Abstract
Wind is increasingly used as a renewable source of energy worldwide. However, harvesting wind energy can have negative consequences for biodiversity. In this Review, we summarize the growth of onshore wind power, its impacts on species and ecosystems, and how those impacts are assessed and mitigated. Across the construction, operation and decommissioning stages, wind facilities are associated with wildlife fatality and behavioural change as well as alteration, loss and fragmentation of terrestrial and aerial habitat. These negative consequences can be mitigated by avoiding construction of wind turbines at sensitive sites, detecting and deterring wildlife, curtailing turbines to reduce fatalities, and replacing lost habitats. Uncertainty about wildlife populations and their demographic parameters, the rate and extent of build-out of onshore wind energy, and best practices for mitigation, as well as variability in regulatory requirements by country or region, all contribute to the difficulty of predicting the consequences of this technology for biodiversity. Scenario-based modelling that incorporates population- and community-level consequences to biodiversity from varying degrees of wind energy development — including the cumulative effects of multiple facilities — is key to addressing this uncertainty.
Key points
-
Wind energy is a growing source of electrical power, but it can have negative effects on biodiversity.
-
Asia has the most wind energy, followed by Europe and then the USA; the rest of the world supports <10% of installed capacity of wind energy.
-
Biodiversity impacts from wind energy can occur at all stages of a wind facility’s life cycle — including planning, construction, operation and decommissioning.
-
Although fatalities are perhaps the best-known impact from wind turbines, turbines can also alter the behaviour of wildlife and cause loss, alteration and fragmentation of habitat.
-
Mitigation of these impacts can include strategically placing turbines to avoid negative interactions (avoidance), encouraging wildlife to steer clear of turbines (deterrence) and replacing animals or habitats lost to turbines (compensation).
-
Despite many uncertainties regarding wind energy’s impacts, the available evidence can inform scenario-based modelling to assess both the consequences of this energy source for biodiversity and how its implementation compares to potential impacts from climate change.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
IRENA. Renewable Capacity Statistics 2023 (International Renewable Energy Agency, 2023).
Ashraf, U., Morelli, T. L., Smith, A. B. & Hernandez, R. R. Climate-smart siting for renewable energy expansion. iScience 27, 110666 (2024).
Katzner, T. E. et al. Wind energy: an ecological challenge. Science 366, 1206–1207 (2019).
UNEP. CMS COP14 Decisions Number ETF7/Inf.2 (Convention on the Conservation of Migratory Species of Wild Animals, 2024).
Whitby, M. D., O’Mara, M. T., Hein, C. D., Huso, M. & Frick, W. F. A decade of curtailment studies demonstrates a consistent and effective strategy to reduce bat fatalities at wind turbines in North America. Ecol. Solut. Evid. 5, e12371 (2024).
Allison, T. D., Cochrane, J. F., Lonsdorf, E. & Sanders-Reed, C. A review of options for mitigating take of golden eagles at wind energy facilities. J. Raptor Res. 51, 319–333 (2017).
Barré, K. et al. Over a decade of failure to implement UNEP/EUROBATS guidelines in wind energy planning: a call for action. Conserv. Sci. Pract. 4, e12805 (2022).
Arnett, E. B. & May, R. F. Mitigating wind energy impacts on wildlife: approaches for multiple taxa. Hum. Wildl. Interact. 10, 28–41 (2016).
Voigt, C. C. et al. Toward solving the global green-green dilemma between wind energy production and bat conservation. Bioscience 74, 240–252 (2024).
Voigt, C. C., Kaiser, K., Look, S., Scharnweber, K. & Scholz, C. Wind turbines without curtailment produce large numbers of bat fatalities throughout their lifetime: a call against ignorance and neglect. Glob. Ecol. Conserv. 37, e02149 (2022).
Voigt, C. C., Popa-Lisseanu, A. G., Niermann, I. & Kramer-Schadt, S. The catchment area of wind farms for European bats: a plea for international regulations. Biol. Conserv. 153, 80–86 (2012).
Conkling, T. J. et al. Vulnerability of avian populations to renewable energy production. R. Soc. Open. Sci. 9, 211558 (2022).
Diffendorfer, J. E., Vanderhoof, M. K. & Ancona, Z. H. Wind turbine wakes can impact down-wind vegetation greenness. Environ. Res. Lett. 17, 104025 (2022).
Larson, E. et al. Net-Zero America: Potential Pathways, Infrastructure, and Impacts (Princeton Univ., 2021).
Rehbein, J. A. et al. Renewable energy development threatens many globally important biodiversity areas. Glob. Change Biol. 26, 3040–3051 (2020).
Finn, C., Grattarola, F. & Pincheira-Donoso, D. More losers than winners: investigating anthropocene defaunation through the diversity of population trends. Biol. Rev. 98, 1732–1748 (2023).
Scholz, C. & Voigt, C. C. Diet analysis of bats killed at wind turbines suggests large-scale losses of trophic interactions. Conserv. Sci. Pract. 4, e12744 (2022).
Kunz, T. H., de Torrez, E. B., Bauer, D., Lobova, T. & Fleming, T. H. Ecosystem services provided by bats. Ann. NY Acad. Sci. 1223, 1–38 (2011).
Maslo, B. et al. Bats provide a critical ecosystem service by consuming a large diversity of agricultural pest insects. Agr. Ecosyst. Environ. 324, 107722 (2022).
Frank, E. G. The economic impacts of ecosystem disruptions: costs from substituting biological pest control. Science 385, eadg0344 (2024).
Katzner, T. E. et al. Counterfactuals to assess effects to species and systems from renewable energy development. Front. Conserv. Sci. 3, 844286 (2022).
Manfredo, M. J., Teel, T. L. & Dietsch, A. M. Implications of human value shift and persistence for biodiversity conservation. Conserv. Biol. 30, 287–296 (2016).
Kim, J. E. Regulation trumps economics? Examining renewable energy policy, diffusion and investment in 80 developing countries. Energy Res. Soc. Sci. 70, 101613 (2020).
Liu, Y. & Feng, C. Promoting renewable energy through national energy legislation. Energ. Econ. 118, 106504 (2023).
Sahin, A. D. Progress and recent trends in wind energy. Prog. Energ. Combust. 30, 501–543 (2004).
Kaldellis, J. K. & Zafirakis, D. The wind energy (r)evolution: a short review of a long history. Renew. Energ. 36, 1887–1901 (2011).
Ackermann, T. & Söder, L. An overview of wind energy-status 2002. Renew. Sust. Energ. Rev. 6, 67–128 (2002).
IEA. World Energy Outlook (International Energy Agency, 2023).
Global Energy Monitor. Global Wind Power Tracker. globalenergymonitor.org https://globalenergymonitor.org/projects/global-wind-power-tracker/tracker-map/ (2024).
IRENA. Renewable Energy Statistics 2025 (International Renewable Energy Agency, 2025).
Global Wind Report (Global Wind Energy Council, 2024).
IEA. Renewables 2023: Analysis and Forecasts to 2028 (International Energy Agency, 2024).
UNFCCC. Paris Agreement No. 16-1104 (United Nations Framework Convention on Climate Change, 2015).
Directorate-General for Communication (European Commission). The European Climate Law (Publications Office, 2020).
Zwarteveen, J. W., Figueira, C., Zawwar, I. & Angus, A. Barriers and drivers of the global imbalance of wind energy diffusion: a meta-analysis from a wind power original equipment manufacturer perspective. J. Clean. Prod. 290, 125636 (2021).
Dai, K. S., Bergot, A., Liang, C., Xiang, W. N. & Huang, Z. H. Environmental issues associated with wind energy - a review. Renew. Energ. 75, 911–921 (2015).
Nagle, A. J., Delaney, E. L., Bank, L. C. & Leahy, P. G. A comparative life cycle assessment between landfilling and co-processing of waste from decommissioned Irish wind turbine blades. J. Clean. Prod. 277, 123321 (2020).
Sacchi, R. et al. Prospective environmental impact assement (permise): a streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models. Renew. Sust. Energ. Rev. 160, 112311 (2022).
Bhandari, R., Kumar, B. & Mayer, F. Life cycle greenhouse gas emission from wind farms in reference to turbine sizes and capacity factors. J. Clean. Prod. 277, 123385 (2020).
Santos, J. et al. in Biodiversity and Wind Farms in Portugal (eds Mascarenhas, M. et al.) Ch. 3, 35–86 (Springer, 2018).
Pagany, R. Wildlife–vehicle collisions — influencing factors, data collection and research methods. Biol. Conserv. 251, 108758 (2020).
Doherty, T. S., Hays, G. C. & Driscoll, D. A. Human disturbance causes widespread disruption of animal movement. Nat. Ecol. Evol. 5, 513–519 (2021).
Duporge, I. et al. Determination of optimal flight altitude to minimise acoustic drone disturbance to wildlife using species audiograms. Methods Ecol. Evol. 12, 2196–2207 (2021).
Ferrell, S. L. & DeVuyst, E. A. Decommissioning wind energy projects: an economic and political analysis. Energ. Policy 53, 105–113 (2013).
Beauson, J., Laurent, A., Rudolph, D. P. & Jensen, J. P. The complex end-of-life of wind turbine blades: a review of the European context. Renew. Sust. Energ. Rev. 155, 111847 (2022).
Roy, S. B., Pacala, S. W. & Walko, R. L. Can large wind farms affect local meteorology? J. Geophys. Res. Atmos. 109, D19 (2004).
Lauridsen, M. J. & Ancell, B. C. Nonlocal inadvertent weather modification associated with wind farms in the central United States. Adv. Meteorol. 2018, 469683 (2018).
Abbasi, S. A., Tabassum-Abbasi & Abbasi, T. Impact of wind-energy generation on climate: a rising spectre. Renew. Sust. Energ. Rev. 59, 1591–1598 (2016).
Zhou, L. M. et al. Impacts of wind farms on land surface temperature. Nat. Clim. Change 2, 539–543 (2012).
Fiedler, B. H. & Bukovsky, M. S. The effect of a giant wind farm on precipitation in a regional climate model. Environ. Res. Lett. 6, 1–7 (2011).
Wang, G., Li, G. Q. & Liu, Z. Wind farms dry surface soil in temporal and spatial variation. Sci. Total. Environ. 857, 159293 (2023).
Tang, B. J. et al. The observed impacts of wind farms on local vegetation growth in northern China. Remote Sens.9, 332 (2017).
Aksoy, T. et al. Impacts of wind turbines on vegetation and soil cover: a case study of Urla, Cesme, and Karaburun Peninsulas, Turkey. Clean. Technol. Environ. 25, 51–68 (2023).
Xu, K. et al. Positive ecological effects of wind farms on vegetation in China’s Gobi desert. Sci. Rep.9, 6341 (2019).
Stoner, D. C. et al. Climatically driven changes in primary production propagate through trophic levels. Glob. Change Biol. 24, 4453–4463 (2018).
Russo, N. J., Davies, A. B., Blakey, R. V., Ordway, E. M. & Smith, T. B. Feedback loops between 3D vegetation structure and ecological functions of animals. Ecol. Lett. 26, 1597–1613 (2023).
Allison, T. D. et al. Impacts to wildlife of wind energy siting and operation in the United States. Issues Ecol. 21, 2–18 (2019).
Diehl, R. H. The airspace is habitat. Trends Ecol. Evol. 28, 377–379 (2013).
Kati, V. et al. The overlooked threat of land take from wind energy infrastructures: quantification, drivers and policy gaps. J. Environ. Manag. 348, 119340 (2023).
Diffendorfer, J. E., Dorning, M. A., Keen, J. R., Kramer, L. A. & Taylor, R. V. Geographic context affects the landscape change and fragmentation caused by wind energy facilities. PeerJ 7, e7129 (2019).
Neri, M., Jameli, D., Bernard, E. & Melo, F. P. L. Green versus green? Adverting potential conflicts between wind power generation and biodiversity conservation in Brazil. Perspect. Ecol. Conserv. 17, 131–135 (2019).
Kati, V. et al. How much wilderness is left? A roadless approach under the Global and the European biodiversity strategy focusing on Greece. Biol. Conserv. 281, 110015 (2023).
Marques, A. T. et al. Wind turbines cause functional habitat loss for migratory soaring birds. J. Anim. Ecol. 89, 93–103 (2020).
Millon, L., Colin, C., Brescia, F. & Kerbiriou, C. Wind turbines impact bat activity, leading to high losses of habitat use in a biodiversity hotspot. Ecol. Eng. 112, 51–54 (2018).
Leroux, C., Barre, K., Valet, N., Kerbiriou, C. & Viol, I. L. Distribution of common pipistrelle (Pipistrellus pipistrellus) activity is altered by airflow disruption generated by wind turbines. PLoS ONE 19, e0303368 (2024).
Gipe, P. & Möllerström, E. An overview of the history of wind turbine development: part II — the 1970s onward. Wind Eng. 47, 220–248 (2023).
CEMAVE – Centro Nacional de Pesquisa e Conservação de Aves Silvestres. Relatório de áreas de concentração de aves migratórias no Brasil 222 (CEMAVE/ICMBio, 2022).
Tolvanen, A., Routavaara, H., Jokikokko, M. & Rana, P. How far are birds, bats, and terrestrial mammals displaced from onshore wind power development? — A systematic review. Biol. Conserv. 288, 110382 (2023).
Marques, A. T., Batalha, H. & Bernardino, J. Bird displacement by wind turbines: assessing current knowledge and recommendations for future studies. Birds 2, 460–475 (2021).
Reusch, C., Paul, A. A., Fritze, M., Kramer-Schadt, S. & Voigt, C. C. Wind energy production in forests conflicts with tree-roosting bats. Curr. Biol. 33, 737–743.e3 (2023).
Johnston, N. N., Bradley, J. E. & Otter, K. A. Increased flight altitudes among migrating golden eagles suggest turbine avoidance at a rocky mountain wind installation. PLoS ONE 9, e93030 (2014).
Fielding, A. H. et al. Responses of GPS-tagged territorial golden eagles to wind turbines in Scotland. Diversity 15, 917 (2023).
Lehnardt, Y., Barber, J. R. & Berger-Tal, O. Effects of wind turbine noise on songbird behavior during nonbreeding season. Conserv. Biol. 38, e14188 (2024).
Teff-Seker, Y., Berger-Tal, O., Lehnardt, Y. & Teschner, N. Noise pollution from wind turbines and its effects on wildlife: a cross-national analysis of current policies and planning regulations. Renew. Sust. Energ. Rev. 168, 112801 (2022).
Ellerbrok, J. S., Farwig, N., Peter, F. & Voigt, C. C. Forest bat activity declines with increasing wind speed in proximity of operating wind turbines. Glob. Ecol. Conserv. 49, e02782 (2024).
Coppes, J. et al. The impact of wind energy facilities on grouse: a systematic review. J. Ornithol. 161, 1–15 (2020).
Łopucki, R., Klich, D. & Gielarek, S. Do terrestrial animals avoid areas close to turbines in functioning wind farms in agricultural landscapes? Environ. Monit. Assess. 189, 343 (2017).
Ellerbrok, J. S., Farwig, N., Peter, F., Rehling, F. & Voigt, C. C. Forest gaps around wind turbines attract bat species with high collision risk. Biol. Conserv. 288, 110347 (2023).
Dias, D. D., Massara, R. L., de Campos, C. B. & Rodrigues, F. H. G. Human activities influence the occupancy probability of mammalian carnivores in the Brazilian Caatinga. Biotropica 51, 253–265 (2019).
Kumara, H. N. et al. Responses of birds and mammals to long-established wind farms in India. Sci. Rep. 12, 1339 (2022).
Thaker, M., Zambre, A. & Bhosale, H. Wind farms have cascading impacts on ecosystems across trophic levels. Nat. Ecol. Evol. 2, 1854–1858 (2018).
Milligan, M. C. et al. Variable effects of wind-energy development on seasonal habitat selection of pronghorn. Ecosphere 12, e03850 (2021).
Milligan, M. C. et al. Wind-energy development alters pronghorn migration at multiple scales. Ecol. Evol. 13, e9687 (2023).
Skarin, A. & Alam, M. Reindeer habitat use in relation to two small wind farms, during preconstruction, construction, and operation. Ecol. Evol. 7, 3870–3882 (2017).
Skarin, A., Nellemann, C., Rönnegård, L., Sandström, P. & Lundqvist, H. Wind farm construction impacts reindeer migration and movement corridors. Landsc. Ecol. 30, 1527–1540 (2015).
Skarin, A., Sandström, P. & Alam, M. Out of sight of wind turbines-reindeer response to wind farms in operation. Ecol. Evol. 8, 9906–9919 (2018).
Tsegaye, D. et al. Reindeer spatial use before, during and after construction of a wind farm. Appl. Anim. Behav. Sci. 195, 103–111 (2017).
Klich, D., Lopucki, R., Scibior, A., Golebiowska, D. & Wojciechowska, M. Roe deer stress response to a wind farms: methodological and practical implications. Ecol. Indic. 117, 106658 (2020).
Walter, W. D., Leslie, D. M. & Jenks, J. A. Response of rocky mountain elk (Cervus elaphus) to wind-power development. Am. Midl. Nat. 156, 363–375 (2006).
Thomas, P. J., Labrosse, A. K., Pomeroy, A. C. & Otter, K. A. Effects of weather on avian migration at proposed ridgeline wind energy sites. J. Wildl. Manag. 75, 805–815 (2011).
Smith, A. D. & McWilliams, S. R. Bat activity during autumn relates to atmospheric conditions: implications for coastal wind energy development. J. Mammal. 97, 1565–1577 (2016).
Chevallier, D. et al. Influence of weather conditions on the flight of migrating black storks. Proc. R. Soc. B 277, 2755–2764 (2010).
Drewitt, A. L. & Langston, R. H. W. Assessing the impacts of wind farms on birds. Ibis 148, 29–42 (2006).
Schuster, E., Bulling, L. & Köppel, J. Consolidating the state of knowledge: a synoptical review of wind energy’s wildlife effects. Environ. Manag. 56, 300–331 (2015).
Saidur, R., Rahim, N. A., Islam, M. R. & Solangi, K. H. Environmental impact of wind energy. Renew. Sust. Energ. Rev. 15, 2423–2430 (2011).
Kikuchi, R. Adverse impacts of wind power generation on collision behaviour of birds and anti-predator behaviour of squirrels. J. Nat. Conserv. 16, 44–55 (2008).
O’Shea, T. J., Cryan, P. M., Hayman, D. T. S., Plowright, R. K. & Streicker, D. G. Multiple mortality events in bats: a global review. Mammal. Rev. 46, 175–190 (2016).
Thaxter, C. B. et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. R. Soc. B 284, 20170829 (2017).
Marques, A. T. et al. Understanding bird collisions at wind farms: an updated review on the causes and possible mitigation strategies. Biol. Conserv. 179, 40–52 (2014).
Voigt, C. C. Insect fatalities at wind turbines as biodiversity sinks. Conserv. Sci. Pract. 3, e366 (2021).
International Finance Corporation. Post-Construction Bird and Bat Fatality Monitoring for Onshore Wind Energy Facilities in Emerging Market Countries (IFC, 2023).
Huso, M., Dalthorp, D., Miller, T. J. & Bruns, D. Wind energy development: methods to assess bird and bat fatality rates post-construction. Hum. Wildl. Interact. 10, 62–70 (2016).
Dalthorp, D. et al. GenEst Statistical Models — A Generalized Estimator of Mortality (US Geological Survey, 2018).
Reyes, G. A. et al. Searcher efficiency and survey coverage affect precision of fatality estimates. J. Wildl. Manag. 80, 1488–1496 (2016).
del Valle, J. D., Peralta, F. C. & Arjona, M. I. J. Factors affecting carcass detection at wind farms using dogs and human searchers. J. Appl. Ecol. 57, 1926–1935 (2020).
Conkling, T. J., Loss, S. R., Diffendorfer, J. E., Duerr, A. E. & Katzner, T. E. Limitations, lack of standardization, and recommended best practices in studies of renewable energy effects on birds and bats. Conserv. Biol. 35, 64–76 (2021).
Conkling, T. J., McClure, C. J., Cuadros, S., Loss, S. R. & Katzner, T. E. Limited rigor in studies of raptor mortality and mitigation at wind power facilities. Biol. Conserv. 275, 109707 (2022).
Baerwald, E. F., D’Amours, G. H., Klug, B. J. & Barclay, R. M. R. Barotrauma is a significant cause of bat fatalities at wind turbines. Curr. Biol. 18, R695–R696 (2008).
Rollins, K. E., Meyerholz, D. K., Johnson, G. D., Capparella, A. P. & Loew, S. S. A forensic investigation into the etiology of bat mortality at a wind farm: barotrauma or traumatic injury? Vet. Pathol. 49, 362–371 (2012).
Loss, S. R., Will, T. & Marra, P. P. Estimates of bird collision mortality at wind facilities in the contiguous United States. Biol. Conserv. 168, 201–209 (2013).
AWWI. Summary of Bat Fatality Monitoring Data Contained in AWWIC (American Wind and Wildlife Institute, 2020).
Vander Zanden, H. B. et al. The geographic extent of bird populations affected by renewable-energy development. Conserv. Biol. 38, e14191 (2024).
Pylant, C., Nelson, D. M., Fitzpatrick, M. C., Gates, J. E. & Keller, S. R. Geographic origins and population genetics of bats killed at wind-energy facilities. Ecol. Appl. 26, 1381–1395 (2016).
Erickson, R. A. et al. Assessing local population vulnerability with branching process models: an application to wind energy development. Ecosphere 6, 1–14 (2015).
Vasilakis, D. P., Whitfield, D. P. & Kati, V. A balanced solution to the cumulative threat of industrialized wind farm development on cinereous vultures (Aegypius monachus) in south-eastern Europe. PLoS ONE 12, e0172685 (2017).
Bounas, A. et al. Cumulative collision risk and population-level consequences of industrial wind-power plant development for two vulture species: a quantitative warning. Environ. Impact Assess. 110, 107669 (2025).
Bastos, R. et al. Evaluating the regional cumulative impact of wind farms on birds: how can spatially explicit dynamic modelling improve impact assessments and monitoring? J. Appl. Ecol. 53, 1330–1340 (2016).
Frick, W. F. et al. Fatalities at wind turbines may threaten population viability of a migratory bat. Biol. Conserv. 209, 172–177 (2017).
Friedenberg, N. A. & Frick, W. F. Assessing fatality minimization for hoary bats amid continued wind energy development. Biol. Conserv. 262, 109309 (2021).
Davy, C. M., Squires, K. & Zimmerling, J. R. Estimation of spatiotemporal trends in bat abundance from mortality data collected at wind turbines. Conserv. Biol. 35, 227–238 (2021).
Rodhouse, T. J. et al. Evidence of region-wide bat population decline from long-term monitoring and Bayesian occupancy models with empirically informed priors. Ecol. Evol. 9, 11078–11088 (2019).
Duriez, O., Pilard, P., Saulnier, N., Boudarel, P. & Besnard, A. Windfarm collisions in medium-sized raptors: even increasing populations can suffer strong demographic impacts. Anim. Conserv. 26, 264–275 (2023).
Cervantes, F., Martins, M. & Simmons, R. E. Population viability assessment of an endangered raptor using detection/non-detection data reveals susceptibility to anthropogenic impacts. R. Soc. Open Sci. 9, 220043 (2022).
Bas, Y., Kerbiriou, C., Roemer, C. & Julien, J. F. Bat Population Trends (Muséum National d’Histoire Naturelle, 2020).
Printz, L., Tschapka, M. & Vogeler, A. The common noctule bat (Nyctalus noctula): population trends from artificial roosts and the effect of biotic and abiotic parameters on the probability of occupation. J. Urban. Ecol. 7, juab033 (2021).
EUROBATS. EUROBATS National Implementation Report (EUROBATS, 2018).
Katzner, T. E. et al. Golden eagle fatalities and the continental-scale consequences of local wind-energy generation. Conserv. Biol. 31, 406–415 (2017).
Carrete, M., Sánchez-Zapata, J. A., Benítez, J. R., Lobón, M. & Donázar, J. A. Large scale risk-assessment of wind-farms on population viability of a globally endangered long-lived raptor. Biol. Conserv. 142, 2954–2961 (2009).
Dempsey, L., Hein, C. & Muenter, L. The Mitigation Hierarchy (Pacific Northwest National Laboratory, 2023).
Bennun, L. et al. Mitigating Biodiversity Impacts Associated with Solar and Wind Energy Development: Guidelines for Project Developers (IUCN, 2021).
Ohashi, H. et al. Biodiversity can benefit from climate stabilization despite adverse side effects of land-based mitigation. Nat. Commun. 10, 5240 (2019).
Ferrer, M. et al. Weak relationship between risk assessment studies and recorded mortality in wind farms. J. Appl. Ecol. 49, 38–46 (2012).
Lintott, P. R., Richardson, S. M., Hosken, D. J., Fensome, S. A. & Mathews, F. Ecological impact assessments fail to reduce risk of bat casualties at wind farms. Curr. Biol. 26, R1135–R1136 (2016).
Aydin, N. Y., Kentel, E. & Duzgun, S. GIS-based environmental assessment of wind energy systems for spatial planning: a case study from Western Turkey. Renew. Sust. Energ. Rev. 14, 364–373 (2010).
Xu, Y. et al. Site selection of wind farms using GIS and multi-criteria decision making method in Wafangdian, China. Energy 207, 118222 (2020).
Wu, G. C. et al. Minimizing habitat conflicts in meeting net-zero energy targets in the western United States. Proc. Natl Acad. Sci. USA 120, e2204098120 (2023).
Feng, X. Y. et al. Low impact siting for wind power facilities in the Southeast United States. Wind. Energy 26, 1254–1275 (2023).
Rodrigues, L. et al. Guidelines for Consideration of Bats in Wind Farm Projects – Revision 201. 133 (UNEP/EUROBATS, 2015).
Balotari-Chiebao, F., Santangeli, A., Piirainen, S. & Byholm, P. Wind energy expansion and birds: identifying priority areas for impact avoidance at a national level. Biol. Conserv. 277, 109851 (2023).
Rebolo-Ifrán, N., Lois, N. A. & Lambertucci, S. A. Wind energy development in Latin America and the Caribbean: risk assessment for flying vertebrates. Environ. Impact Assess.112, 107798 (2025).
Kati, V., Kassara, C., Vrontisi, Z. & Moustakas, A. The biodiversity–wind energy–land use nexus in a global biodiversity hotspot. Sci. Total. Environ. 768, 144471 (2021).
Passoni, G., Rowcliffe, J. M., Whiteman, A., Huber, D. & Kusak, J. Framework for strategic wind farm site prioritisation based on modelled wolf reproduction habitat in Croatia. Eur. J Wildl. Res. 63, 38 (2017).
DFFE. Phase 2 Strategic Environmental Assessment for Wind and Solar PV Energy in South Africa (Department of Environment Forestry and Fisheries, Stellenbosch, 2019).
Solick, D., Pham, D., Nasman, K. & Bay, K. Bat activity rates do not predict bat fatality rates at wind energy facilities. Acta Chiropterol. 22, 135–146 (2020).
Pedrana, J., Gorosábel, A., Pütz, K. & Bernad, L. First assessment on the influence of wind farms and high-voltage networks on ruddy-headed goose migration in Patagonia, Argentina. Polar Biol. 46, 639–653 (2023).
Barré, K., Le Viol, I., Bas, Y., Julliard, R. & Kerbiriou, C. Estimating habitat loss due to wind turbine avoidance by bats: implications for European siting guidance. Biol. Conserv. 235, 77–78 (2019).
Miller, T. A. et al. Assessing risk to birds from industrial wind energy development via paired resource selection models. Conserv. Biol. 28, 745–755 (2014).
Gauld, J. G. et al. Hotspots in the grid: avian sensitivity and vulnerability to collision risk from energy infrastructure interactions in Europe and North Africa. J. Appl. Ecol. 59, 1496–1512 (2022).
Roeleke, M., Blohm, T., Kramer-Schadt, S., Yovel, Y. & Voigt, C. C. Habitat use of bats in relation to wind turbines revealed by GPS tracking. Sci. Rep-Uk 6, 28961 (2016).
Cohen, E. B. et al. Using weather radar to help minimize wind energy impacts on nocturnally migrating birds. Conserv. Lett. 15, e12887 (2022).
Murgatroyd, M., Bouten, W. & Amar, A. A predictive model for improving placement of wind turbines to minimise collision risk potential for a large soaring raptor. J. Appl. Ecol. 58, 857–868 (2021).
Hanssen, F., May, R. & Nygård, T. High-resolution modeling of uplift landscapes can inform micrositing of wind turbines for soaring raptors. Environ. Manag. 66, 319–332 (2020).
Hodos, W. Minimization of Motion Smear: Reducing Avian Collision with Wind Turbines Report No. NREL/SR-500-33249 (National Renewable Energy Lab, 2003).
Martin, G. R. & Banks, A. N. Marine birds: vision-based wind turbine collision mitigation. Glob. Ecol. Conserv. 42, e02386 (2023).
Blary, C. et al. Detection of wind turbines rotary motion by birds: a matter of speed and contrast. Conserv. Sci. Pract. 5, e13022 (2023).
May, R. et al. Paint it black: efficacy of increased wind turbine rotor blade visibility to reduce avian fatalities. Ecol. Evol. 10, 8927–8935 (2020).
Stokke, B. G., Nygård, T., Falkdalen, U., Pedersen, H. C. & May, R. Effect of tower base painting on willow ptarmigan collision rates with wind turbines. Ecol. Evol. 10, 5670–5679 (2020).
Cryan, P. M., Gorresen, P. M., Straw, B. R., Thao, S. & DeGeorge, E. Influencing activity of bats by dimly lighting wind turbine surfaces with ultraviolet light. Animals 12, 9 (2022).
May, R., Åström, J., Hamre, O. & Dahl, E. L. Do birds in flight respond to (ultra)violet lighting? Avian Res. 8, 33 (2017).
Kerlinger, P. et al. Night migrant fatalities and obstruction lighting at wind turbines in North America. Wilson J. Ornithol. 122, 744–754 (2010).
American Wind Wildlife Institute. Results Summary: Technology Innovation Program Test of DTBird (American Wind Wildlife Institute, 2018).
Arnett, E. B., Hein, C. D., Schirmacher, M. R., Huso, M. M. P. & Szewczak, J. M. Evaluating the effectiveness of an ultrasonic acoustic deterrent for reducing bat fatalities at wind turbines. PLoS ONE 8, e65794 (2013).
Weaver, S. P., Hein, C. D., Simpson, T. R., Evans, J. W. & Castro-Arellano, I. Ultrasonic acoustic deterrents significantly reduce bat fatalities at wind turbines. Glob. Ecol. Conserv. 24, e01099 (2020).
Clerc, J., Huso, M., Schirmacher, M., Whitby, M. & Hein, C. Ultrasonic deterrents provide no additional benefit over curtailment in reducing bat fatalities at an Ohio wind energy facility. PLoS ONE 20, e0318451 (2025).
Voigt, C. C., Russo, D., Runkel, V. & Goerlitz, H. R. Limitations of acoustic monitoring at wind turbines to evaluate fatality risk of bats. Mammal. Rev. 51, 559–570 (2021).
Bohn, K. M., Schmidt-French, B., Ma, S. T. & Pollak, G. D. Syllable acoustics, temporal patterns, and call composition vary with behavioral context in Mexican free-tailed bats. J. Acoust. Soc. Am. 124, 1838–1848 (2008).
Martin, G. R. Understanding bird collisions with man-made objects: a sensory ecology approach. Ibis 153, 239–254 (2011).
Honkanen, A., Adden, A., Freitas, J. D. & Heinze, S. The insect central complex and the neural basis of navigational strategies. J. Exp. Biol. 222, jeb188854 (2019).
Hayes, M. A. et al. A smart curtailment approach for reducing bat fatalities and curtailment time at wind energy facilities. Ecol. Appl. 29, e01881 (2019).
Lloyd, J. D., Butryn, R., Pearman-Gillman, S. & Allison, T. D. Seasonal patterns of bird and bat collision fatalities at wind turbines. PLoS ONE 18, e0284778 (2023).
Baerwald, E. F., Edworthy, J., Holder, M. & Barclay, R. M. R. A large-scale mitigation experiment to reduce bat fatalities at wind energy facilities. J. Wildl. Manag. 73, 1077–1081 (2009).
Martin, C. M., Arnett, E. B., Stevens, R. D. & Wallace, M. C. Reducing bat fatalities at wind facilities while improving the economic efficiency of operational mitigation. J. Mammal. 98, 378–385 (2017).
Arnett, E. B., Huso, M. M. P., Schirmacher, M. R. & Hayes, J. P. Altering turbine speed reduces bat mortality at wind-energy facilities. Front. Ecol. Environ. 9, 209–214 (2011).
Maclaurin, G. et al. National-scale impacts on wind energy production under curtailment scenarios to reduce bat fatalities. Wind. Energy 25, 1514–1529 (2022).
Behr, O. et al. in Wind Energy and Wildlife Interactions (ed. Köppel, J.) 135–160 (Springer International, 2017).
Smallwood, K. S. & Bell, D. A. Effects of wind turbine curtailment on bird and bat fatalities. J. Wildl. Manag. 84, 685–696 (2020).
de Lucas, M., Ferrer, M., Bechard, M. J. & Muñoz, A. R. Griffon vulture mortality at wind farms in southern Spain: distribution of fatalities and active mitigation measures. Biol. Conserv. 147, 184–189 (2012).
Ferrer, M., Alloing, A., Baumbush, R. & Morandini, V. Significant decline of Griffon vulture collision mortality in wind farms during 13-year of a selective turbine stopping protocol. Glob. Ecol. Conserv. 38, e02203 (2022).
Tomé, R., Canário, F., Leitão, A. H., Pires, N. & Repas, M. in Wind Energy and Wildlife Interactions (ed. Köppel, J.) 119–133 (Springer International, 2017).
May, R. F., Hamre, Ø., Vang, R. & Nygård, T. Evaluation of the DTBird Video-System at the Smøla Wind-Power Plant. Detection Capabilities for Capturing Near-Turbine Avian Behaviour. NINA Report 910 (NINA Publications, 2012).
McClure, C. J. W., Martinson, L. & Allison, T. D. Automated monitoring for birds in flight: proof of concept with eagles at a wind power facility. Biol. Conserv. 224, 26–33 (2018).
McClure, C. J. W. et al. Confirmation that eagle fatalities can be reduced by automated curtailment of wind turbines. Ecol. Solut. Evid. 3, e12173 (2022).
Rolek, B. W. et al. Flight characteristics forecast entry by eagles into rotor-swept zones of wind turbines. Ibis 164, 968–980 (2022).
McClure, C. J. W. et al. Eagles enter rotor-swept zones of wind turbines at rates that vary per turbine. Ecol. Evol. 11, 11267–11274 (2021).
McClure, C. J. W. et al. Eagle fatalities are reduced by automated curtailment of wind turbines. J. Appl. Ecol. 58, 446–452 (2021).
Duerr, A. E., Parsons, A. E., Nagy, L. R., Kuehn, M. J. & Bloom, P. H. Effectiveness of an artificial intelligence-based system to curtail wind turbines to reduce eagle collisions. PLoS ONE 18, e0278754 (2023).
Jenkins, A. R. et al. Combining radar and direct observation to estimate pelican collision risk at a proposed wind farm on the Cape west coast, South Africa. PLoS ONE 13, e0192515 (2018).
Shipley, J. R., Kelly, J. F. & Frick, W. F. Toward integrating citizen science and radar data for migrant bird conservation. Remote Sens. Ecol. Con 4, 127–136 (2018).
Rabie, P. A. et al. Efficacy and cost of acoustic-informed and wind speed-only turbine curtailment to reduce bat fatalities at a wind energy facility in Wisconsin. PLoS ONE 17, e0266500 (2022).
Quillen, J. Bat Smart Curtailment: Efficacy and Operational Testing award number DE-EE0008900 (DOE, 2025).
Stantec. Activity-Based Informed Curtailment: Using Acoustics to Design and Validate Smart Curtailment to Reduce Risk to Bats at Wind Farms award number DE-EE0008728 (DOE, 2025).
Newman, C. et al. Evaluation of the Turbine Integrated Mortality Reduction (TIMR℠) Technology as a Smart Curtailment Approach: Final Summary Report (Electric Power Research Institute, 2024).
Peste, F. et al. How to mitigate impacts of wind farms on bats? A review of potential conservation measures in the European context. Environ. Impact Assess. 51, 10–22 (2015).
Mainwaring, M. C. The use of man-made structures as nesting sites by birds: a review of the costs and benefits. J. Nat. Conserv. 25, 17–22 (2015).
Flaquer, C., Torre, I. & Ruiz-Jarillo, R. The value of bat-boxes in the conservation of Pipistrellus pygmaeus in wetland rice paddies. Biol. Conserv. 128, 223–230 (2006).
Stevens, C. E., Gabor, T. S. & Diamond, A. W. Use of restored small wetlands by breeding waterfowl in Prince Edward Island, Canada. Restor. Ecol. 11, 3–12 (2003).
Weidlich, E. W. A., Flórido, F. G., Sorrini, T. B. & Brancalion, P. H. S. Controlling invasive plant species in ecological restoration: a global review. J. Appl. Ecol. 57, 1806–1817 (2020).
Burger, J. Environmental management: integrating ecological evaluation, remediation, restoration, natural resource damage assessment and long-term stewardship on contaminated lands. Sci. Total. Environ. 400, 6–19 (2008).
Tuttle, M. D. Gating as a means of protecting cave dwelling bats. In Proc. National Cave and Karst Management Symposia (eds. Aley, T. & Rhodes, D.) 77–82 (Speleobooks, 1977).
Cole, S. G. & Dahl, E. L. Compensating white-tailed eagle mortality at the smola wind-power plant using electrocution prevention measures. Wildl. Soc. B 37, 84–93 (2013).
Slabe, V. A., Crandall, R. H., Katzner, T., Duerr, A. E. & Miller, T. A. Efficacy of non-lead ammunition distribution programs to offset fatalities of golden eagles in southeast Wyoming. J. Wildl. Manag. 88, e22647 (2024).
Lonsdorf, E., Sanders-Reed, C. A., Boal, C. & Allison, T. D. Modeling golden eagle-vehicle collisions to design mitigation strategies. J. Wildl. Manag. 82, 1633–1644 (2018).
Gallo, T., Stinson, L. T. & Pejchar, L. Mitigation for energy development fails to mimic natural disturbance for birds and mammals. Biol. Conserv. 212, 39–47 (2017).
Sonter, L. J., Maron, M., Metaxas, A. & Bull, J. W. Ensuring legitimate project-level claims about net biodiversity outcomes. Trends Ecol. Evol. 39, 599–602 (2024).
Mengel, M., Treu, S., Lange, S. & Frieler, K. ATTRICI v1.1-counterfactual climate for impact attribution. Geosci. Model. Dev. 14, 5269–5284 (2021).
Cole, W., Corcoran, S., Gates, N., Mai, T. & Das, P. Standard Scenarios Report: A U.S. Electricity Sector Outlook (National Renewable Energy Laboratory, 2020).
Brook, B. W. & Bradshaw, C. J. A. Key role for nuclear energy in global biodiversity conservation. Conserv. Biol. 29, 702–712 (2015).
White, T. B. et al. Assessing costs and cost-effectiveness across the mitigation hierarchy: an example considering the reduction of bird mortality at power lines. Biol. Conserv. 296, 110651 (2024).
Hamilton, T. M. et al. Data-driven counterfactual evaluation of management outcomes to improve emergency conservation decisions. Conserv. Lett. 16, e12925 (2023).
Thomas, H. et al. Achieving “nature positive” requires net gain legislation. Science 386, 383–385 (2024).
Kunming-Montreal Global Biodiversity Framework. Convention on Biological Diversity. cbd.int https://www.cbd.int/gbf (2022).
Roddis, P. Eco-innovation to reduce biodiversity impacts of wind energy: key examples and drivers in the UK. Environ. Innov. Soc. Tr. 28, 46–56 (2018).
Lambertucci, S. A. & Speziale, K. L. Need for global conservation assessments and frameworks to include airspace habitat. Conserv. Biol. 35, 1341–1343 (2021).
US Fish and Wildlife Service. Bat and Wind Power Incidental Take Permit Reports (US Fish and Wildlife Service, 2025).
US Fish and Wildlife Service. Land-Based Wind Energy Guidelines (US Fish and Wildlife Service, 2012).
Pereira, M. J. R. et al. Guidelines for consideration of bats in environmental impact assessment of wind farms in Brazil: a collaborative governance experience from Rio Grande do Sul State. Oecol. Aust. 21, 232–255 (2017).
Valença, R. B. & Bernard, E. Another blown in the wind: bats and the licensing of wind farms in Brazil. Nat. Conserv. 13, 117–122 (2015).
Conzo, L., Aramburu, R. & Gordon, C. Subsecretaría de Energías Renovables y Eficiencia Energética (Ministerio de Hacienda, Presidencia de la Nación, 2019).
Bolonio, L., Moreno, E., La Calle, A., Montelío, E. & Valera, F. Renewable energy acceleration endangers a protected species: better stop to light a torch than run in the dark. Environ. Impact Assess. 105, 107432 (2024).
Durá-Alemañ, C. J., Moleón, M., Pérez-García, J. M., Serrano, D. & Sánchez-Zapata, J. A. Climate change and energy crisis drive an unprecedented EU environmental law regression. Conserv. Lett. 16, e12958 (2023).
Galal, S. Leading countries in wind energy capacity in Africa 2023. Statista https://www.statista.com/statistics/1278115/leading-countries-in-wind-energy-capacity-in-africa/ (2024).
Sarhan, M., Uffe, S. G. & Abdeldayem, O. Environmental Impact Assessment Guidelines for Wind Energy Developments in Egypt (Birdlife International & United Nations Development Program, 2013).
DEA. EIA Guideline for Renewable Energy Projects (Department of Environmental Affairs, 2015).
DFFE. Protocol for the Specialist Assessment and Minimum Report Content Requirements for Environmental Impacts on Avifaunal Species by Onshore Wind Energy Generation Facilities where the Electricity Output in 20 Megawatts of More Published Government Notice No. 320 Government Gazette 43110 (Department of Forestry, Fisheries and the Environment, 2020).
DFFE. Identification of Procedures to be Followed When Applying for or Deciding on an Environmental Authorization Application for Large Scale Wind and Solar Photovoltaic Facilities, When Occurring in Renewable Energy Development Zones Government Gazette no. 44191 (Department of Forestry, Fisheries and the Environment, 2021).
UNECE. Environmental Performance Reviews, Morocco (UNECE, 2022).
Acknowledgements
We thank A. Hale for thoughtful feedback. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.
Author information
Authors and Affiliations
Contributions
T.E.K. organized the writing effort, all authors were responsible for writing at least one section of the manuscript, and all authors contributed to revisions of the final document.
Corresponding author
Ethics declarations
Competing interests
The authors declare the following competing interests: T.E.K., R.H.D., M.M. and D.M.N. have research agreements funded by one or several partners including in the renewable energy industry, at the US Department of Energy, the US Fish and Wildlife Service, the US Geological Survey, the Bureau of Ocean Energy Management and the Renewable Energy Wildlife Institute (REWI), and D.M.N. is a science advisor for REWI.
Peer review
Peer review information
Nature Reviews Biodiversity thanks Fabio Balotari-Chiebao, Liz Kalies and Vassili Kati for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Katzner, T.E., Nelson, D.M., Marques, A.T. et al. Impacts of onshore wind energy production on biodiversity. Nat. Rev. Biodivers. 1, 567–580 (2025). https://doi.org/10.1038/s44358-025-00078-1
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s44358-025-00078-1