Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Impacts of onshore wind energy production on biodiversity

Abstract

Wind is increasingly used as a renewable source of energy worldwide. However, harvesting wind energy can have negative consequences for biodiversity. In this Review, we summarize the growth of onshore wind power, its impacts on species and ecosystems, and how those impacts are assessed and mitigated. Across the construction, operation and decommissioning stages, wind facilities are associated with wildlife fatality and behavioural change as well as alteration, loss and fragmentation of terrestrial and aerial habitat. These negative consequences can be mitigated by avoiding construction of wind turbines at sensitive sites, detecting and deterring wildlife, curtailing turbines to reduce fatalities, and replacing lost habitats. Uncertainty about wildlife populations and their demographic parameters, the rate and extent of build-out of onshore wind energy, and best practices for mitigation, as well as variability in regulatory requirements by country or region, all contribute to the difficulty of predicting the consequences of this technology for biodiversity. Scenario-based modelling that incorporates population- and community-level consequences to biodiversity from varying degrees of wind energy development — including the cumulative effects of multiple facilities — is key to addressing this uncertainty.

Key points

  • Wind energy is a growing source of electrical power, but it can have negative effects on biodiversity.

  • Asia has the most wind energy, followed by Europe and then the USA; the rest of the world supports <10% of installed capacity of wind energy.

  • Biodiversity impacts from wind energy can occur at all stages of a wind facility’s life cycle — including planning, construction, operation and decommissioning.

  • Although fatalities are perhaps the best-known impact from wind turbines, turbines can also alter the behaviour of wildlife and cause loss, alteration and fragmentation of habitat.

  • Mitigation of these impacts can include strategically placing turbines to avoid negative interactions (avoidance), encouraging wildlife to steer clear of turbines (deterrence) and replacing animals or habitats lost to turbines (compensation).

  • Despite many uncertainties regarding wind energy’s impacts, the available evidence can inform scenario-based modelling to assess both the consequences of this energy source for biodiversity and how its implementation compares to potential impacts from climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Onshore wind energy globally.
Fig. 2: Wind energy impacts on biodiversity.
Fig. 3: The mitigation hierarchy as implemented to address impacts of wind energy on biodiversity.

Similar content being viewed by others

References

  1. IRENA. Renewable Capacity Statistics 2023 (International Renewable Energy Agency, 2023).

  2. Ashraf, U., Morelli, T. L., Smith, A. B. & Hernandez, R. R. Climate-smart siting for renewable energy expansion. iScience 27, 110666 (2024).

    Article  Google Scholar 

  3. Katzner, T. E. et al. Wind energy: an ecological challenge. Science 366, 1206–1207 (2019).

    Article  Google Scholar 

  4. UNEP. CMS COP14 Decisions Number ETF7/Inf.2 (Convention on the Conservation of Migratory Species of Wild Animals, 2024).

  5. Whitby, M. D., O’Mara, M. T., Hein, C. D., Huso, M. & Frick, W. F. A decade of curtailment studies demonstrates a consistent and effective strategy to reduce bat fatalities at wind turbines in North America. Ecol. Solut. Evid. 5, e12371 (2024).

    Article  Google Scholar 

  6. Allison, T. D., Cochrane, J. F., Lonsdorf, E. & Sanders-Reed, C. A review of options for mitigating take of golden eagles at wind energy facilities. J. Raptor Res. 51, 319–333 (2017).

    Article  Google Scholar 

  7. Barré, K. et al. Over a decade of failure to implement UNEP/EUROBATS guidelines in wind energy planning: a call for action. Conserv. Sci. Pract. 4, e12805 (2022).

    Article  Google Scholar 

  8. Arnett, E. B. & May, R. F. Mitigating wind energy impacts on wildlife: approaches for multiple taxa. Hum. Wildl. Interact. 10, 28–41 (2016).

    Google Scholar 

  9. Voigt, C. C. et al. Toward solving the global green-green dilemma between wind energy production and bat conservation. Bioscience 74, 240–252 (2024).

    Article  Google Scholar 

  10. Voigt, C. C., Kaiser, K., Look, S., Scharnweber, K. & Scholz, C. Wind turbines without curtailment produce large numbers of bat fatalities throughout their lifetime: a call against ignorance and neglect. Glob. Ecol. Conserv. 37, e02149 (2022).

    Google Scholar 

  11. Voigt, C. C., Popa-Lisseanu, A. G., Niermann, I. & Kramer-Schadt, S. The catchment area of wind farms for European bats: a plea for international regulations. Biol. Conserv. 153, 80–86 (2012).

    Article  Google Scholar 

  12. Conkling, T. J. et al. Vulnerability of avian populations to renewable energy production. R. Soc. Open. Sci. 9, 211558 (2022).

    Article  Google Scholar 

  13. Diffendorfer, J. E., Vanderhoof, M. K. & Ancona, Z. H. Wind turbine wakes can impact down-wind vegetation greenness. Environ. Res. Lett. 17, 104025 (2022).

    Article  Google Scholar 

  14. Larson, E. et al. Net-Zero America: Potential Pathways, Infrastructure, and Impacts (Princeton Univ., 2021).

  15. Rehbein, J. A. et al. Renewable energy development threatens many globally important biodiversity areas. Glob. Change Biol. 26, 3040–3051 (2020).

    Article  Google Scholar 

  16. Finn, C., Grattarola, F. & Pincheira-Donoso, D. More losers than winners: investigating anthropocene defaunation through the diversity of population trends. Biol. Rev. 98, 1732–1748 (2023).

    Article  Google Scholar 

  17. Scholz, C. & Voigt, C. C. Diet analysis of bats killed at wind turbines suggests large-scale losses of trophic interactions. Conserv. Sci. Pract. 4, e12744 (2022).

    Article  Google Scholar 

  18. Kunz, T. H., de Torrez, E. B., Bauer, D., Lobova, T. & Fleming, T. H. Ecosystem services provided by bats. Ann. NY Acad. Sci. 1223, 1–38 (2011).

    Article  Google Scholar 

  19. Maslo, B. et al. Bats provide a critical ecosystem service by consuming a large diversity of agricultural pest insects. Agr. Ecosyst. Environ. 324, 107722 (2022).

    Article  Google Scholar 

  20. Frank, E. G. The economic impacts of ecosystem disruptions: costs from substituting biological pest control. Science 385, eadg0344 (2024).

    Article  CAS  Google Scholar 

  21. Katzner, T. E. et al. Counterfactuals to assess effects to species and systems from renewable energy development. Front. Conserv. Sci. 3, 844286 (2022).

    Article  Google Scholar 

  22. Manfredo, M. J., Teel, T. L. & Dietsch, A. M. Implications of human value shift and persistence for biodiversity conservation. Conserv. Biol. 30, 287–296 (2016).

    Article  Google Scholar 

  23. Kim, J. E. Regulation trumps economics? Examining renewable energy policy, diffusion and investment in 80 developing countries. Energy Res. Soc. Sci. 70, 101613 (2020).

    Article  Google Scholar 

  24. Liu, Y. & Feng, C. Promoting renewable energy through national energy legislation. Energ. Econ. 118, 106504 (2023).

    Article  Google Scholar 

  25. Sahin, A. D. Progress and recent trends in wind energy. Prog. Energ. Combust. 30, 501–543 (2004).

    Article  Google Scholar 

  26. Kaldellis, J. K. & Zafirakis, D. The wind energy (r)evolution: a short review of a long history. Renew. Energ. 36, 1887–1901 (2011).

    Article  Google Scholar 

  27. Ackermann, T. & Söder, L. An overview of wind energy-status 2002. Renew. Sust. Energ. Rev. 6, 67–128 (2002).

    Article  Google Scholar 

  28. IEA. World Energy Outlook (International Energy Agency, 2023).

  29. Global Energy Monitor. Global Wind Power Tracker. globalenergymonitor.org https://globalenergymonitor.org/projects/global-wind-power-tracker/tracker-map/ (2024).

  30. IRENA. Renewable Energy Statistics 2025 (International Renewable Energy Agency, 2025).

  31. Global Wind Report (Global Wind Energy Council, 2024).

  32. IEA. Renewables 2023: Analysis and Forecasts to 2028 (International Energy Agency, 2024).

  33. UNFCCC. Paris Agreement No. 16-1104 (United Nations Framework Convention on Climate Change, 2015).

  34. Directorate-General for Communication (European Commission). The European Climate Law (Publications Office, 2020).

  35. Zwarteveen, J. W., Figueira, C., Zawwar, I. & Angus, A. Barriers and drivers of the global imbalance of wind energy diffusion: a meta-analysis from a wind power original equipment manufacturer perspective. J. Clean. Prod. 290, 125636 (2021).

    Article  Google Scholar 

  36. Dai, K. S., Bergot, A., Liang, C., Xiang, W. N. & Huang, Z. H. Environmental issues associated with wind energy - a review. Renew. Energ. 75, 911–921 (2015).

    Article  Google Scholar 

  37. Nagle, A. J., Delaney, E. L., Bank, L. C. & Leahy, P. G. A comparative life cycle assessment between landfilling and co-processing of waste from decommissioned Irish wind turbine blades. J. Clean. Prod. 277, 123321 (2020).

    Article  Google Scholar 

  38. Sacchi, R. et al. Prospective environmental impact assement (permise): a streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models. Renew. Sust. Energ. Rev. 160, 112311 (2022).

    Article  Google Scholar 

  39. Bhandari, R., Kumar, B. & Mayer, F. Life cycle greenhouse gas emission from wind farms in reference to turbine sizes and capacity factors. J. Clean. Prod. 277, 123385 (2020).

    Article  CAS  Google Scholar 

  40. Santos, J. et al. in Biodiversity and Wind Farms in Portugal (eds Mascarenhas, M. et al.) Ch. 3, 35–86 (Springer, 2018).

  41. Pagany, R. Wildlife–vehicle collisions — influencing factors, data collection and research methods. Biol. Conserv. 251, 108758 (2020).

    Article  Google Scholar 

  42. Doherty, T. S., Hays, G. C. & Driscoll, D. A. Human disturbance causes widespread disruption of animal movement. Nat. Ecol. Evol. 5, 513–519 (2021).

    Article  Google Scholar 

  43. Duporge, I. et al. Determination of optimal flight altitude to minimise acoustic drone disturbance to wildlife using species audiograms. Methods Ecol. Evol. 12, 2196–2207 (2021).

    Article  Google Scholar 

  44. Ferrell, S. L. & DeVuyst, E. A. Decommissioning wind energy projects: an economic and political analysis. Energ. Policy 53, 105–113 (2013).

    Article  Google Scholar 

  45. Beauson, J., Laurent, A., Rudolph, D. P. & Jensen, J. P. The complex end-of-life of wind turbine blades: a review of the European context. Renew. Sust. Energ. Rev. 155, 111847 (2022).

    Article  CAS  Google Scholar 

  46. Roy, S. B., Pacala, S. W. & Walko, R. L. Can large wind farms affect local meteorology? J. Geophys. Res. Atmos. 109, D19 (2004).

    Google Scholar 

  47. Lauridsen, M. J. & Ancell, B. C. Nonlocal inadvertent weather modification associated with wind farms in the central United States. Adv. Meteorol. 2018, 469683 (2018).

    Article  Google Scholar 

  48. Abbasi, S. A., Tabassum-Abbasi & Abbasi, T. Impact of wind-energy generation on climate: a rising spectre. Renew. Sust. Energ. Rev. 59, 1591–1598 (2016).

    Article  Google Scholar 

  49. Zhou, L. M. et al. Impacts of wind farms on land surface temperature. Nat. Clim. Change 2, 539–543 (2012).

    Article  Google Scholar 

  50. Fiedler, B. H. & Bukovsky, M. S. The effect of a giant wind farm on precipitation in a regional climate model. Environ. Res. Lett. 6, 1–7 (2011).

    Article  Google Scholar 

  51. Wang, G., Li, G. Q. & Liu, Z. Wind farms dry surface soil in temporal and spatial variation. Sci. Total. Environ. 857, 159293 (2023).

    Article  CAS  Google Scholar 

  52. Tang, B. J. et al. The observed impacts of wind farms on local vegetation growth in northern China. Remote Sens.9, 332 (2017).

    Article  Google Scholar 

  53. Aksoy, T. et al. Impacts of wind turbines on vegetation and soil cover: a case study of Urla, Cesme, and Karaburun Peninsulas, Turkey. Clean. Technol. Environ. 25, 51–68 (2023).

    Article  Google Scholar 

  54. Xu, K. et al. Positive ecological effects of wind farms on vegetation in China’s Gobi desert. Sci. Rep.9, 6341 (2019).

    Article  Google Scholar 

  55. Stoner, D. C. et al. Climatically driven changes in primary production propagate through trophic levels. Glob. Change Biol. 24, 4453–4463 (2018).

    Article  Google Scholar 

  56. Russo, N. J., Davies, A. B., Blakey, R. V., Ordway, E. M. & Smith, T. B. Feedback loops between 3D vegetation structure and ecological functions of animals. Ecol. Lett. 26, 1597–1613 (2023).

    Article  Google Scholar 

  57. Allison, T. D. et al. Impacts to wildlife of wind energy siting and operation in the United States. Issues Ecol. 21, 2–18 (2019).

    Google Scholar 

  58. Diehl, R. H. The airspace is habitat. Trends Ecol. Evol. 28, 377–379 (2013).

    Article  Google Scholar 

  59. Kati, V. et al. The overlooked threat of land take from wind energy infrastructures: quantification, drivers and policy gaps. J. Environ. Manag. 348, 119340 (2023).

    Article  CAS  Google Scholar 

  60. Diffendorfer, J. E., Dorning, M. A., Keen, J. R., Kramer, L. A. & Taylor, R. V. Geographic context affects the landscape change and fragmentation caused by wind energy facilities. PeerJ 7, e7129 (2019).

    Article  Google Scholar 

  61. Neri, M., Jameli, D., Bernard, E. & Melo, F. P. L. Green versus green? Adverting potential conflicts between wind power generation and biodiversity conservation in Brazil. Perspect. Ecol. Conserv. 17, 131–135 (2019).

    Google Scholar 

  62. Kati, V. et al. How much wilderness is left? A roadless approach under the Global and the European biodiversity strategy focusing on Greece. Biol. Conserv. 281, 110015 (2023).

    Article  Google Scholar 

  63. Marques, A. T. et al. Wind turbines cause functional habitat loss for migratory soaring birds. J. Anim. Ecol. 89, 93–103 (2020).

    Article  Google Scholar 

  64. Millon, L., Colin, C., Brescia, F. & Kerbiriou, C. Wind turbines impact bat activity, leading to high losses of habitat use in a biodiversity hotspot. Ecol. Eng. 112, 51–54 (2018).

    Article  Google Scholar 

  65. Leroux, C., Barre, K., Valet, N., Kerbiriou, C. & Viol, I. L. Distribution of common pipistrelle (Pipistrellus pipistrellus) activity is altered by airflow disruption generated by wind turbines. PLoS ONE 19, e0303368 (2024).

    Article  CAS  Google Scholar 

  66. Gipe, P. & Möllerström, E. An overview of the history of wind turbine development: part II — the 1970s onward. Wind Eng. 47, 220–248 (2023).

    Article  Google Scholar 

  67. CEMAVE – Centro Nacional de Pesquisa e Conservação de Aves Silvestres. Relatório de áreas de concentração de aves migratórias no Brasil 222 (CEMAVE/ICMBio, 2022).

  68. Tolvanen, A., Routavaara, H., Jokikokko, M. & Rana, P. How far are birds, bats, and terrestrial mammals displaced from onshore wind power development? — A systematic review. Biol. Conserv. 288, 110382 (2023).

    Article  Google Scholar 

  69. Marques, A. T., Batalha, H. & Bernardino, J. Bird displacement by wind turbines: assessing current knowledge and recommendations for future studies. Birds 2, 460–475 (2021).

    Article  Google Scholar 

  70. Reusch, C., Paul, A. A., Fritze, M., Kramer-Schadt, S. & Voigt, C. C. Wind energy production in forests conflicts with tree-roosting bats. Curr. Biol. 33, 737–743.e3 (2023).

    Article  CAS  Google Scholar 

  71. Johnston, N. N., Bradley, J. E. & Otter, K. A. Increased flight altitudes among migrating golden eagles suggest turbine avoidance at a rocky mountain wind installation. PLoS ONE 9, e93030 (2014).

    Article  Google Scholar 

  72. Fielding, A. H. et al. Responses of GPS-tagged territorial golden eagles to wind turbines in Scotland. Diversity 15, 917 (2023).

    Article  Google Scholar 

  73. Lehnardt, Y., Barber, J. R. & Berger-Tal, O. Effects of wind turbine noise on songbird behavior during nonbreeding season. Conserv. Biol. 38, e14188 (2024).

    Article  Google Scholar 

  74. Teff-Seker, Y., Berger-Tal, O., Lehnardt, Y. & Teschner, N. Noise pollution from wind turbines and its effects on wildlife: a cross-national analysis of current policies and planning regulations. Renew. Sust. Energ. Rev. 168, 112801 (2022).

    Article  Google Scholar 

  75. Ellerbrok, J. S., Farwig, N., Peter, F. & Voigt, C. C. Forest bat activity declines with increasing wind speed in proximity of operating wind turbines. Glob. Ecol. Conserv. 49, e02782 (2024).

    Google Scholar 

  76. Coppes, J. et al. The impact of wind energy facilities on grouse: a systematic review. J. Ornithol. 161, 1–15 (2020).

    Article  Google Scholar 

  77. Łopucki, R., Klich, D. & Gielarek, S. Do terrestrial animals avoid areas close to turbines in functioning wind farms in agricultural landscapes? Environ. Monit. Assess. 189, 343 (2017).

    Article  Google Scholar 

  78. Ellerbrok, J. S., Farwig, N., Peter, F., Rehling, F. & Voigt, C. C. Forest gaps around wind turbines attract bat species with high collision risk. Biol. Conserv. 288, 110347 (2023).

    Article  Google Scholar 

  79. Dias, D. D., Massara, R. L., de Campos, C. B. & Rodrigues, F. H. G. Human activities influence the occupancy probability of mammalian carnivores in the Brazilian Caatinga. Biotropica 51, 253–265 (2019).

    Article  Google Scholar 

  80. Kumara, H. N. et al. Responses of birds and mammals to long-established wind farms in India. Sci. Rep. 12, 1339 (2022).

    Article  CAS  Google Scholar 

  81. Thaker, M., Zambre, A. & Bhosale, H. Wind farms have cascading impacts on ecosystems across trophic levels. Nat. Ecol. Evol. 2, 1854–1858 (2018).

    Article  Google Scholar 

  82. Milligan, M. C. et al. Variable effects of wind-energy development on seasonal habitat selection of pronghorn. Ecosphere 12, e03850 (2021).

    Article  Google Scholar 

  83. Milligan, M. C. et al. Wind-energy development alters pronghorn migration at multiple scales. Ecol. Evol. 13, e9687 (2023).

    Article  Google Scholar 

  84. Skarin, A. & Alam, M. Reindeer habitat use in relation to two small wind farms, during preconstruction, construction, and operation. Ecol. Evol. 7, 3870–3882 (2017).

    Article  Google Scholar 

  85. Skarin, A., Nellemann, C., Rönnegård, L., Sandström, P. & Lundqvist, H. Wind farm construction impacts reindeer migration and movement corridors. Landsc. Ecol. 30, 1527–1540 (2015).

    Article  Google Scholar 

  86. Skarin, A., Sandström, P. & Alam, M. Out of sight of wind turbines-reindeer response to wind farms in operation. Ecol. Evol. 8, 9906–9919 (2018).

    Article  Google Scholar 

  87. Tsegaye, D. et al. Reindeer spatial use before, during and after construction of a wind farm. Appl. Anim. Behav. Sci. 195, 103–111 (2017).

    Article  Google Scholar 

  88. Klich, D., Lopucki, R., Scibior, A., Golebiowska, D. & Wojciechowska, M. Roe deer stress response to a wind farms: methodological and practical implications. Ecol. Indic. 117, 106658 (2020).

    Article  Google Scholar 

  89. Walter, W. D., Leslie, D. M. & Jenks, J. A. Response of rocky mountain elk (Cervus elaphus) to wind-power development. Am. Midl. Nat. 156, 363–375 (2006).

    Article  Google Scholar 

  90. Thomas, P. J., Labrosse, A. K., Pomeroy, A. C. & Otter, K. A. Effects of weather on avian migration at proposed ridgeline wind energy sites. J. Wildl. Manag. 75, 805–815 (2011).

    Article  Google Scholar 

  91. Smith, A. D. & McWilliams, S. R. Bat activity during autumn relates to atmospheric conditions: implications for coastal wind energy development. J. Mammal. 97, 1565–1577 (2016).

    Article  Google Scholar 

  92. Chevallier, D. et al. Influence of weather conditions on the flight of migrating black storks. Proc. R. Soc. B 277, 2755–2764 (2010).

    Article  CAS  Google Scholar 

  93. Drewitt, A. L. & Langston, R. H. W. Assessing the impacts of wind farms on birds. Ibis 148, 29–42 (2006).

    Article  Google Scholar 

  94. Schuster, E., Bulling, L. & Köppel, J. Consolidating the state of knowledge: a synoptical review of wind energy’s wildlife effects. Environ. Manag. 56, 300–331 (2015).

    Article  Google Scholar 

  95. Saidur, R., Rahim, N. A., Islam, M. R. & Solangi, K. H. Environmental impact of wind energy. Renew. Sust. Energ. Rev. 15, 2423–2430 (2011).

    Article  Google Scholar 

  96. Kikuchi, R. Adverse impacts of wind power generation on collision behaviour of birds and anti-predator behaviour of squirrels. J. Nat. Conserv. 16, 44–55 (2008).

    Article  Google Scholar 

  97. O’Shea, T. J., Cryan, P. M., Hayman, D. T. S., Plowright, R. K. & Streicker, D. G. Multiple mortality events in bats: a global review. Mammal. Rev. 46, 175–190 (2016).

    Article  Google Scholar 

  98. Thaxter, C. B. et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. R. Soc. B 284, 20170829 (2017).

    Article  Google Scholar 

  99. Marques, A. T. et al. Understanding bird collisions at wind farms: an updated review on the causes and possible mitigation strategies. Biol. Conserv. 179, 40–52 (2014).

    Article  Google Scholar 

  100. Voigt, C. C. Insect fatalities at wind turbines as biodiversity sinks. Conserv. Sci. Pract. 3, e366 (2021).

    Article  Google Scholar 

  101. International Finance Corporation. Post-Construction Bird and Bat Fatality Monitoring for Onshore Wind Energy Facilities in Emerging Market Countries (IFC, 2023).

  102. Huso, M., Dalthorp, D., Miller, T. J. & Bruns, D. Wind energy development: methods to assess bird and bat fatality rates post-construction. Hum. Wildl. Interact. 10, 62–70 (2016).

    Google Scholar 

  103. Dalthorp, D. et al. GenEst Statistical Models — A Generalized Estimator of Mortality (US Geological Survey, 2018).

  104. Reyes, G. A. et al. Searcher efficiency and survey coverage affect precision of fatality estimates. J. Wildl. Manag. 80, 1488–1496 (2016).

    Article  Google Scholar 

  105. del Valle, J. D., Peralta, F. C. & Arjona, M. I. J. Factors affecting carcass detection at wind farms using dogs and human searchers. J. Appl. Ecol. 57, 1926–1935 (2020).

    Article  Google Scholar 

  106. Conkling, T. J., Loss, S. R., Diffendorfer, J. E., Duerr, A. E. & Katzner, T. E. Limitations, lack of standardization, and recommended best practices in studies of renewable energy effects on birds and bats. Conserv. Biol. 35, 64–76 (2021).

    Article  Google Scholar 

  107. Conkling, T. J., McClure, C. J., Cuadros, S., Loss, S. R. & Katzner, T. E. Limited rigor in studies of raptor mortality and mitigation at wind power facilities. Biol. Conserv. 275, 109707 (2022).

    Article  Google Scholar 

  108. Baerwald, E. F., D’Amours, G. H., Klug, B. J. & Barclay, R. M. R. Barotrauma is a significant cause of bat fatalities at wind turbines. Curr. Biol. 18, R695–R696 (2008).

    Article  CAS  Google Scholar 

  109. Rollins, K. E., Meyerholz, D. K., Johnson, G. D., Capparella, A. P. & Loew, S. S. A forensic investigation into the etiology of bat mortality at a wind farm: barotrauma or traumatic injury? Vet. Pathol. 49, 362–371 (2012).

    Article  CAS  Google Scholar 

  110. Loss, S. R., Will, T. & Marra, P. P. Estimates of bird collision mortality at wind facilities in the contiguous United States. Biol. Conserv. 168, 201–209 (2013).

    Article  Google Scholar 

  111. AWWI. Summary of Bat Fatality Monitoring Data Contained in AWWIC (American Wind and Wildlife Institute, 2020).

  112. Vander Zanden, H. B. et al. The geographic extent of bird populations affected by renewable-energy development. Conserv. Biol. 38, e14191 (2024).

    Article  Google Scholar 

  113. Pylant, C., Nelson, D. M., Fitzpatrick, M. C., Gates, J. E. & Keller, S. R. Geographic origins and population genetics of bats killed at wind-energy facilities. Ecol. Appl. 26, 1381–1395 (2016).

    Article  Google Scholar 

  114. Erickson, R. A. et al. Assessing local population vulnerability with branching process models: an application to wind energy development. Ecosphere 6, 1–14 (2015).

    Article  Google Scholar 

  115. Vasilakis, D. P., Whitfield, D. P. & Kati, V. A balanced solution to the cumulative threat of industrialized wind farm development on cinereous vultures (Aegypius monachus) in south-eastern Europe. PLoS ONE 12, e0172685 (2017).

    Article  Google Scholar 

  116. Bounas, A. et al. Cumulative collision risk and population-level consequences of industrial wind-power plant development for two vulture species: a quantitative warning. Environ. Impact Assess. 110, 107669 (2025).

    Article  Google Scholar 

  117. Bastos, R. et al. Evaluating the regional cumulative impact of wind farms on birds: how can spatially explicit dynamic modelling improve impact assessments and monitoring? J. Appl. Ecol. 53, 1330–1340 (2016).

    Article  Google Scholar 

  118. Frick, W. F. et al. Fatalities at wind turbines may threaten population viability of a migratory bat. Biol. Conserv. 209, 172–177 (2017).

    Article  Google Scholar 

  119. Friedenberg, N. A. & Frick, W. F. Assessing fatality minimization for hoary bats amid continued wind energy development. Biol. Conserv. 262, 109309 (2021).

    Article  Google Scholar 

  120. Davy, C. M., Squires, K. & Zimmerling, J. R. Estimation of spatiotemporal trends in bat abundance from mortality data collected at wind turbines. Conserv. Biol. 35, 227–238 (2021).

    Article  Google Scholar 

  121. Rodhouse, T. J. et al. Evidence of region-wide bat population decline from long-term monitoring and Bayesian occupancy models with empirically informed priors. Ecol. Evol. 9, 11078–11088 (2019).

    Article  Google Scholar 

  122. Duriez, O., Pilard, P., Saulnier, N., Boudarel, P. & Besnard, A. Windfarm collisions in medium-sized raptors: even increasing populations can suffer strong demographic impacts. Anim. Conserv. 26, 264–275 (2023).

    Article  Google Scholar 

  123. Cervantes, F., Martins, M. & Simmons, R. E. Population viability assessment of an endangered raptor using detection/non-detection data reveals susceptibility to anthropogenic impacts. R. Soc. Open Sci. 9, 220043 (2022).

    Article  Google Scholar 

  124. Bas, Y., Kerbiriou, C., Roemer, C. & Julien, J. F. Bat Population Trends (Muséum National d’Histoire Naturelle, 2020).

  125. Printz, L., Tschapka, M. & Vogeler, A. The common noctule bat (Nyctalus noctula): population trends from artificial roosts and the effect of biotic and abiotic parameters on the probability of occupation. J. Urban. Ecol. 7, juab033 (2021).

    Article  Google Scholar 

  126. EUROBATS. EUROBATS National Implementation Report (EUROBATS, 2018).

  127. Katzner, T. E. et al. Golden eagle fatalities and the continental-scale consequences of local wind-energy generation. Conserv. Biol. 31, 406–415 (2017).

    Article  Google Scholar 

  128. Carrete, M., Sánchez-Zapata, J. A., Benítez, J. R., Lobón, M. & Donázar, J. A. Large scale risk-assessment of wind-farms on population viability of a globally endangered long-lived raptor. Biol. Conserv. 142, 2954–2961 (2009).

    Article  Google Scholar 

  129. Dempsey, L., Hein, C. & Muenter, L. The Mitigation Hierarchy (Pacific Northwest National Laboratory, 2023).

  130. Bennun, L. et al. Mitigating Biodiversity Impacts Associated with Solar and Wind Energy Development: Guidelines for Project Developers (IUCN, 2021).

  131. Ohashi, H. et al. Biodiversity can benefit from climate stabilization despite adverse side effects of land-based mitigation. Nat. Commun. 10, 5240 (2019).

    Article  Google Scholar 

  132. Ferrer, M. et al. Weak relationship between risk assessment studies and recorded mortality in wind farms. J. Appl. Ecol. 49, 38–46 (2012).

    Article  Google Scholar 

  133. Lintott, P. R., Richardson, S. M., Hosken, D. J., Fensome, S. A. & Mathews, F. Ecological impact assessments fail to reduce risk of bat casualties at wind farms. Curr. Biol. 26, R1135–R1136 (2016).

    Article  CAS  Google Scholar 

  134. Aydin, N. Y., Kentel, E. & Duzgun, S. GIS-based environmental assessment of wind energy systems for spatial planning: a case study from Western Turkey. Renew. Sust. Energ. Rev. 14, 364–373 (2010).

    Article  Google Scholar 

  135. Xu, Y. et al. Site selection of wind farms using GIS and multi-criteria decision making method in Wafangdian, China. Energy 207, 118222 (2020).

    Article  Google Scholar 

  136. Wu, G. C. et al. Minimizing habitat conflicts in meeting net-zero energy targets in the western United States. Proc. Natl Acad. Sci. USA 120, e2204098120 (2023).

    Article  CAS  Google Scholar 

  137. Feng, X. Y. et al. Low impact siting for wind power facilities in the Southeast United States. Wind. Energy 26, 1254–1275 (2023).

    Article  Google Scholar 

  138. Rodrigues, L. et al. Guidelines for Consideration of Bats in Wind Farm Projects – Revision 201. 133 (UNEP/EUROBATS, 2015).

  139. Balotari-Chiebao, F., Santangeli, A., Piirainen, S. & Byholm, P. Wind energy expansion and birds: identifying priority areas for impact avoidance at a national level. Biol. Conserv. 277, 109851 (2023).

    Article  Google Scholar 

  140. Rebolo-Ifrán, N., Lois, N. A. & Lambertucci, S. A. Wind energy development in Latin America and the Caribbean: risk assessment for flying vertebrates. Environ. Impact Assess.112, 107798 (2025).

    Article  Google Scholar 

  141. Kati, V., Kassara, C., Vrontisi, Z. & Moustakas, A. The biodiversity–wind energy–land use nexus in a global biodiversity hotspot. Sci. Total. Environ. 768, 144471 (2021).

    Article  CAS  Google Scholar 

  142. Passoni, G., Rowcliffe, J. M., Whiteman, A., Huber, D. & Kusak, J. Framework for strategic wind farm site prioritisation based on modelled wolf reproduction habitat in Croatia. Eur. J Wildl. Res. 63, 38 (2017).

    Article  Google Scholar 

  143. DFFE. Phase 2 Strategic Environmental Assessment for Wind and Solar PV Energy in South Africa (Department of Environment Forestry and Fisheries, Stellenbosch, 2019).

  144. Solick, D., Pham, D., Nasman, K. & Bay, K. Bat activity rates do not predict bat fatality rates at wind energy facilities. Acta Chiropterol. 22, 135–146 (2020).

    Article  Google Scholar 

  145. Pedrana, J., Gorosábel, A., Pütz, K. & Bernad, L. First assessment on the influence of wind farms and high-voltage networks on ruddy-headed goose migration in Patagonia, Argentina. Polar Biol. 46, 639–653 (2023).

    Article  Google Scholar 

  146. Barré, K., Le Viol, I., Bas, Y., Julliard, R. & Kerbiriou, C. Estimating habitat loss due to wind turbine avoidance by bats: implications for European siting guidance. Biol. Conserv. 235, 77–78 (2019).

    Article  Google Scholar 

  147. Miller, T. A. et al. Assessing risk to birds from industrial wind energy development via paired resource selection models. Conserv. Biol. 28, 745–755 (2014).

    Article  Google Scholar 

  148. Gauld, J. G. et al. Hotspots in the grid: avian sensitivity and vulnerability to collision risk from energy infrastructure interactions in Europe and North Africa. J. Appl. Ecol. 59, 1496–1512 (2022).

    Article  Google Scholar 

  149. Roeleke, M., Blohm, T., Kramer-Schadt, S., Yovel, Y. & Voigt, C. C. Habitat use of bats in relation to wind turbines revealed by GPS tracking. Sci. Rep-Uk 6, 28961 (2016).

    Article  CAS  Google Scholar 

  150. Cohen, E. B. et al. Using weather radar to help minimize wind energy impacts on nocturnally migrating birds. Conserv. Lett. 15, e12887 (2022).

    Article  Google Scholar 

  151. Murgatroyd, M., Bouten, W. & Amar, A. A predictive model for improving placement of wind turbines to minimise collision risk potential for a large soaring raptor. J. Appl. Ecol. 58, 857–868 (2021).

    Article  Google Scholar 

  152. Hanssen, F., May, R. & Nygård, T. High-resolution modeling of uplift landscapes can inform micrositing of wind turbines for soaring raptors. Environ. Manag. 66, 319–332 (2020).

    Article  Google Scholar 

  153. Hodos, W. Minimization of Motion Smear: Reducing Avian Collision with Wind Turbines Report No. NREL/SR-500-33249 (National Renewable Energy Lab, 2003).

  154. Martin, G. R. & Banks, A. N. Marine birds: vision-based wind turbine collision mitigation. Glob. Ecol. Conserv. 42, e02386 (2023).

    Google Scholar 

  155. Blary, C. et al. Detection of wind turbines rotary motion by birds: a matter of speed and contrast. Conserv. Sci. Pract. 5, e13022 (2023).

    Article  Google Scholar 

  156. May, R. et al. Paint it black: efficacy of increased wind turbine rotor blade visibility to reduce avian fatalities. Ecol. Evol. 10, 8927–8935 (2020).

    Article  Google Scholar 

  157. Stokke, B. G., Nygård, T., Falkdalen, U., Pedersen, H. C. & May, R. Effect of tower base painting on willow ptarmigan collision rates with wind turbines. Ecol. Evol. 10, 5670–5679 (2020).

    Article  Google Scholar 

  158. Cryan, P. M., Gorresen, P. M., Straw, B. R., Thao, S. & DeGeorge, E. Influencing activity of bats by dimly lighting wind turbine surfaces with ultraviolet light. Animals 12, 9 (2022).

    Article  Google Scholar 

  159. May, R., Åström, J., Hamre, O. & Dahl, E. L. Do birds in flight respond to (ultra)violet lighting? Avian Res. 8, 33 (2017).

    Article  Google Scholar 

  160. Kerlinger, P. et al. Night migrant fatalities and obstruction lighting at wind turbines in North America. Wilson J. Ornithol. 122, 744–754 (2010).

    Article  Google Scholar 

  161. American Wind Wildlife Institute. Results Summary: Technology Innovation Program Test of DTBird (American Wind Wildlife Institute, 2018).

  162. Arnett, E. B., Hein, C. D., Schirmacher, M. R., Huso, M. M. P. & Szewczak, J. M. Evaluating the effectiveness of an ultrasonic acoustic deterrent for reducing bat fatalities at wind turbines. PLoS ONE 8, e65794 (2013).

    Article  CAS  Google Scholar 

  163. Weaver, S. P., Hein, C. D., Simpson, T. R., Evans, J. W. & Castro-Arellano, I. Ultrasonic acoustic deterrents significantly reduce bat fatalities at wind turbines. Glob. Ecol. Conserv. 24, e01099 (2020).

    Google Scholar 

  164. Clerc, J., Huso, M., Schirmacher, M., Whitby, M. & Hein, C. Ultrasonic deterrents provide no additional benefit over curtailment in reducing bat fatalities at an Ohio wind energy facility. PLoS ONE 20, e0318451 (2025).

    Article  CAS  Google Scholar 

  165. Voigt, C. C., Russo, D., Runkel, V. & Goerlitz, H. R. Limitations of acoustic monitoring at wind turbines to evaluate fatality risk of bats. Mammal. Rev. 51, 559–570 (2021).

    Article  Google Scholar 

  166. Bohn, K. M., Schmidt-French, B., Ma, S. T. & Pollak, G. D. Syllable acoustics, temporal patterns, and call composition vary with behavioral context in Mexican free-tailed bats. J. Acoust. Soc. Am. 124, 1838–1848 (2008).

    Article  Google Scholar 

  167. Martin, G. R. Understanding bird collisions with man-made objects: a sensory ecology approach. Ibis 153, 239–254 (2011).

    Article  Google Scholar 

  168. Honkanen, A., Adden, A., Freitas, J. D. & Heinze, S. The insect central complex and the neural basis of navigational strategies. J. Exp. Biol. 222, jeb188854 (2019).

    Article  Google Scholar 

  169. Hayes, M. A. et al. A smart curtailment approach for reducing bat fatalities and curtailment time at wind energy facilities. Ecol. Appl. 29, e01881 (2019).

    Article  Google Scholar 

  170. Lloyd, J. D., Butryn, R., Pearman-Gillman, S. & Allison, T. D. Seasonal patterns of bird and bat collision fatalities at wind turbines. PLoS ONE 18, e0284778 (2023).

    Article  CAS  Google Scholar 

  171. Baerwald, E. F., Edworthy, J., Holder, M. & Barclay, R. M. R. A large-scale mitigation experiment to reduce bat fatalities at wind energy facilities. J. Wildl. Manag. 73, 1077–1081 (2009).

    Article  Google Scholar 

  172. Martin, C. M., Arnett, E. B., Stevens, R. D. & Wallace, M. C. Reducing bat fatalities at wind facilities while improving the economic efficiency of operational mitigation. J. Mammal. 98, 378–385 (2017).

    Article  Google Scholar 

  173. Arnett, E. B., Huso, M. M. P., Schirmacher, M. R. & Hayes, J. P. Altering turbine speed reduces bat mortality at wind-energy facilities. Front. Ecol. Environ. 9, 209–214 (2011).

    Article  Google Scholar 

  174. Maclaurin, G. et al. National-scale impacts on wind energy production under curtailment scenarios to reduce bat fatalities. Wind. Energy 25, 1514–1529 (2022).

    Article  Google Scholar 

  175. Behr, O. et al. in Wind Energy and Wildlife Interactions (ed. Köppel, J.) 135–160 (Springer International, 2017).

  176. Smallwood, K. S. & Bell, D. A. Effects of wind turbine curtailment on bird and bat fatalities. J. Wildl. Manag. 84, 685–696 (2020).

    Article  Google Scholar 

  177. de Lucas, M., Ferrer, M., Bechard, M. J. & Muñoz, A. R. Griffon vulture mortality at wind farms in southern Spain: distribution of fatalities and active mitigation measures. Biol. Conserv. 147, 184–189 (2012).

    Article  Google Scholar 

  178. Ferrer, M., Alloing, A., Baumbush, R. & Morandini, V. Significant decline of Griffon vulture collision mortality in wind farms during 13-year of a selective turbine stopping protocol. Glob. Ecol. Conserv. 38, e02203 (2022).

    Google Scholar 

  179. Tomé, R., Canário, F., Leitão, A. H., Pires, N. & Repas, M. in Wind Energy and Wildlife Interactions (ed. Köppel, J.) 119–133 (Springer International, 2017).

  180. May, R. F., Hamre, Ø., Vang, R. & Nygård, T. Evaluation of the DTBird Video-System at the Smøla Wind-Power Plant. Detection Capabilities for Capturing Near-Turbine Avian Behaviour. NINA Report 910 (NINA Publications, 2012).

  181. McClure, C. J. W., Martinson, L. & Allison, T. D. Automated monitoring for birds in flight: proof of concept with eagles at a wind power facility. Biol. Conserv. 224, 26–33 (2018).

    Article  Google Scholar 

  182. McClure, C. J. W. et al. Confirmation that eagle fatalities can be reduced by automated curtailment of wind turbines. Ecol. Solut. Evid. 3, e12173 (2022).

    Article  Google Scholar 

  183. Rolek, B. W. et al. Flight characteristics forecast entry by eagles into rotor-swept zones of wind turbines. Ibis 164, 968–980 (2022).

    Article  Google Scholar 

  184. McClure, C. J. W. et al. Eagles enter rotor-swept zones of wind turbines at rates that vary per turbine. Ecol. Evol. 11, 11267–11274 (2021).

    Article  Google Scholar 

  185. McClure, C. J. W. et al. Eagle fatalities are reduced by automated curtailment of wind turbines. J. Appl. Ecol. 58, 446–452 (2021).

    Article  Google Scholar 

  186. Duerr, A. E., Parsons, A. E., Nagy, L. R., Kuehn, M. J. & Bloom, P. H. Effectiveness of an artificial intelligence-based system to curtail wind turbines to reduce eagle collisions. PLoS ONE 18, e0278754 (2023).

    Article  CAS  Google Scholar 

  187. Jenkins, A. R. et al. Combining radar and direct observation to estimate pelican collision risk at a proposed wind farm on the Cape west coast, South Africa. PLoS ONE 13, e0192515 (2018).

    Article  Google Scholar 

  188. Shipley, J. R., Kelly, J. F. & Frick, W. F. Toward integrating citizen science and radar data for migrant bird conservation. Remote Sens. Ecol. Con 4, 127–136 (2018).

    Article  Google Scholar 

  189. Rabie, P. A. et al. Efficacy and cost of acoustic-informed and wind speed-only turbine curtailment to reduce bat fatalities at a wind energy facility in Wisconsin. PLoS ONE 17, e0266500 (2022).

    Article  CAS  Google Scholar 

  190. Quillen, J. Bat Smart Curtailment: Efficacy and Operational Testing award number DE-EE0008900 (DOE, 2025).

  191. Stantec. Activity-Based Informed Curtailment: Using Acoustics to Design and Validate Smart Curtailment to Reduce Risk to Bats at Wind Farms award number DE-EE0008728 (DOE, 2025).

  192. Newman, C. et al. Evaluation of the Turbine Integrated Mortality Reduction (TIMR℠) Technology as a Smart Curtailment Approach: Final Summary Report (Electric Power Research Institute, 2024).

  193. Peste, F. et al. How to mitigate impacts of wind farms on bats? A review of potential conservation measures in the European context. Environ. Impact Assess. 51, 10–22 (2015).

    Article  Google Scholar 

  194. Mainwaring, M. C. The use of man-made structures as nesting sites by birds: a review of the costs and benefits. J. Nat. Conserv. 25, 17–22 (2015).

    Article  Google Scholar 

  195. Flaquer, C., Torre, I. & Ruiz-Jarillo, R. The value of bat-boxes in the conservation of Pipistrellus pygmaeus in wetland rice paddies. Biol. Conserv. 128, 223–230 (2006).

    Article  Google Scholar 

  196. Stevens, C. E., Gabor, T. S. & Diamond, A. W. Use of restored small wetlands by breeding waterfowl in Prince Edward Island, Canada. Restor. Ecol. 11, 3–12 (2003).

    Article  Google Scholar 

  197. Weidlich, E. W. A., Flórido, F. G., Sorrini, T. B. & Brancalion, P. H. S. Controlling invasive plant species in ecological restoration: a global review. J. Appl. Ecol. 57, 1806–1817 (2020).

    Article  Google Scholar 

  198. Burger, J. Environmental management: integrating ecological evaluation, remediation, restoration, natural resource damage assessment and long-term stewardship on contaminated lands. Sci. Total. Environ. 400, 6–19 (2008).

    Article  CAS  Google Scholar 

  199. Tuttle, M. D. Gating as a means of protecting cave dwelling bats. In Proc. National Cave and Karst Management Symposia (eds. Aley, T. & Rhodes, D.) 77–82 (Speleobooks, 1977).

  200. Cole, S. G. & Dahl, E. L. Compensating white-tailed eagle mortality at the smola wind-power plant using electrocution prevention measures. Wildl. Soc. B 37, 84–93 (2013).

    Article  Google Scholar 

  201. Slabe, V. A., Crandall, R. H., Katzner, T., Duerr, A. E. & Miller, T. A. Efficacy of non-lead ammunition distribution programs to offset fatalities of golden eagles in southeast Wyoming. J. Wildl. Manag. 88, e22647 (2024).

    Article  Google Scholar 

  202. Lonsdorf, E., Sanders-Reed, C. A., Boal, C. & Allison, T. D. Modeling golden eagle-vehicle collisions to design mitigation strategies. J. Wildl. Manag. 82, 1633–1644 (2018).

    Article  Google Scholar 

  203. Gallo, T., Stinson, L. T. & Pejchar, L. Mitigation for energy development fails to mimic natural disturbance for birds and mammals. Biol. Conserv. 212, 39–47 (2017).

    Article  Google Scholar 

  204. Sonter, L. J., Maron, M., Metaxas, A. & Bull, J. W. Ensuring legitimate project-level claims about net biodiversity outcomes. Trends Ecol. Evol. 39, 599–602 (2024).

    Article  Google Scholar 

  205. Mengel, M., Treu, S., Lange, S. & Frieler, K. ATTRICI v1.1-counterfactual climate for impact attribution. Geosci. Model. Dev. 14, 5269–5284 (2021).

    Article  Google Scholar 

  206. Cole, W., Corcoran, S., Gates, N., Mai, T. & Das, P. Standard Scenarios Report: A U.S. Electricity Sector Outlook (National Renewable Energy Laboratory, 2020).

  207. Brook, B. W. & Bradshaw, C. J. A. Key role for nuclear energy in global biodiversity conservation. Conserv. Biol. 29, 702–712 (2015).

    Article  Google Scholar 

  208. White, T. B. et al. Assessing costs and cost-effectiveness across the mitigation hierarchy: an example considering the reduction of bird mortality at power lines. Biol. Conserv. 296, 110651 (2024).

    Article  Google Scholar 

  209. Hamilton, T. M. et al. Data-driven counterfactual evaluation of management outcomes to improve emergency conservation decisions. Conserv. Lett. 16, e12925 (2023).

    Article  Google Scholar 

  210. Thomas, H. et al. Achieving “nature positive” requires net gain legislation. Science 386, 383–385 (2024).

    Article  CAS  Google Scholar 

  211. Kunming-Montreal Global Biodiversity Framework. Convention on Biological Diversity. cbd.int https://www.cbd.int/gbf (2022).

  212. Roddis, P. Eco-innovation to reduce biodiversity impacts of wind energy: key examples and drivers in the UK. Environ. Innov. Soc. Tr. 28, 46–56 (2018).

    Article  Google Scholar 

  213. Lambertucci, S. A. & Speziale, K. L. Need for global conservation assessments and frameworks to include airspace habitat. Conserv. Biol. 35, 1341–1343 (2021).

    Article  Google Scholar 

  214. US Fish and Wildlife Service. Bat and Wind Power Incidental Take Permit Reports (US Fish and Wildlife Service, 2025).

  215. US Fish and Wildlife Service. Land-Based Wind Energy Guidelines (US Fish and Wildlife Service, 2012).

  216. Pereira, M. J. R. et al. Guidelines for consideration of bats in environmental impact assessment of wind farms in Brazil: a collaborative governance experience from Rio Grande do Sul State. Oecol. Aust. 21, 232–255 (2017).

    Article  Google Scholar 

  217. Valença, R. B. & Bernard, E. Another blown in the wind: bats and the licensing of wind farms in Brazil. Nat. Conserv. 13, 117–122 (2015).

    Article  Google Scholar 

  218. Conzo, L., Aramburu, R. & Gordon, C. Subsecretaría de Energías Renovables y Eficiencia Energética (Ministerio de Hacienda, Presidencia de la Nación, 2019).

  219. Bolonio, L., Moreno, E., La Calle, A., Montelío, E. & Valera, F. Renewable energy acceleration endangers a protected species: better stop to light a torch than run in the dark. Environ. Impact Assess. 105, 107432 (2024).

    Article  Google Scholar 

  220. Durá-Alemañ, C. J., Moleón, M., Pérez-García, J. M., Serrano, D. & Sánchez-Zapata, J. A. Climate change and energy crisis drive an unprecedented EU environmental law regression. Conserv. Lett. 16, e12958 (2023).

    Article  Google Scholar 

  221. Galal, S. Leading countries in wind energy capacity in Africa 2023. Statista https://www.statista.com/statistics/1278115/leading-countries-in-wind-energy-capacity-in-africa/ (2024).

  222. Sarhan, M., Uffe, S. G. & Abdeldayem, O. Environmental Impact Assessment Guidelines for Wind Energy Developments in Egypt (Birdlife International & United Nations Development Program, 2013).

  223. DEA. EIA Guideline for Renewable Energy Projects (Department of Environmental Affairs, 2015).

  224. DFFE. Protocol for the Specialist Assessment and Minimum Report Content Requirements for Environmental Impacts on Avifaunal Species by Onshore Wind Energy Generation Facilities where the Electricity Output in 20 Megawatts of More Published Government Notice No. 320 Government Gazette 43110 (Department of Forestry, Fisheries and the Environment, 2020).

  225. DFFE. Identification of Procedures to be Followed When Applying for or Deciding on an Environmental Authorization Application for Large Scale Wind and Solar Photovoltaic Facilities, When Occurring in Renewable Energy Development Zones Government Gazette no. 44191 (Department of Forestry, Fisheries and the Environment, 2021).

  226. UNECE. Environmental Performance Reviews, Morocco (UNECE, 2022).

Download references

Acknowledgements

We thank A. Hale for thoughtful feedback. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Contributions

T.E.K. organized the writing effort, all authors were responsible for writing at least one section of the manuscript, and all authors contributed to revisions of the final document.

Corresponding author

Correspondence to Todd E. Katzner.

Ethics declarations

Competing interests

The authors declare the following competing interests: T.E.K., R.H.D., M.M. and D.M.N. have research agreements funded by one or several partners including in the renewable energy industry, at the US Department of Energy, the US Fish and Wildlife Service, the US Geological Survey, the Bureau of Ocean Energy Management and the Renewable Energy Wildlife Institute (REWI), and D.M.N. is a science advisor for REWI.

Peer review

Peer review information

Nature Reviews Biodiversity thanks Fabio Balotari-Chiebao, Liz Kalies and Vassili Kati for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katzner, T.E., Nelson, D.M., Marques, A.T. et al. Impacts of onshore wind energy production on biodiversity. Nat. Rev. Biodivers. 1, 567–580 (2025). https://doi.org/10.1038/s44358-025-00078-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44358-025-00078-1

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene