Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alien plants and novel ecosystems in the Greater Tropics

Abstract

The tropics and subtropics, collectively the Greater Tropics, are home to most of Earth’s biodiversity and humanity, and are undergoing unprecedented transformations driven by global change. In this Review, we assess how alien plants, an underappreciated component of these transformations, interact with other global changes, including land-use shifts, climate change and biotic attrition, to reshape socioecological systems in the Greater Tropics. Whereas many alien plants initially act as passengers of global change, others can become powerful drivers, reconfiguring ecological communities and catalysing novel ecosystem dynamics. Arising changes risk creating homogenized plant communities further disrupted by intense human pressure and social vulnerability. Drawing on insights from community ecology, biogeography and evolutionary theory, we examine the implications of these transformations and the potential for alien plants to both exacerbate and buffer the impact of global change. Given the rapid ecological shifts underway, we highlight the critical need for forwards-looking management that integrates ecological complexity with social realities. We advocate for adaptive, evidence-based frameworks — including nature-based solutions and the resist–accept–direct typology — that support both biodiversity and human well-being. A proactive, inclusive approach to managing alien plants is essential to safeguard socioecological resilience in the Greater Tropics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Greater Tropics and presence of alien plants.
Fig. 2: Trends in alien plants presence.
Fig. 3: Ecosystem change across the Greater Tropics.
Fig. 4: Linkage in between invasion processes, management regimes and the RAD typology.

Similar content being viewed by others

References

  1. Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

    Article  CAS  Google Scholar 

  2. Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are there? J. Mammal. 99, 1–14 (2018).

    Article  Google Scholar 

  3. Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).

    Article  Google Scholar 

  4. Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).

    Article  CAS  Google Scholar 

  5. Collard, I. F. & Foley, R. A. Latitudinal patterns and environmental determinants of recent human cultural diversity: do humans follow biogeographical rules? Evol. Ecol. Res. 4, 371–383 (2002).

    Google Scholar 

  6. Chong, K. Y. et al. Are terrestrial biological invasions different in the tropics? Annu. Rev. Ecol. Evol., Syst. 52, 291–314 (2021).

    Article  Google Scholar 

  7. Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).

    Article  CAS  Google Scholar 

  8. Pagad, S., Genovesi, P., Carnevali, L., Schigel, D. & McGeoch, M. A. Introducing the global register of introduced and invasive species. Sci. Data 5, 170202 (2018).

    Article  Google Scholar 

  9. Lomolino, M., Riddle, B. & Whittaker, R. Biogeography (Oxford Univ. Press, 2017).

  10. Bond, W. J. Large parts of the world are brown or black: a different view on the ‘Green World’ hypothesis. J. Veg. Sci. 16, 261–266 (2005).

    Google Scholar 

  11. Pausas, J. G. & Bond, W. J. On the three major recycling pathways in terrestrial ecosystems. Trends Ecol. Evol. 35, 767–775 (2020).

    Article  Google Scholar 

  12. Peterson, A. T., Soberón, J. & Sánchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).

    Article  CAS  Google Scholar 

  13. Donoghue, M. J. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl Acad. Sci. USA 105, 11549–11555 (2008).

    Article  CAS  Google Scholar 

  14. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article  CAS  Google Scholar 

  15. Roy, H. E., Pauchard, A., Stoett, P. & Truong, T. R. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Invasive Alien Species Assessment: Full Report (IPBES, 2023).

  16. Lenzner, B. et al. Naturalized alien floras still carry the legacy of European colonialism. Nat. Ecol. Evol. 6, 1723–1732 (2022).

    Article  Google Scholar 

  17. Nackley, L. L., West, A. G., Skowno, A. L. & Bond, W. J. The nebulous ecology of native invasions. Trends Ecol. Evol. 32, 814–824 (2017).

    Article  Google Scholar 

  18. Silvério, D. V. et al. Testing the Amazon savannization hypothesis: fire effects on invasion of a Neotropical forest by native Cerrado and exotic pasture grasses. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120427 (2013).

    Article  Google Scholar 

  19. Hulme, P. E. et al. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Invasive Alien Species Assessment. Chapter 3: Drivers Affecting Biological Invasions (IPBES, 2024).

  20. Mora, C. et al. Global risk of deadly heat. Nat. Clim. Change 7, 501–506 (2017).

    Article  Google Scholar 

  21. Lenton, T. M. et al. Quantifying the human cost of global warming. Nat. Sustain. 6, 1237–1247 (2023).

    Article  Google Scholar 

  22. Williams, J. W., Ordonez, A. & Svenning, J.-C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).

    Article  Google Scholar 

  23. Levine, J. M., Adler, P. B. & Yelenik, S. G. A meta-analysis of biotic resistance to exotic plant invasions. Ecol. Lett. 7, 975–989 (2004).

    Article  Google Scholar 

  24. Lyon, C. et al. Climate change research and action must look beyond 2100. Glob. Change Biol. 28, 349–361 (2022).

    Article  CAS  Google Scholar 

  25. Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. Natl Acad. Sci. USA 117, 11350–11355 (2020).

    Article  CAS  Google Scholar 

  26. Simberloff, D. & Von Holle, B. Positive interactions of nonindigenous species: invasional meltdown? Biol. Invasions 1, 21–32 (1999).

    Article  Google Scholar 

  27. Seebens, H. et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Change Biol. 21, 4128–4140 (2015).

    Article  Google Scholar 

  28. Wilkinson, D. M. The parable of green mountain: ascension island, ecosystem construction and ecological fitting. J. Biogeogr. 31, 1–4 (2004).

    Article  Google Scholar 

  29. Hobbs, R. J., Higgs, E. S. & Hall, C. Novel Ecosystems: Intervening in the New Ecological World Order (Wiley 2013).

  30. Kerr, M. R., Ordonez, A., Riede, F. & Svenning, J.-C. A biogeographic–macroecological perspective on the rising novelty of the biosphere in the Anthropocene. J. Biogeogr. 51, 575–587 (2024).

    Article  Google Scholar 

  31. Seebens, H. et al. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Invasive Alien Species Assessment. Chapter 2: Trends and Status of Alien and Invasive Alien Species (IPBES, 2024).

  32. Hunt, C. O., Gilbertson, D. D. & Rushworth, G. A 50,000-year record of Late Pleistocene tropical vegetation and human impact in lowland Borneo. Quat. Sci. Rev. 37, 61–80 (2012).

    Article  Google Scholar 

  33. Erickson, D. L., Smith, B. D., Clarke, A. C., Sandweiss, D. H. & Tuross, N. An Asian origin for a 10,000-year-old domesticated plant in the Americas. Proc. Natl Acad. Sci. USA 102, 18315–18320 (2005).

    Article  CAS  Google Scholar 

  34. Lev-Yadun, S., Gopher, A. & Abbo, S. The cradle of agriculture. Science 288, 1602–1603 (2000).

    Article  CAS  Google Scholar 

  35. van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).

    Article  Google Scholar 

  36. Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118, e2023483118 (2021).

    Article  CAS  Google Scholar 

  37. Richardson, D. M. Forestry trees as invasive aliens. Conserv. Biol. 12, 18–26 (1998).

    Article  Google Scholar 

  38. Essl, F. et al. A conceptual framework for range-expanding species that track human-induced environmental change. BioScience 69, 908–919 (2019).

    Article  Google Scholar 

  39. Svenning, J.-C., Kerr, M. R., Mungi, N. A., Ordonez, A. & Riede, F. Defining the Anthropocene as a geological epoch captures human impacts’ triphasic nature to empower science and action. One Earth 7, 1678–1681 (2024).

    Article  Google Scholar 

  40. Davis, M. A. Biotic globalization: does competition from introduced species threaten biodiversity? BioScience 53, 481–489 (2003).

    Article  Google Scholar 

  41. Roy, H. E. et al. Curbing the major and growing threats from invasive alien species is urgent and achievable. Nat. Ecol. Evol. 8, 1216–1223 (2024).

    Article  Google Scholar 

  42. Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7, 12485 (2016).

    Article  CAS  Google Scholar 

  43. Pfadenhauer, W. G. & Bradley, B. A. Quantifying vulnerability to plant invasion across global ecosystems. Ecol. Appl. 34, e3031 (2024).

    Article  Google Scholar 

  44. Elton, C. S. The Ecology of Invasions by Animals and Plants (Univ. Chicago Press, 1958).

  45. Mungi, N. A., Qureshi, Q. & Jhala, Y. V. Role of species richness and human impacts in resisting invasive species in tropical forests. J. Ecol. 109, 3308–3321 (2021).

    Article  Google Scholar 

  46. Delavaux, C. S. et al. Native diversity buffers against severity of non-native tree invasions. Nature 621, 773–781 (2023).

    Article  CAS  Google Scholar 

  47. Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).

    Article  Google Scholar 

  48. Nunez-Mir, G. C. et al. Biotic resistance to exotic invasions: its role in forest ecosystems, confounding artifacts, and future directions. Biol. Invasions 19, 3287–3299 (2017).

    Article  Google Scholar 

  49. Han, X. et al. Effects of logging on the ecological strategy spectrum of a tropical montane rain forest. Ecol. Indic. 128, 107812 (2021).

    Article  Google Scholar 

  50. Flores, B. M. et al. Critical transitions in the Amazon forest system. Nature 626, 555–564 (2024).

    Article  CAS  Google Scholar 

  51. He, T., Lamont, B. B. & Pausas, J. G. Fire as a key driver of Earth’s biodiversity. Biol. Rev. 94, 1983–2010 (2019).

    Article  Google Scholar 

  52. Hempson, G. P., Archibald, S. & Bond, W. J. The consequences of replacing wildlife with livestock in Africa. Sci. Rep. 7, 17196 (2017).

    Article  Google Scholar 

  53. Ratnam, J., Tomlinson, K. W., Rasquinha, D. N. & Sankaran, M. Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150305 (2016).

    Article  Google Scholar 

  54. Sriramamurthy, R. T., Bhalla, R. S., & Sankaran, M. Fire differentially affects mortality and seedling regeneration of three woody invaders in forest–grassland mosaics of the southern Western Ghats, India. Biol. Invasions 22, 1623–1634 (2020).

    Article  Google Scholar 

  55. Alba, C., Skálová, H., McGregor, K. F., D’Antonio, C. & Pyšek, P. Native and exotic plant species respond differently to wildfire and prescribed fire as revealed by meta-analysis. J. Veg. Sci. 26, 102–113 (2015).

    Article  Google Scholar 

  56. Richardson, D. M. et al. Human-mediated introductions of Australian acacias — a global experiment in biogeography. Divers. Distrib. 17, 771–787 (2011).

    Article  Google Scholar 

  57. Schwab, S. T., Jenerette, G. D. & Larios, L. Prescribed burning may produce refugia for invasive forb, Oncosiphon pilulifer. Restor. Ecol. 31, e13922 (2023).

    Article  Google Scholar 

  58. Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    Article  CAS  Google Scholar 

  59. Svenning, J.-C. et al. The late-Quaternary megafauna extinctions: patterns, causes, ecological consequences and implications for ecosystem management in the Anthropocene. Camb. Prism. Extinct. 2, e5 (2024).

    Article  Google Scholar 

  60. Galetti, M. & Dirzo, R. Ecological and evolutionary consequences of living in a defaunated world. Biol. Conserv. 163, 1–6 (2013).

    Article  Google Scholar 

  61. Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J.-C. The effects of defaunation on plants’ capacity to track climate change. Science 375, 210–214 (2022).

    Article  CAS  Google Scholar 

  62. Bradley, B. A. et al. Observed and potential range shifts of native and nonnative species with climate change. Annu. Rev. Ecol. Evol., Syst. 55, 23–40 (2024).

    Article  Google Scholar 

  63. Trepel, J. et al. Meta-analysis shows that wild large herbivores shape ecosystem properties and promote spatial heterogeneity. Nat. Ecol. Evol. 8, 705–716 (2024).

    Article  Google Scholar 

  64. Mungi, N. A., Jhala, Y. V., Qureshi, Q., le Roux, E. & Svenning, J.-C. Megaherbivores provide biotic resistance against alien plant dominance. Nat. Ecol. Evol. 7, 1645–1653 (2023).

    Article  Google Scholar 

  65. Pires, M. M. & Galetti, M. Beyond the “empty forest”: the defaunation syndromes of Neotropical forests in the Anthropocene. Glob. Ecol. Conserv. 41, e02362 (2023).

    Google Scholar 

  66. Bogoni, J. A., Peres, C. A., Navarro, A. B., Carvalho-Rocha, V. & Galetti, M. Using historical habitat loss to predict contemporary mammal extirpations in Neotropical forests. Conserv. Biol. 38, e14245 (2024).

    Article  Google Scholar 

  67. Abernethy, K. A., Coad, L., Taylor, G., Lee, M. E. & Maisels, F. Extent and ecological consequences of hunting in Central African rainforests in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120303 (2013).

    Article  CAS  Google Scholar 

  68. Parker, J. D., Burkepile, D. E. & Hay, M. E. Opposing effects of native and exotic herbivores on plant invasions. Science 311, 1459–1461 (2006).

    Article  CAS  Google Scholar 

  69. Fedele, G., Donatti, C. I., Bornacelly, I. & Hole, D. G. Nature-dependent people: mapping human direct use of nature for basic needs across the tropics. Glob. Environ. Change 71, 102368 (2021).

    Article  Google Scholar 

  70. Gaveau, D. L. A. et al. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 6, 32017 (2016).

    Article  CAS  Google Scholar 

  71. Waddell, E. H. et al. Land-use change and propagule pressure promote plant invasions in tropical rainforest remnants. Landsc. Ecol. 35, 1891–1906 (2020).

    Article  Google Scholar 

  72. Kohli, R. K., Batish, D. R., Singh, J. S., Singh, H. P. & Bhatt, J. R. in Invasive Alien Plants: An Ecological Appraisal for the Indian Subcontinent (eds. Kohli, R. K. et al.) 1–9 (CABI, 2011).

  73. Rodrigues, A. A. et al. Cerrado deforestation threatens regional climate and water availability for agriculture and ecosystems. Glob. Change Biol. 28, 6807–6822 (2022).

    Article  CAS  Google Scholar 

  74. Mazzochini, G. G. et al. Effects of grass functional diversity on invasion success by exotic grasses in Cerrado grasslands. J. Appl. Ecol. 61, 271–280 (2024).

    Article  Google Scholar 

  75. Silva, R. G., Zenni, R. D., Rosse, V. P., Bastos, L. S. & van den Berg, E. Landscape-level determinants of the spread and impact of invasive grasses in protected areas. Biol. Invasions 22, 3083–3099 (2020).

    Article  Google Scholar 

  76. Brondizio, E. et al. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Global Assessment Report on Biodiversity and Ecosystem Services. Chapter 1: Assessing a Planet in Transformation: Rationale and Approach of the IPBES Global Assessment on Biodiversity and Ecosystem Services (IPBES, 2019).

  77. Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).

    Article  Google Scholar 

  78. Engert, J. E. et al. Ghost roads and the destruction of Asia–Pacific tropical forests. Nature 629, 370–375 (2024).

    Article  CAS  Google Scholar 

  79. Siqueira-Gay, J. & Sánchez, L. E. The outbreak of illegal gold mining in the Brazilian Amazon boosts deforestation. Reg. Environ. Change 21, 28 (2021).

    Article  Google Scholar 

  80. Devine, J. A. et al. Narco-degradation: cocaine trafficking’s environmental impacts in Central America’s protected areas. World Dev. 144, 105474 (2021).

    Article  Google Scholar 

  81. Butsic, V., Baumann, M., Shortland, A., Walker, S. & Kuemmerle, T. Conservation and conflict in the Democratic Republic of Congo: the impacts of warfare, mining, and protected areas on deforestation. Biol. Conserv. 191, 266–273 (2015).

    Article  Google Scholar 

  82. Daskin, J. H. & Pringle, R. M. Warfare and wildlife declines in Africa’s protected areas. Nature 553, 328–332 (2018).

    Article  CAS  Google Scholar 

  83. IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) https://doi.org/10.1017/9781009157896.001 (Cambridge Univ. Press, 2021).

  84. Walther, G.-R. et al. Alien species in a warmer world: risks and opportunities. Trends Ecol. Evol. 24, 686–693 (2009).

    Article  Google Scholar 

  85. Turton, S. M. Expansion of the tropics: revisiting frontiers of geographical knowledge. Geogr. Res. 55, 3–12 (2017).

    Article  Google Scholar 

  86. Bellard, C. et al. Will climate change promote future invasions? Glob. Change Biol. 19, 3740–3748 (2013).

    Article  Google Scholar 

  87. de Lima, R. A. F. et al. The erosion of biodiversity and biomass in the Atlantic Forest biodiversity hotspot. Nat. Commun. 11, 6347 (2020).

    Article  Google Scholar 

  88. Zwiener, V. P., Lira-Noriega, A., Grady, C. J., Padial, A. A. & Vitule, J. R. S. Climate change as a driver of biotic homogenization of woody plants in the Atlantic Forest. Glob. Ecol. Biogeogr. 27, 298–309 (2018).

    Article  Google Scholar 

  89. Haider, S. et al. Think globally, measure locally: the MIREN standardized protocol for monitoring species distributions along elevation gradients. Ecol. Evol. 12, e8590 (2022).

    Article  Google Scholar 

  90. Mungi, N. A., Coops, N. C., Ramesh, K. & Rawat, G. S. How global climate change and regional disturbance can expand the invasion risk? Case study of Lantana camara invasion in the Himalaya. Biol. Invasions 20, 1849–1863 (2018).

    Article  Google Scholar 

  91. Smith, S. D. et al. Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408, 79–82 (2000).

    Article  CAS  Google Scholar 

  92. Bond, W. J. & Midgley, G. F. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob. Change Biol. 6, 865–869 (2000).

    Article  Google Scholar 

  93. Camarero, P. Exotic vine invasions following cyclone disturbance in Australian wet tropics rainforests: a review. Austral. Ecol. 44, 1359–1372 (2019).

    Article  Google Scholar 

  94. Jiménez, M. A. et al. Extreme climatic events change the dynamics and invasibility of semi-arid annual plant communities. Ecol. Lett. 14, 1227–1235 (2011).

    Article  Google Scholar 

  95. Tovar, C., Infantas, E. S. & Roth, V. T. Plant community dynamics of lomas fog oasis of Central Peru after the extreme precipitation caused by the 1997–98 El Niño event. PLoS ONE 13, e0190572 (2018).

    Article  Google Scholar 

  96. Wijesundara, S. in Invasive Alien Species in Sri LankaStrengthening Capacity to Control Their Introduction and Spread (eds Marambe, B., Silva, P., Wijesundara, S. & Atapattu, N.) 27–38 (Biodiversity Secretariat of the Ministry of Environment, 2010).

  97. Bonnamour, A., Gippet, J. M. W. & Bertelsmeier, C. Insect and plant invasions follow two waves of globalisation. Ecol. Lett. 24, 2418–2426 (2021).

    Article  Google Scholar 

  98. Pyšek, P. et al. Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89, 203–274 (2017).

    Article  Google Scholar 

  99. Spear, M. J., Walsh, J. R., Ricciardi, A. & Zanden, M. J. V. The invasion ecology of sleeper populations: prevalence, persistence, and abrupt shifts. BioScience 71, 357–369 (2021).

    Article  Google Scholar 

  100. Seebens, H. et al. Projecting the continental accumulation of alien species through to 2050. Glob. Change Biol. 27, 970–982 (2021).

    Article  CAS  Google Scholar 

  101. Essl, F. et al. Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB Plants 11, plz051 (2019).

    Article  Google Scholar 

  102. Cox, G. W. Alien Species in North America and Hawaii (Island Press, 1999).

    Google Scholar 

  103. Zenni, R. D. et al. in Global Plant Invasions (eds Clements, D. R., Upadhyaya, M. K., Joshi, S. & Shrestha, A.) 187–208 (Springer, 2022).

  104. Mungi, N. A., Qureshi, Q. & Jhala, Y. V. Distribution, drivers and restoration priorities of plant invasions in India. J. Appl. Ecol. 60, 2400–2412 (2023).

    Article  Google Scholar 

  105. Pagad, S. et al. Country compendium of the global register of introduced and invasive species. Sci. Data 9, 391 (2022).

    Article  Google Scholar 

  106. Cadotte, M. W., Yasui, S. L. E., Livingstone, S. & MacIvor, J. S. Are urban systems beneficial, detrimental, or indifferent for biological invasion? Biol. Invasions 19, 3489–3503 (2017).

    Article  Google Scholar 

  107. Williams, D. G. & Baruch, Z. African grass invasion in the Americas: ecosystem consequences and the role of ecophysiology. Biol. Invasions 2, 123–140 (2000).

    Article  Google Scholar 

  108. Foxcroft, L. C., Richardson, D. M., Rejmánek, M. & Pyšek, P. Alien plant invasions in tropical and sub-tropical savannas: patterns, processes and prospects. Biol. Invasions 12, 3913–3933 (2010).

    Article  Google Scholar 

  109. MacDougall, A. S. & Turkington, R. Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86, 42–55 (2005).

    Article  Google Scholar 

  110. Wan, J.-Z., Wang, C.-J. & Yu, F.-H. Risk hotspots for terrestrial plant invaders under climate change at the global scale. Environ. Earth Sci. 75, 1012 (2016).

    Article  Google Scholar 

  111. Mungi, N. A., Qureshi, Q. & Jhala, Y. V. Expanding niche and degrading forests: key to the successful global invasion of Lantana camara (sensu lato). Glob. Ecol. Conserv. 23, e01080 (2020).

    Google Scholar 

  112. Mungi, N. A., Rastogi, R., Qureshi, Q. & Jhala, Y. V. Plant Invasions and Restoration Priorities in India. Status of Tigers, Co-predators and Prey in India, 2022 (National Tiger Conservation Authority, 2023).

  113. Summerhayes, C. P. et al. The future extent of the Anthropocene epoch: a synthesis. Glob. Planet. Change 242, 104568 (2024).

    Article  Google Scholar 

  114. Doughty, C. E. et al. Tropical forests are approaching critical temperature thresholds. Nature 621, 105–111 (2023).

    Article  CAS  Google Scholar 

  115. Bauman, D. et al. Tropical tree mortality has increased with rising atmospheric water stress. Nature 608, 528–533 (2022).

    Article  CAS  Google Scholar 

  116. Trew, B. T., Lees, A. C., Edwards, D. P., Early, R. & Maclean, I. M. D. Identifying climate-smart tropical key biodiversity areas for protection in response to widespread temperature novelty. Conserv. Lett. 6, e13050 (2024).

    Article  Google Scholar 

  117. Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

    Article  CAS  Google Scholar 

  118. D’Antonio, C. M. & Vitousek, P. M. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu. Rev. Ecol. Syst. 23, 63–87 (1992).

    Article  Google Scholar 

  119. Balch, J. K. et al. The susceptibility of Southeastern Amazon forests to fire: insights from a large-scale burn experiment. BioScience 65, 893–905 (2015).

    Article  Google Scholar 

  120. Salazar, L. F., Nobre, C. A. & Oyama, M. D. Climate change consequences on the biome distribution in tropical South America. Geophys. Res. Lett. 34, L09708 (2007).

    Article  Google Scholar 

  121. Marimon, B. S. et al. Disequilibrium and hyperdynamic tree turnover at the forest–Cerrado transition zone in southern Amazonia. Plant. Ecol. Divers. 7, 281–292 (2014).

    Article  Google Scholar 

  122. Sales, L. P., Galetti, M. & Pires, M. M. Climate and land-use change will lead to a faunal “savannization” on tropical rainforests. Glob. Change Biol. 26, 7036–7044 (2020).

    Article  Google Scholar 

  123. Bottino, M. J. et al. Amazon savannization and climate change are projected to increase dry season length and temperature extremes over Brazil. Sci. Rep. 14, 5131 (2024).

    Article  CAS  Google Scholar 

  124. Butt, E. W. et al. Amazon deforestation causes strong regional warming. Proc. Natl Acad. Sci. USA 120, e2309123120 (2023).

    Article  CAS  Google Scholar 

  125. Saye, L. et al. Planetary Solvency — Finding our Balance with Nature. Global Risk Management for Human Prosperity (Univ. Exeter, 2025).

  126. Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    Article  CAS  Google Scholar 

  127. Stevens, N., Lehmann, C. E. R., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Change Biol. 23, 235–244 (2017).

    Article  Google Scholar 

  128. Scholes, R. J. & Archer, S. R. Tree–grass interactions in savannas. Annu. Rev. Ecol., Evol., Syst. 28, 517–544 (1997).

    Article  Google Scholar 

  129. Bond, W. J. & Midgley, G. F. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philos. Trans. R. Soc. B Biol. Sci. 367, 601–612 (2012).

    Article  CAS  Google Scholar 

  130. Brundu, G. et al. Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts. NeoBiota 61, 65–116 (2020).

    Article  Google Scholar 

  131. Charbonneau, B. R., Wootton, L. S., Wnek, J. P., Langley, J. A. & Posner, M. A. A species effect on storm erosion: invasive sedge stabilized dunes more than native grass during Hurricane Sandy. J. Appl. Ecol. 54, 1385–1394 (2017).

    Article  Google Scholar 

  132. Zatout, M. M. M. The Roles of Exotic and Native Tree Species in Preventing Desertification and Enhancing Degraded Land Restoration in the North East of Libya. Reciprocal Effects of Environmental Factors and Plantation Forestry on Each Other, Assessed by Observations on Growth and Reproductive Success of Relevant Tree Species, and Environmental Factors Analysed Using Multivariate Statistics. PhD thesis (Univ. Bradford, 2013).

  133. Shackleton, R. T., Le Maitre, D. C., Pasiecznik, N. M. & Richardson, D. M. Prosopis: a global assessment of the biogeography, benefits, impacts and management of one of the world’s worst woody invasive plant taxa. AoB Plants 6, plu027 (2014).

    Article  Google Scholar 

  134. Steffen, W. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

    Article  CAS  Google Scholar 

  135. Vergara-Tabares, D. L., Blendinger, P. G., Tello, A., Peluc, S. I. & Tecco, P. A. Fleshy-fruited invasive shrubs indirectly increase native tree seed dispersal. Oikos 2022, (2022).

  136. Jhala, Y. V. Seasonal effects on the nutritional ecology of blackbuck Antelope cervicapra. J. Appl. Ecol. 34, 1348–1358 (1997).

    Article  Google Scholar 

  137. Lemoine, R. T. & Svenning, J.-C. Nativeness is not binary — a graduated terminology for native and non-native species in the Anthropocene. Restor. Ecol. 8, e13636 (2022).

    Article  Google Scholar 

  138. Bacher, S. et al. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Invasive Alien Species Assessment. Chapter 4: Impacts of Invasive Alien Species on Nature, Nature’s Contributions to People, and Good Quality of Life (IPBES, 2024).

  139. McCary, M. A., Mores, R., Farfan, M. A. & Wise, D. H. Invasive plants have different effects on trophic structure of green and brown food webs in terrestrial ecosystems: a meta-analysis. Ecol. Lett. 19, 328–335 (2016).

    Article  Google Scholar 

  140. Fletcher, R. A. et al. Invasive plants negatively impact native, but not exotic, animals. Glob. Change Biol. 25, 3694–3705 (2019).

    Article  Google Scholar 

  141. Castro-Díez, P. et al. Global effects of non-native tree species on multiple ecosystem services. Biol. Rev. 94, 1477–1501 (2019).

    Article  Google Scholar 

  142. Vimercati, G., Kumschick, S., Probert, A. F., Volery, L. & Bacher, S. The importance of assessing positive and beneficial impacts of alien species. NeoBiota 62, 525–545 (2020).

    Article  Google Scholar 

  143. Blackburn, T. M. et al. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biol. 12, e1001850 (2014).

    Article  Google Scholar 

  144. Vimercati, G. et al. The EICAT+ framework enables classification of positive impacts of alien taxa on native biodiversity. PLoS Biol. 20, e3001729 (2022).

    Article  CAS  Google Scholar 

  145. Rosenzweig, M. L. The four questions: what does the introduction of exotic species do to diversity? Evol. Ecol. Res. 3, 361–367 (2001).

    Google Scholar 

  146. Fricke, E. C. & Svenning, J.-C. Accelerating homogenization of the global plant–frugivore meta-network. Nature 585, 74–78 (2020).

    Article  CAS  Google Scholar 

  147. Rosenzweig, M. L. Loss of speciation rate will impoverish future diversity. Proc. Natl Acad. Sci. USA 98, 5404–5410 (2001).

    Article  CAS  Google Scholar 

  148. Xu, W.-B. et al. Regional occupancy increases for widespread species but decreases for narrowly distributed species in metacommunity time series. Nat. Commun. 14, 1463 (2023).

    Article  CAS  Google Scholar 

  149. Blowes, S. A. et al. Synthesis reveals approximately balanced biotic differentiation and homogenization. Sci. Adv. 10, eadj9395 (2024).

    Article  Google Scholar 

  150. Fridley, J. D. et al. The invasion paradox: reconciling pattern and process in species invasions. Ecology 88, 3–17 (2007).

    Article  CAS  Google Scholar 

  151. Rastogi, R., Qureshi, Q., Shrivastava, A. & Jhala, Y. V. Multiple invasions exert combined magnified effects on native plants, soil nutrients and alters the plant–herbivore interaction in dry tropical forest. For. Ecol. Manag. 531, 120781 (2023).

    Article  Google Scholar 

  152. Cornell, H. V. & Lawton, J. H. Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. J. Anim. Ecol. 61, 1–12 (1992).

    Article  Google Scholar 

  153. Cooper, D. L. M. et al. Consistent patterns of common species across tropical tree communities. Nature 625, 728–734 (2024).

    Article  CAS  Google Scholar 

  154. Terborgh, J. At 50, Janzen–Connell has come of age. BioScience 70, 1082–1092 (2020).

    Article  Google Scholar 

  155. ter Steege, H. et al. Hyperdominance in the Amazonian tree flora. Science 342, 1243092 (2013).

    Article  Google Scholar 

  156. Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography 41, 153–163 (2018).

    Article  Google Scholar 

  157. Rojas-Sandoval, J., Ackerman, J. D., Marcano-Vega, H. & Willig, M. R. Alien species affect the abundance and richness of native species in tropical forests: the role of adaptive strategies. Ecosphere 13, e4291 (2022).

    Article  Google Scholar 

  158. Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).

    Article  CAS  Google Scholar 

  159. Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Botany 100, 1266–1286 (2013).

    Article  Google Scholar 

  160. Finderup Nielsen, T., Sand‐Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).

    Article  Google Scholar 

  161. Santos, P. M. Biotic homogenization in tree communities of tropical forests: a systematic review. Rev. Científica Multidisciplinar Núcleo Conhecimento 04, 50–77 (2023).

    Google Scholar 

  162. Pinho, B. X. et al. Winner–loser plant trait replacements in human-modified tropical forests. Nat. Ecol. Evol. 9, 282–295 (2024).

    Article  Google Scholar 

  163. Joshi, A. A., Ratnam, J. & Sankaran, M. Frost maintains forests and grasslands as alternate states in a montane tropical forest–grassland mosaic; but alien tree invasion and warming can disrupt this balance. J. Ecol. 108, 122–132 (2020).

    Article  Google Scholar 

  164. Hopple, A. M. et al. Massive peatland carbon banks vulnerable to rising temperatures. Nat. Commun. 11, 2373 (2020).

    Article  CAS  Google Scholar 

  165. Cummings, J. A., Parker, I. M. & Gilbert, G. S. Allelopathy: a tool for weed management in forest restoration. Plant. Ecol. 213, 1975–1989 (2012).

    Article  Google Scholar 

  166. Funk, J. L. & McDaniel, S. Altering light availability to restore invaded forest: the predictive role of plant traits. Restor. Ecol. 18, 865–872 (2010).

    Article  Google Scholar 

  167. Guyton, J. A. et al. Trophic rewilding revives biotic resistance to shrub invasion. Nat. Ecol. Evol. 4, 712–724 (2020).

    Article  Google Scholar 

  168. Lundgren, E. J. et al. Functional traits — not nativeness — shape the effects of large mammalian herbivores on plant communities. Science 383, 531–537 (2024).

    Article  CAS  Google Scholar 

  169. Morris, T. L., Barger, N. N. & Cramer, M. D. Generalist Indigenous herbivores resist alien tree invasion: Rhabdomys pumilio limits establishment of Acacia cyclops. Biol. Invasions 24, 1427–1437 (2022).

    Article  Google Scholar 

  170. Sankaran, K. et al. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Invasive Alien Species Assessment. Chapter 5: Management; Challenges, Opportunities and Lessons Learned (IPBES, 2024).

  171. Manning, A. D., Gordon, I. J., Massei, G. & Wimpenny, C. Rewilding herbivores: too much or little of a good thing? Trends Ecol. Evol. 39, 787–789 (2024).

    Article  Google Scholar 

  172. Griffiths, C. J. et al. The use of extant non-indigenous tortoises as a restoration tool to replace extinct ecosystem engineers. Restor. Ecol. 18, 1–7 (2010).

    Article  Google Scholar 

  173. Lundgren, E. J. et al. Introduced herbivores restore Late Pleistocene ecological functions. Proc. Natl Acad. Sci. USA 117, 7871–7878 (2020).

    Article  CAS  Google Scholar 

  174. Svenning, J.-C., Buitenwerf, R. & Le Roux, E. Trophic rewilding as a restoration approach under emerging novel biosphere conditions. Curr. Biol. 34, R435–R451 (2024).

    Article  CAS  Google Scholar 

  175. Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).

    Article  CAS  Google Scholar 

  176. Vellend, M. et al. Plant biodiversity change across scales during the Anthropocene. Annu. Rev. Plant. Biol. 68, 563–586 (2017).

    Article  CAS  Google Scholar 

  177. Liu, Y. et al. Do invasive alien plants benefit more from global environmental change than native plants? Glob. Change Biol. 23, 3363–3370 (2017).

    Article  Google Scholar 

  178. Le Roux, J. J. The Evolutionary Ecology of Invasive Species (Academic Press, 2021).

  179. Dlugosch, K. M. & Parker, I. M. Invading populations of an ornamental shrub show rapid life history evolution despite genetic bottlenecks. Ecol. Lett. 11, 701–709 (2008).

    Article  Google Scholar 

  180. Mackin, C. R., Peña, J. F., Blanco, M. A., Balfour, N. J. & Castellanos, M. C. Rapid evolution of a floral trait following acquisition of novel pollinators. J. Ecol. 109, 2234–2246 (2021).

    Article  Google Scholar 

  181. Richards, C. L., Bossdorf, O., Muth, N. Z., Gurevitch, J. & Pigliucci, M. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol. Lett. 9, 981–993 (2006).

    Article  Google Scholar 

  182. Davidson, A. M., Jennions, M. & Nicotra, A. B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis: invasive species have higher phenotypic plasticity. Ecol. Lett. 14, 419–431 (2011).

    Article  Google Scholar 

  183. Smith, A. L. et al. Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proc. Natl Acad. Sci. USA 117, 4218–4227 (2020).

    Article  CAS  Google Scholar 

  184. Montúfar, R., Louise, C. & Tranbarger, T. Elaeis oleifera (Kunth) Cortés: a neglected palm from the Ecuadorian Amazon. Ecuadorian J. Med. Biol. Sci. 39, 584 (2018).

    Google Scholar 

  185. Fehr, V., Buitenwerf, R. & Svenning, J.-C. Non-native palms (Arecaceae) as generators of novel ecosystems: a global assessment. Divers. Distrib. 26, 1523–1538 (2020).

    Article  Google Scholar 

  186. Hormaza, P., Fuquen, E. M. & Romero, H. M. Phenology of the oil palm interspecific hybrid Elaeis oleifera × Elaeis guineensis. Sci. Agric. 69, 275–280 (2012).

    Article  Google Scholar 

  187. Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawaiʻi. Science 364, 78–82 (2019).

    Article  CAS  Google Scholar 

  188. Vitousek, P. M. & Walker, L. R. Biological invasion by Myrica faya in Hawai’i: plant demography, nitrogen fixation, ecosystem effects. Ecol. Monogr. 59, 247–265 (1989).

    Article  Google Scholar 

  189. Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).

    Article  CAS  Google Scholar 

  190. Zhou, Y. et al. Soil carbon in tropical savannas mostly derived from grasses. Nat. Geosci. 16, 710–716 (2023).

    Article  Google Scholar 

  191. Coetsee, C., Bond, W. J. & February, E. C. Frequent fire affects soil nitrogen and carbon in an African savanna by changing woody cover. Oecologia 162, 1027–1034 (2010).

    Article  Google Scholar 

  192. Rossiter, N. A., Setterfield, S. A., Douglas, M. M. & Hutley, L. B. Testing the grass–fire cycle: alien grass invasion in the tropical savannas of northern Australia. Divers. Distrib. 9, 169–176 (2003).

    Article  Google Scholar 

  193. Beringer, J. et al. Fire in Australian savannas: from leaf to landscape. Glob. Change Biol. 21, 62–81 (2015).

    Article  Google Scholar 

  194. Mendonça Filho, S. F., Queiroz de Brito, G., Rodrigues de Melo Murta, J. & Salemi, L. F. Invasion in the riparian zone: what is the effect of Pteridium arachnoideum on topsoil permeability? Acta Oecol. 117, 103867 (2022).

    Article  Google Scholar 

  195. Fusco, E. J. et al. The emerging invasive species and climate-change lexicon. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2024.08.005 (2024).

  196. Sax, D. F., Schlaepfer, M. A. & Olden, J. D. Valuing the contributions of non-native species to people and nature. Trends Ecol. Evol. 37, 1058–1066 (2022).

    Article  Google Scholar 

  197. Ordonez, A., Riede, F., Normand, S. & Svenning, J.-C. Towards a novel biosphere in 2300: rapid and extensive global and biome-wide climatic novelty in the Anthropocene. Philos. Trans. R. Soc. B Biol. Sci. 379, 20230022 (2024).

    Article  Google Scholar 

  198. Lynch, A. J. et al. Managing for RADical ecosystem change: applying the resist-accept-direct (RAD) framework. Front. Ecol. Environ. 19, 461–469 (2021).

    Article  Google Scholar 

  199. Ricciardi, A. et al. Four priority areas to advance invasion science in the face of rapid environmental change. Environ. Rev. 29, 119–141 (2021).

    Article  Google Scholar 

  200. Kopf, R. K. et al. Confronting the risks of large-scale invasive species control. Nat. Ecol. Evol. 1, 0172 (2017).

    Article  Google Scholar 

  201. Rettberg, S. & Müller-Mahn, D. in Changing DesertsIntegrating People and their Environments (eds Mol, L. & Sternberg, T.) 297–316 (Whitehorse Press, 2012).

  202. Mungi, N. A., Gloria, A. O., Rastogi, R. & Svenning, J.-C. Expanding the resist–accept–direct framework for developing nature-based solutions and societal adaptations to biological invasions. People Nat. 7, 1505–1520 (2025).

    Article  Google Scholar 

  203. Schuurman, G. W. et al. Navigating ecological transformation: resist–accept–direct as a path to a new resource management paradigm. BioScience 72, 16–29 (2022).

    Article  Google Scholar 

  204. McGeoch, M. A., Clarke, D. A., Mungi, N. A. & Ordonez, A. A nature-positive future with biological invasions: theory, decision support and research needs. Philos. Trans. R. Soc. B Biol. Sci. 379, 20230014 (2024).

    Article  Google Scholar 

  205. GBIF occurrence download. GBIF.org https://doi.org/10.15468/dl.fm2tnm (2025).

  206. McGeoch, M. A. et al. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Invasive Alien Species Assessment. Chapter 6: Governance and Policy Options for the Management of Biological Invasions (IPBES, 2024).

  207. United Nations Environment Programme & Food and Agriculture Organization of the United Nations. The UN Decade on Ecosystem Restoration (2021–2030): Flagship Initiatives (UNEP & FAO, 2022).

  208. Andrijevic, M., Crespo Cuaresma, J., Muttarak, R. & Schleussner, C.-F. Governance in socioeconomic pathways and its role for future adaptive capacity. Nat. Sustain. 3, 35–41 (2020).

    Article  Google Scholar 

  209. Bucchorn, M. et al. Copernicus global land service: land cover 100 m: collection 3: epoch 2018: globe (V3.0.1). Zenodo https://doi.org/10.5281/zenodo.3518038 (2020).

  210. Federico, G. & Tena-Junguito, A. A tale of two globalizations: gains from trade and openness 1800–2010. Rev. World Econ. 153, 601–626 (2017).

    Article  Google Scholar 

  211. GBIF occurrence download. GBIF.org https://doi.org/10.15468/dl.57kf2n (2025).

  212. McGeoch, M. A. et al. Global indicators of biological invasion: species numbers, biodiversity impact and policy responses: invasive alien species indicator: 2010 biodiversity target. Diver. Distrib. 16, 95–108 (2010).

    Article  Google Scholar 

  213. Pauchard, A., Aguayo, M., Peña, E. & Urrutia, R. Multiple effects of urbanization on the biodiversity of developing countries: the case of a fast-growing metropolitan area (Concepción, Chile). Biol. Conserv. 127, 272–281 (2006).

    Article  Google Scholar 

  214. Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).

    Article  Google Scholar 

  215. Seebens, H. et al. Biological invasions on Indigenous peoples’ lands. Nat. Sustain. 7, 737–746 (2024).

    Article  Google Scholar 

  216. Pfeiffer, J. M. & Voeks, R. A. Biological invasions and biocultural diversity: linking ecological and cultural systems. Environ. Conserv. 35, 281–293 (2008).

    Article  Google Scholar 

  217. Ticktin, T., Whitehead, A. N. & Fraiola, H. Traditional gathering of native hula plants in alien-invaded Hawaiian forests: adaptive practices, impacts on alien invasive species and conservation implications. Environ. Conserv. 33, 185–194 (2006).

    Article  Google Scholar 

  218. Kannan, R., Shackleton, C. M. & Shaanker, R. U. Invasive alien species as drivers in socio-ecological systems: local adaptations towards use of Lantana in Southern India. Environ. Dev. Sustain. 16, 649–669 (2014).

    Article  Google Scholar 

  219. Miththapala, S. International Union for Conservation of Nature. A Strategy for Addressing Issues of Aquatic Invasive Alien Species in the Lower Mekong Basin (IUCN, 2007).

  220. Barber, D. & Glass, P. in Indigenous People and Invasive Species: Perceptions, Management, Challenges and Uses (eds Ens, E. J., Fisher, J. & Costello, O.) (IUCN, 2015).

Download references

Acknowledgements

The authors are grateful for economic support from the Danish National Research Foundation via the Center for Ecological Dynamics in a Novel Biosphere (ECONOVO; grant no. DNRF173 to J.-C.S.). We thank Earthkeeper for economic support via the Global South Biodiversity Leadership Project (GLOBALI).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization and discussion of the content. N.A.M. and J.-C.S. led the writing, and all authors contributed substantially to the drafts of the manuscript. All authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Ninad Avinash Mungi or Jens-Christian Svenning.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Alien species

Species that are introduced to a new locality by human agency and have established self-sustaining populations there. Introduced species with negative impacts are termed invasive alien species.

Biological invasions

The process involving the intentional or unintentional transport or movement of a species outside its natural range by human activities and its introduction to new regions, where it might become established and spread.

Cerrado

A biodiverse and tropical savanna biome in central Brazil with grassy dominance, shaped by climatic seasonality, fire regimes and low-fertility soils.

Ecosystem restoration

The process of assisting the recovery of ecosystems that have been degraded or destroyed, as well as conserving the ecosystems that are still intact.

Invasive alien species

A subset of introduced species that have negative impacts.

Mixed-species communities

A community of species consisting of a mix of populations of both native and introduced species, and where the number of introduced species present can range from one to several.

Native invaders

Species that have spread within their historical range, attaining extreme abundances and exerting severe per capita effects as a result of direct or indirect human agency.

Native species

A species within its natural range, including shifting its range, without human involvement.

Nature-dependent people

People who directly depend on locally available natural resources for at least three of the four basic needs: housing materials, water, fuel for cooking and occupation.

Neonatives

Taxa that have expanded and established populations beyond their known native range owing to human-induced environmental changes, but without direct movement by human agency.

Novel ecosystems

Self-reinforcing systems that have biotic or abiotic structures different from historical baselines, resulting from direct or indirect human agency.

Ruderal

A plant strategy category characterized by rapid growth, early reproduction and high seed output, enabling them to thrive in highly disturbed environments with low competition and high nutrient availability.

Trophic rewilding

An ecological restoration strategy that uses species introductions to restore top-down trophic interactions and associated trophic cascades to promote self-regulating biodiverse ecosystems.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mungi, N.A., Galetti, M., Ratnam, J. et al. Alien plants and novel ecosystems in the Greater Tropics. Nat. Rev. Biodivers. 1, 515–531 (2025). https://doi.org/10.1038/s44358-025-00068-3

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44358-025-00068-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing