  77. Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).

    Article  Google Scholar 

  78. Storlie, C. et al. Stepping inside the niche: microclimate data are critical for accurate assessment of species’ vulnerability to climate change. Biol. Lett. 10, 20140576 (2014).

    Article  Google Scholar 

  79. Mosedale, J. R. et al. Mechanistic microclimate models and plant pest risk modelling. J. Pest. Sci. 97, 1749–1766 (2024).

    Article  Google Scholar 

  80. Ma, G. & Ma, C.-S. Potential distribution of invasive crop pests under climate change: incorporating mitigation responses of insects into prediction models. Curr. Opin. Insect Sci. 49, 15–21 (2022).

    Article  Google Scholar 

  81. Ma, C.-S., Ma, G. & Pincebourde, S. Survive a warming climate: insect responses to extreme high temperatures. Annu. Rev. Entomol. 66, 163–184 (2021).

    Article  CAS  Google Scholar 

  82. Harvey, J. A. et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 93, e1553 (2023).

    Article  Google Scholar 

  83. Sgrò, C. M., Terblanche, J. S. & Hoffmann, A. A. What can plasticity contribute to insect responses to climate change? Annu. Rev. Entomol. 61, 433–451 (2016).

    Article  Google Scholar 

  84. Stewart, J. E. et al. Phenological variation in biotic interactions shapes population dynamics and distribution in a range-shifting insect herbivore. Proc. R. Soc. B 291, 20240529 (2024).

    Article  Google Scholar 

  85. Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLOS Biol. 8, e1000357 (2010).

    Article  Google Scholar 

  86. Leung, C., Grulois, D., Quadrana, L. & Chevin, L.-M. Phenotypic plasticity evolves at multiple biological levels in response to environmental predictability in a long-term experiment with a halotolerant microalga. PLOS Biol. 21, e3001895 (2023).

    Article  CAS  Google Scholar 

  87. West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford Univ. Press, 2003).

  88. Kleynhans, E., Mitchell, K. A., Conlong, D. E. & Terblanche, J. S. Evolved variation in cold tolerance among populations of Eldana saccharina (Lepidoptera: Pyralidae) in South Africa. J. Evol. Biol. 27, 1149–1159 (2014).

    Article  CAS  Google Scholar 

  89. Weldon, C. W., Nyamukondiwa, C., Karsten, M., Chown, S. L. & Terblanche, J. S. Geographic variation and plasticity in climate stress resistance among southern African populations of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Sci. Rep. 8, 9849 (2018).

    Article  Google Scholar 

  90. Birrell, J. H., Frakes, J. I., Shah, A. A. & Woods, H. A. Mechanisms underlying thermal breadth differ by species in insects from adjacent but thermally distinct streams — a test of the climate variability hypothesis. J. Therm. Biol. 112, 103435 (2023).

    Article  Google Scholar 

  91. Dongmo, M. A. K. et al. Local adaptation in thermal tolerance for a tropical butterfly across ecotone and rainforest habitats. Biol. Open. 10, bio058619 (2021).

    Article  Google Scholar 

  92. Terblanche, J. S., Klok, C. J., Krafsur, E. S. & Chown, S. L. Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse Glossina pallidipes (Diptera: Glossinidae): implications for distribution modelling. Am. J. Trop. Med. Hyg. 74, 786–794 (2006).

    Article  Google Scholar 

  93. Bennett, J. M. et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 (2018).

    Article  Google Scholar 

  94. Chown, S. L., Addo-Bediako, A. & Gaston, K. J. Physiological variation in insects: large-scale patterns and their implications. Comp. Biochem. Physiol. B 131, 587–602 (2002).

    Article  CAS  Google Scholar 

  95. García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl Acad. Sci. USA 113, 680–685 (2016).

    Article  Google Scholar 

  96. Weaving, H., Terblanche, J. S., Pottier, P. & English, S. Meta-analysis reveals weak but pervasive plasticity in insect thermal limits. Nat. Commun. 13, 5292 (2022).

    Article  CAS  Google Scholar 

  97. van, Heerwaarden, B., Sgrò, C. & Kellermann, V. M. Threshold shifts and developmental temperature impact trade-offs between tolerance and plasticity. Proc. R. Soc. B 291, 20232700 (2024).

    Article  Google Scholar 

  98. Gilchrist, G. W. Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am. Nat. 146, 252–270 (1995).

    Article  Google Scholar 

  99. Rohr, J. R. et al. The complex drivers of thermal acclimation and breadth in ectotherms. Ecol. Lett. 21, 1425–1439 (2018).

    Article  Google Scholar 

  100. Forister, M. L. et al. Fewer butterflies seen by community scientists across the warming and drying landscapes of the American West. Science 371, 1042–1045 (2021).

    Article  CAS  Google Scholar 

  101. Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).

    Article  CAS  Google Scholar 

  102. Marta, S., Brunetti, M., Manenti, R., Provenzale, A. & Ficetola, G. F. Climate and land-use changes drive biodiversity turnover in arthropod assemblages over 150 years. Nat. Ecol. Evol. 5, 1291–1300 (2021).

    Article  Google Scholar 

  103. Lawson, C. R., Bennie, J. J., Thomas, C. D., Hodgson, J. A. & Wilson, R. J. Local and landscape management of an expanding range margin under climate change. J. Appl. Ecol. 49, 552–561 (2012).

    Article  Google Scholar 

  104. Bennie, J. et al. Range expansion through fragmented landscapes under a variable climate. Ecol. Lett. 16, 921–929 (2013).

    Article  Google Scholar 

  105. DiLeo, M. F., Nonaka, E., Husby, A. & Saastamoinen, M. Effects of environment and genotype on dispersal differ across departure, transfer and settlement in a butterfly metapopulation. Proc. R. Soc. B 289, 20220322 (2022).

    Article  Google Scholar 

  106. Legrand, D. et al. Ranking the ecological causes of dispersal in a butterfly. Ecography 38, 822–831 (2015).

    Article  Google Scholar 

  107. Terlau, J. F. et al. Microhabitat conditions remedy heat stress effects on insect activity. Glob. Change Biol. 29, 3747–3758 (2023).

    Article  CAS  Google Scholar 

  108. Eilers, S., Pettersson, L. B. & Öckinger, E. Micro-climate determines oviposition site selection and abundance in the butterfly Pyrgus armoricanus at its northern range margin. Ecol. Entomol. 38, 183–192 (2013).

    Article  Google Scholar 

  109. Alston, J. M., Joyce, M. J., Merkle, J. A. & Moen, R. A. Temperature shapes movement and habitat selection by a heat-sensitive ungulate. Landsc. Ecol. 35, 1961–1973 (2020).

    Article  Google Scholar 

  110. Knight, S. M., Pitman, G. M., Flockhart, D. T. T. & Norris, D. R. Radio-tracking reveals how wind and temperature influence the pace of daytime insect migration. Biol. Lett. 15, 20190327 (2019).

    Article  Google Scholar 

  111. Kissling, D. W., Pattemore, D. E. & Hagen, M. Challenges and prospects in the telemetry of insects. Biol. Rev. 89, 511–530 (2014).

    Article  Google Scholar 

  112. Bell, F., Botham, M., Brereton, T. M., Fenton, A. & Hodgson, J. Grizzled skippers stuck in the south: population-level responses of an early-successional specialist butterfly to climate across its UK range over 40 years. Divers. Distrib. 27, 962–972 (2021).

    Article  Google Scholar 

  113. Tampucci, D. et al. Debris-covered glaciers as habitat for plant and arthropod species: environmental framework and colonization patterns. Ecol. Complex. 32, 42–52 (2017).

    Article  Google Scholar 

  114. Jackson, H. M. et al. Climate change winners and losers among North American bumblebees. Biol. Lett. 18, 20210551 (2022).

    Article  Google Scholar 

  115. Lenoir, J. & Comte, L. Rapid range shifters show unexpected population dynamics. Nat. Ecol. Evol. 8, 850–851 (2024).

    Article  Google Scholar 

  116. Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467 (2005).

    Article  Google Scholar 

  117. Lawlor, J. A. et al. Mechanisms, detection and impacts of species redistributions under climate change. Nat. Rev. Earth Environ. 5, 351–368 (2024).

    Article  Google Scholar 

  118. Brodie, J. F., Freeman, B. G., Mannion, P. D. & Hargreaves, A. L. Shifting, expanding, or contracting? Range movement consequences for biodiversity. Trends Ecol. Evol. 40, 439–448 (2025).

    Article  Google Scholar 

  119. Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    Article  CAS  Google Scholar 

  120. Maclean, I. M. D. & Wilson, R. J. Recent ecological responses to climate change support predictions of high extinction risk. Proc. Natl Acad. Sci. USA 108, 12337–12342 (2011).

    Article  CAS  Google Scholar 

  121. Stickley, S. F. & Fraterrigo, J. M. Microclimate species distribution models estimate lower levels of climate-related habitat loss for salamanders. J. Nat. Conserv. 72, 126333 (2023).

    Article  Google Scholar 

  122. Maclean, I. M. D. & Early, R. Macroclimate data overestimate range shifts of plants in response to climate change. Nat. Clim. Change 13, 484–490 (2023).

    Article  Google Scholar 

  123. Foden, W. B. et al. Climate change vulnerability assessment of species. WIREs Clim. Change 10, e551 (2019).

    Article  Google Scholar 

  124. Watts, M. E. et al. Marxan with zones: software for optimal conservation based land- and sea-use zoning. Environ. Model. Softw. 24, 1513–1521 (2009).

    Article  Google Scholar 

  125. de Alves, W. F. et al. Connectivity and climate influence diversity–stability relationships across spatial scales in European butterfly metacommunities. Glob. Ecol. Biogeogr. 33, e13896 (2024).

    Article  Google Scholar 

  126. Thomas, J. Why did the large blue become extinct in Britain? Oryx 15, 243–247 (1980).

    Article  Google Scholar 

  127. Munguira, M. L. & Martín, J. Action Plan for Maculinea Butterflies in Europe (Council of Europe, 1999).

  128. Ausden, M. Climate change adaptation: putting principles into practice. Environ. Manag. 54, 685–698 (2014).

    Article  Google Scholar 

  129. Słowińska, S., Słowiński, M., Marcisz, K. & Lamentowicz, M. Long-term microclimate study of a peatland in central Europe to understand microrefugia. Int. J. Biometeorol. 66, 817–832 (2022).

    Article  Google Scholar 

  130. Prober, S. M., Doerr, V. A. J., Broadhurst, L. M., Williams, K. J. & Dickson, F. Shifting the conservation paradigm: a synthesis of options for renovating nature under climate change. Ecol. Monogr. 89, e01333 (2019).

    Article  Google Scholar 

  131. Ebersole, J. L., Liss, W. J. & Frissell, C. A. Cold water patches in warm streams: physicochemical characteristics and the influence of shading. JAWRA J. Am. Water Resour. Assoc. 39, 355–368 (2003).

    Article  Google Scholar 

  132. Mejia, F. H. et al. Closing the gap between science and management of cold-water refuges in rivers and streams. Glob. Change Biol. 29, 5482–5508 (2023).

    Article  CAS  Google Scholar 

  133. Edwards, C. B. et al. Rapid butterfly declines across the United States during the 21st century. Science 387, 1090–1094 (2025).

    Article  CAS  Google Scholar 

  134. McCain, C. M. & Garfinkel, C. F. Climate change and elevational range shifts in insects. Curr. Opin. Insect Sci. 47, 111–118 (2021).

    Article  Google Scholar 

  135. Garcia-Rosello, E., Gonzalez-Dacosta, J., Guisande, C. & Lobo, J. M. GBIF falls short of providing a representative picture of the global distribution of insects. Syst. Entomol. 48, 489–497 (2023).

    Article  Google Scholar 

  136. Urban, M. C. Climate change extinctions. Science 386, 1123–1128 (2024).

    Article  CAS  Google Scholar 

  137. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  138. The Global Biodiversity Information Facility (GBIF). GBIF occurrence download. GBIF https://doi.org/10.15468/dl.hjmu6m (2025).

  139. Pateman, R. M., Thomas, C. D., Hayward, S. A. L. & Hill, J. K. Macro- and microclimatic interactions can drive variation in species’ habitat associations. Glob. Change Biol. 22, 556–566 (2016).

    Article  Google Scholar 

  140. Turlure, C., Choutt, J., Baguette, M. & Van Dyck, H. Microclimatic buffering and resource-based habitat in a glacial relict butterfly: significance for conservation under climate change. Glob. Change Biol. 16, 1883–1893 (2010).

    Article  Google Scholar 

  141. Carlson, C. J., Bannon, E., Mendenhall, E., Newfield, T. & Bansal, S. Rapid range shifts in African Anopheles mosquitoes over the last century. Biol. Lett. 19, 20220365 (2023).

    Article  Google Scholar 

  142. Patterson, T. A., Grundel, R., Dzurisin, J. D. K., Knutson, R. L. & Hellmann, J. J. Evidence of an extreme weather-induced phenological mismatch and a local extirpation of the endangered Karner blue butterfly. Conserv. Sci. Pract. 2, e147 (2020).

    Article  Google Scholar 

  143. Packer, L. in Karner Blue Butterfly: a Symbol of Vanishing Landscape (eds. Andow, D. A. et al.) 143–151 (Univ. Minnesota, 1994).

  144. Velu, R. M. et al. Ecological niche modeling of aedes and culex mosquitoes: a risk map for chikungunya and West Nile viruses in Zambia. Viruses 15, 1900 (2023).

    Article  Google Scholar 

  145. Christidis, N., Jones, G. S. & Stott, P. A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Change 5, 46–50 (2015).

    Article  Google Scholar 

  146. Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).

    Article  Google Scholar 

  147. Chan, S.-F., Shih, W.-K., Chang, A.-Y., Shen, S.-F. & Chen, I.-C. Contrasting forms of competition set elevational range limits of species. Ecol. Lett. 22, 1668–1679 (2019).

    Article  Google Scholar 

  148. Chan, S.-F. et al. Higher temperature variability in deforested mountain regions impacts the competitive advantage of nocturnal species. Proc. R. Soc. B 290, 20230529 (2023).

    Article  Google Scholar 

  149. Tsai, H.-Y. et al. Antagonistic effects of intraspecific cooperation and interspecific competition on thermal performance. eLife 9, e57022 (2020).

    Article  CAS  Google Scholar 

  150. Sun, S.-J. et al. Climate-mediated cooperation promotes niche expansion in burying beetles. eLife 3, e02440 (2014).

    Article  Google Scholar 

  151. Chan, S.-F. et al. Land-use changes influence climate resilience through altered population demography in a social insect. Ecol. Monogr. 95, e1638 (2025).

    Article  Google Scholar 

  152. Colwell, R. K. & Rangel, T. F. Hutchinson’s duality: the once and future niche. Proc. Natl Acad. Sci. USA 106, 19651–19658 (2009).

    Article  CAS  Google Scholar 

  153. Angilletta, M. J., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27, 249–268 (2002).

    Article  Google Scholar 

  154. Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol. Lett. 19, 1372–1385 (2016).

    Article  Google Scholar 

  155. Chen, I.-C., Shen, S.-F. & Chan, S.-F. Niche theory and species range limits along elevational gradients: perspectives and future directions. Annu. Rev. Ecol. Evol. Syst. 55, 449–469 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

J.T.K. is grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) for Discovery Grant and Discovery Accelerator Supplement support and to University of Ottawa for support through the University Research Chair in Macroecology and Conservation.

Author information

Authors and Affiliations

Authors

Contributions

J.T.K. and S.C.C.G. planned and led the collaborative effort on this article. All authors wrote, reviewed and edited the article.

Corresponding author

Correspondence to Jeremy T. Kerr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks Nicole Miller-Struttmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerr, J.T., Gordon, S.C.C., Chen, IC. et al. Effects of microclimate variation on insect persistence under global change. Nat. Rev. Biodivers. 1, 532–542 (2025). https://doi.org/10.1038/s44358-025-00067-4

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44358-025-00067-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing