Abstract
Fire regimes (the sequence of fires and their attributes including intensity, frequency and patchiness) are fundamental to the structure and function of many ecosystems. In many locations, changes in fire regimes are threatening large numbers of species. In this Review, we discuss the factors that cause certain species and groups of species to be harmed by fire regime changes and identify strategies to manage the species that are most sensitive to fire regime change. Variation in species sensitivity to fire and fire regime change is influenced by species life history characteristics (such as long generation times or low reproductive rates) and landscape characteristics (such as habitat patchiness caused by previous fires). Management considerations include maintaining or restoring appropriate levels of spatial patchiness in fire; avoiding degradation of ecosystem condition; implementing post-fire management that can support species recovery (for example, avoid salvage logging and control invasive species); managing the overall disturbance burden; and minimizing the stressors that can co-occur with (and interact negatively with) altered fire regimes. Progress in identifying and conserving species most sensitive to altered fire regimes requires more long-term studies, particularly those spanning multiple fire events and accounting for stressors that interact with fire regimes and affect ecosystem integrity.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).
Mack, M. C. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475, 489–492 (2011).
Abram, N. J., Gagan, M. K., Mcculloch, M. T., Chappell, J. & Hantoro, W. S. Coral reef death during the 1997 Indian ocean dipole linked to Indonesian wildfires. Science 301, 952–955 (2003).
Harmon, M. E., Hanson, C. T. & DellaSala, D. A. Combustion of aboveground wood from live trees in megafires, CA, USA. Forests 13, 391 (2022).
Gomez Isaza, D. F., Cramp, R. L. & Franklin, C. E. Fire and rain: a systematic review of the impacts of wildfire and associated runoff on aquatic fauna. Glob. Change Biol. 28, 2578–2595 (2022).
Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597, 370–375 (2021).
Bardales, R. et al. Neotropical mammal responses to megafires in the Brazilian pantanal. Glob. Change Biol. 30, e17278 (2024).
Legge, S. et al. The conservation impacts of ecological disturbance: time-bound estimates of population loss and recovery for fauna affected by the 2019–20 Australian megafires. Glob. Ecol. Biogeogr. 31, 2085–2104 (2022).
Banks, S. C. et al. How does ecological disturbance influence genetic diversity? Trends Ecol. Evol. 28, 670–679 (2013).
Potvin, D. A. et al. Genetic erosion and escalating extinction risk in frogs with increasing wildfire frequency. J. Appl. Ecol. 54, 945–954 (2016).
Swanson, M. E. et al. The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front. Ecol. Environ. 9, 117–125 (2011).
Turner, M. G., Braziunas, K. H., Hansen, W. D. & Harvey, B. J. Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. Proc. Natl Acad. Sci. USA 116, 11319–11328 (2019).
Franklin, J. F. et al. Threads of continuity. Conserv. Prac. 1, 8–17 (2000).
Steel, Z. L., Fogg, A. M., Burnett, R., Roberts, L. J. & Safford, H. D. When bigger isn’t better — implications of large high-severity wildfire patches for avian diversity and community composition. Divers. Distrib. 28, 439–453 (2022).
Bergstrom, D. M. et al. Combating ecosystem collapse from the tropics to the Antarctic. Glob. Change Biol. 27, 1692–1703 (2021).
Odion, D. C., Moritz, M. A. & DellaSala, D. A. Alternative community states maintained by fire in the Klamath Mountains, USA. J. Ecol. 98, 96–105 (2010).
DellaSala, D. A. & Hanson, C. T. Mixed-Severity Fires: Nature’s Phoenix (Elsevier, 2024).
Keeley, J. E. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildl. Fire 18, 116–126 (2009).
Kelly, L., Brotons, L. & McCarthy, M. A. Putting pyrodiversity to work for animal conservation. Conserv. Biol. 31, 952–955 (2017).
Parr, C. L. & Andersen, A. N. Patch mosaic burning for biodiversity conservation: a critique of the pyrodiversity paradigm. Conserv. Biol. 20, 1610–1619 (2006).
Hutto, R. L., Conway, C. J., Saab, V. A. & Walters, J. R. What constitutes a natural fire regime? Insight from the ecology and distribution of coniferous forest birds in North America. Fire Ecol. 4, 115–132 (2008).
Kelly, L. T. et al. Fire and biodiversity in the Anthropocene. Science 370, eabb0355 (2020).
Hiers, J. K., O’Brien, J. J., Will, R. E. & Mitchell, R. J. Forest floor depth mediates understory vigor in xeric Pinus palustris ecosystems. Ecol. Appl. 17, 806–814 (2007).
Larson, A. J., Belote, R. T., Cansler, C. A., Parks, S. A. & Dietz, M. S. Latent resilience in Ponderosa pine forest: effects of resumed frequent fire. Ecol. Appl. 23, 1243–1249 (2013).
Stephens, S. L., Collins, B. M., Biber, E. & Fulé, P. Z. U. S. federal fire and forest policy: emphasizing resilience in dry forests. Ecosphere 7, e01584 (2016).
Halofsky, J. E., Peterson, D. L. & Harvey, B. J. Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. https://doi.org/10.1186/s42408-019-0062-8 (2020).
Gromtsev, A. Natural disturbance dynamics in the boreal forests of European Russia: a review. Silva Fenn. 36, 41–55 (2002).
Zackrisson, O. Influence of forest fires on the north Swedish boreal forest. Oikos 29, 22–32 (1977).
Kooyman, R. M., Watson, J. & Wilf, P. Protect Australia’s Gondwana rainforests. Science 367, 1083 (2020).
Flores, B. M., Fagoaga, R., Nelson, B. W. & Holmgren, M. Repeated fires trap Amazonian blackwater floodplains in an open vegetation state. J. Appl. Ecol. 53, 1597–1603 (2016).
Harrison, M. E. et al. Impacts of fire and prospects for recovery in a tropical peat forest ecosystem. Proc. Natl Acad. Sci. USA 121, e2307216121 (2024).
Sanborn, P., Geertsema, M., Jull, A. J. T. & Hawkes, B. Soil and sedimentary charcoal evidence for Holocene forest fires in an Inland temperate rainforest, East-Central British Columbia, Canada. Holocene 16, 415–427 (2006).
Bousfield, C., Lindenmayer, D. B. & Edwards, D. Major and increasing wildfire-driven losses of timber stocks globally. Nat. Geosci. 16, 1145–1150 (2023).
Doherty, T. S., Macdonald, K. J., Nimmo, D. G., Santos, J. L. & Geary, W. L. Shifting fire regimes cause continent-wide transformation of threatened species habitat. Proc. Natl Acad. Sci. USA 121, e2316417121 (2024).
Setterfield, S. A., Rossiter Rachor, N. A., Hutley, L. B., Douglas, M. M. & Williams, R. J. Turning up the heat: the impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas. Divers. Distrib. 16, 854–861 (2010).
Hart, S. J. et al. Examining forest resilience to changing fire frequency in a fire-prone region of boreal forest. Glob. Change Biol. 25, 869–884 (2019).
Collins, L. et al. The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire. Environ. Res. Lett. 16, 044029 (2021).
Parks, S. A. et al. Contemporary wildfires are more severe compared to the historical reference period in western US dry conifer forests. For. Ecol. Manag. 544, 121232 (2023).
Lindenmayer, D. B., Taylor, C., Blanchard, W., Zylstra, P. & Evans, M. J. What environmental and climatic factors influence multi-decadal fire frequency? Ecosphere https://doi.org/10.1002/ecs2.4610 (2023).
Mackey, B., Lindenmayer, D. B., Norman, P., Taylor, C. & Gould, S. Are fire refugia less predictable due to climate change? Environ. Res. Lett. 16, 114028 (2021).
Cunningham, C. X., Williamson, G. J. & Bowman, D. M. J. S. Increasing frequency and intensity of the most extreme wildfires on Earth. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-024-02452-2 (2024).
Baker, W. L. Contemporary wildfires not more severe than historically: more fire of all severities needed to sustain and adapt western US dry forests as climate changes. Sustainability 16, 3270 (2024).
Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).
Jain, P. et al. Drivers and impacts of the record-breaking 2023 wildfire season in Canada. Nat. Commun. 15, 6764 (2024).
Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region — spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33, L09703 (2006).
Ponomarev, E. I. & Kharuk, V. I. Wildfire occurrence in forests of the Altai–Sayan region under current climate changes. Contemp. Probl. Ecol. 9, 29–36 (2016).
Blackwood, E. M. J. et al. Pirra Jungku: comparison of traditional and contemporary fire practices on Karajarri Country, Western Australia. Ecol. Manag. Restor. 23, 83–92 (2021).
Nowacki, G. J. & Abrams, M. D. The demise of fire and ‘mesophication’ of forests in the eastern United States. Bioscience 58, 123–138 (2008).
Santos, J. L. et al. Beyond inappropriate fire regimes: a synthesis of fire-driven declines of threatened mammals in Australia. Conserv. Lett. 15, e12905 (2022).
Driscoll, D. A. et al. Biodiversity impacts of the 2019–2020 Australian megafires. Nature https://doi.org/10.1038/s41586-024-08174-6 (2024).
Grau-Andres, R., Moreira, B. & Pausas, J. Global plant responses to intensified fire regimes. Glob. Ecol. Biogeogr. 33, e13858 (2024).
Pausas, J. G. Generalized fire response strategies in plants and animals. Oikos 128, 147–153 (2019).
Enright, N. J., Fontaine, J. B., Bowman, D. M. J. S., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265–272 (2015).
Geary, W. L., Doherty, T., Nimmo, D. G., Tulloch, A. I. T. & Ritchie, E. Predator responses to fire: a global systematic review and meta-analysis. J. Anim. Ecol. 89, 955–971 (2020).
González, T. M., González-Trujillo, J. D., Muñoz, A. & Armenteras, D. Effects of fire history on animal communities: a systematic review. Ecol. Process. https://doi.org/10.1186/s13717-021-00357-7 (2022).
Forney, R. R. & Peacock, M. M. The effects of fire on large- and medium-sized mammal communities: what do we know? A review. Mammal Rev. 54, 357–372 (2024).
Gordon, L. G., Evans, M. J., Zylstra, P. J. & Lindenmayer, D. B. Trends and gaps in prescribed burning research. Environ. Manage. 75, 746–760 (2025).
Lindenmayer, D. B. et al. Testing hypotheses associated with bird responses to wildfire. Ecol. Appl. 18, 1967–1983 (2008).
Buma, B. Disturbance interactions: characterization, prediction, and the potential for cascading effects. Ecosphere 6, art70 (2015).
Bowd, E. J., Cary, G. J., Freeman, D., Bell-Garner, B. & Lindenmayer, D. B. Plant responses to a re-emergence of cultural burning in long-unburnt, threatened temperate woodlands. Glob. Change Biol. 31, e70230 (2025).
Lindenmayer, D. B. & Zylstra, P. Identifying and managing disturbance-stimulated flammability in woody ecosystems. Biol. Rev. 99, 699–714 (2024).
Caro, T. Conservation by Proxy. Indicator, Umbrella, Keystone, Flagship, and Other Surrogate Species (Island Press, 2010).
Lambeck, R. J. Focal species: a multi-species umbrella for nature conservation. Conserv. Biol. 11, 849–856 (1997).
Cary, G., Blanchard, W., Foster, C. N. & Lindenmayer, D. B. Effects of altered fire intervals on critical timber production and conservation values. Int. J. Wildl. Fire 30, 322–328 (2021).
Lindenmayer, D., Taylor, C., Bowd, E. & Ashman, K. The case for listing Mountain Ash forests in the Central Highlands of Victoria as a Threatened Ecological Community. Pac. Conserv. Biol. 30, PC23010 (2023).
Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. Ser. B 283, rspb.2015.2592 (2016).
Donato, D. C., Halofsky, J. S. & Reilly, M. J. Corralling a black swan: natural range of variation in a forest landscape driven by rare, extreme events. Ecol. Appl. 30, e02013 (2020).
Parks, S. A. et al. A fire deficit persists across diverse north American forests despite recent increases in area burned. Nat. Commun. 16, 1493 (2025).
McWethy, D. B. et al. Landscape drivers of recent fire activity (2001–2017) in south-central Chile. PLoS ONE 13, e0201195 (2018).
Kalies, E. L. & Yocom Kent, L. L. Tamm review: are fuel treatments effective at achieving ecological and social objectives? A systematic review. For. Ecol. Manag. 375, 84–95 (2016).
Prichard, S. J. et al. Adapting western North American forests to climate change and wildfires: 10 common questions. Ecol. Appl. 31, e02433 (2021).
Stephens, S. L. et al. Fire and climate change: conserving seasonally dry forests is still possible. Front. Ecol. Environ. 18, 354–360 (2020).
Friederici, P. Ecological Restoration of Southwestern Ponderosa Pine Forests (Island Press, 2003).
Taylor, C., Blanchard, W. & Lindenmayer, D. B. Does forest thinning reduce fire severity in Australian eucalypt forests? Conserv. Lett. 14, e12766 (2020).
Lindenmayer, D. B., Taylor, C., Bowd, E. & Zylstra, P. What did it used to look like? A case study from tall, wet mainland mountain Ash forests prior to British Invasion. Austral Ecol. 49, e13520 (2024).
Calkin, D. E. et al. Wildland–urban fire disasters aren’t actually a wildfire problem. Proc. Natl Acad. Sci. USA 120, e2315797120 (2023).
Lydersen, J. M. et al. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event. Ecol. Appl. 27, 2013–2030 (2017).
Zylstra, P. J., Bradshaw, S. D. & Lindenmayer, D. B. Reply to comment on ‘Self-thinning forest understoreys reduce wildfire risk, even in a warming climate’. Environ. Res. Lett. 19, 058001 (2024).
Zylstra, P. J. et al. Mechanisms by which growth and succession limit the impact of fire in a south-western Australian forested ecosystem. Funct. Ecol. 37, 1350–1365 (2023).
Lesmeister, D. B., Davis, R. J., Sovern, S. G. & Yang, Z. Northern spotted owl nesting forests as fire refugia: a 30-year synthesis of large wildfires. Fire Ecol. 17, 32 (2021).
Boer, M. M., Sadler, R. J., Wittkuhn, R. S., McCaw, L. & Grierson, P. F. Long-term impacts of prescribed burning on regional extent and incidence of wildfires — evidence from 50 years of active fire management in SW Australian forests. For. Ecol. Manag. 259, 132–142 (2009).
Stojanovic, D., Neeman, T., Crates, R., Troy, S. & Heinsohn, R. Short-term impacts of prescribed burning on orange-bellied parrot (Neophema chrysogaster) food plant abundance. Ecol. Manag. Restor. 21, 211–217 (2020).
Flint, A. & Fagg, P. Mountain Ash in Victoria’s State Forests (Department of Sustainability and Environment, Melbourne, 2007).
Vranjic, J. A., Morin, L., Reid, A. M. & Groves, R. H. Integrating revegetation with management methods to rehabilitate coastal vegetation invaded by Bitou bush (Chrysanthemoides monilifera ssp. rotundata) in Australia. Austral Ecol. 37, 78–89 (2012).
Hoffman, K. M. et al. Conservation of Earth’s biodiversity is embedded in indigenous fire stewardship. Proc. Natl Acad. Sci. USA 118, e2105073118 (2021).
Golden-Shouldered Parrot Recovery Team. in The Action Plan for Australian Birds 2020 (eds St Garnett & Baker, S. B.) 419–421 (CSIRO Publishing, 2021).
Templeton, A. R., Brazeal, H. & Neuwald, J. L. The transition from isolated patches to a metapopulation in the eastern collared lizard in response to prescribed fires. Ecology 92, 1736–1747 (2011).
Holland, G. J., Clarke, M. F. & Bennett, A. F. Prescribed burning consumes key forest structural components: implications for landscape heterogeneity. Ecol. Appl. 27, 845–858 (2016).
Dixon, D. J., Callow, J. N., Duncan, J. M. A., Setterfield, S. A. & Pauli, N. Regional-scale fire severity mapping of Eucalyptus forests with the Landsat archive. Remote. Sens. Environ. 270, 112863 (2022).
Zylstra, P. Quantifying the direct fire threat to a critically endangered arboreal marsupial using biophysical, mechanistic modelling. Austral Ecol. 48, 266–238 (2023).
Byram, G. M. in Forest Fire Control and Use (ed. Davies, K. P.) 61–89 (McGraw-Hill, 1959).
Ramberg, E., Strengbom, J., Wikars, L. O. & Ranius, T. Surrounding landscape composition influences saproxylic beetle assemblages after prescribed burning. J. Appl. Ecol. 62, 1685–1695 (2025).
Tingley, M. W., Ruiz-Gutierrez, V., Wilkerson, R. L., Howell, C. & Siegel, R. B. Pyrodiversity promotes avian diversity over the decade following forest fire. Proc. R. Soc. Ser. B 283, 20161703 (2016).
Collins, L. C. et al. Fuel reduction burning reduces wildfire severity during extreme fire events in south-eastern Australia. J. Environ. Manag. 343, 118171 (2023).
Price, O. F. et al. Global patterns in fire leverage: the response of annual area burnt to previous fire. Int. J. Wildl. Fire 24, 297–306 (2015).
Gosper, C. R. et al. Multi-century periods since fire in an intact woodland landscape favour bird species declining in an adjacent agricultural region. Biol. Conserv. 230, 82–90 (2019).
Palm, E. et al. Increasing fire frequency and severity will increase habitat loss for a boreal forest indicator species. Ecol. Appl. 32, e2549 (2022).
Sopniewski, J., Catullo, R., Ward, M., Mitchell, N. & Scheele, B. C. Niche-based approach to explore the impacts of environmental disturbances on biodiversity. Biol. Conserv. https://doi.org/10.1111/cobi.14277 (2024).
Jones, G. M. et al. Conserving landscape dynamics, not just landscapes. BioScience 75, 409–415 (2025).
Von Takach Dukai, B. et al. Long-unburnt habitat is critical for the conservation of threatened vertebrates across Australia. Landsc. Ecol. 37, 1469–1482 (2022).
Backer, D. M., Jensen, S. E. & McPherson, G. R. Impacts of fire suppression activities on natural communities. Conserv. Biol. 18, 937–944 (2004).
Stewart, J. A. et al. Effects of postfire climate and seed availability on postfire conifer regeneration. Ecol. Appl. 31, e02280 (2021).
Pilliod, D. S., Welty, J. L. & Arkle, R. S. Refining the cheatgrass–fire cycle in the Great Basin: precipitation timing and fine fuel composition predict wildfire trends. Ecol. Evol. 7, 8126–8151 (2017).
Legge, S. et al. Enumerating a continental-scale threat: how many feral cats are in Australia? Biol. Conserv. 206, 293–303 (2017).
Legge, S. et al. in Australia’s 2019–20 Megafires: Biodiversity Impacts and Lessons for the Future (eds Rumpff, L. et al.) 269–284 (CSIRO Publishing, 2023).
Lindenmayer, D. B. et al. Elevation, disturbance, and forest type drive the occurrence of a specialist arboreal folivore. PLoS ONE https://doi.org/10.1371/journal.pone.0265963 (2022).
Taylor, C., McCarthy, M. A. & Lindenmayer, D. B. Non-linear effects of stand age on fire severity. Conserv. Lett. 7, 355–370 (2014).
Lindenmayer, D. B., Bowd, E., Youngentob, K. & Evans, M. J. Quantifying drivers of decline: a case study of long-term changes in arboreal marsupial detections. Biol. Conserv. 293, 110589 (2024).
Lindenmayer, D. B., Blanchard, W., Blair, D., McBurney, L. & Banks, S. C. Environmental and human drivers influencing large old tree abundance in Australian wet forests. For. Ecol. Manag. 372, 226–235 (2016).
Lindenmayer, D. B. et al. What factors influence rapid post-fire site re-occupancy? A case study of the endangered eastern Bristlebird in eastern Australia. Int. J. Wildl. Fire 18, 84–95 (2009).
Thorn, S. et al. Impacts on salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 55, 279–289 (2018).
Bowd, E. J., Lindenmayer, D. B., Banks, S. C. & Blair, D. P. Logging and fire regimes alter plant communities. Ecol. Appl. 28, 826–841 (2018).
McGregor, H. W., Legge, S. M., Jones, M. E. & Johnson, C. N. Extraterritorial hunting expeditions to intense fire scars by feral cats. Sci. Rep. 6, 22559 (2016).
Dinerstein, E. et al. Conservation imperatives: securing the last unprotected terrestrial sites harboring irreplaceable biodiversity. Front. Sci. 2, 349350 (2024).
Worboys, G. L., Lockwood, M., Kothari, A., Feary, S. & Pulsford, I. Protected Area Governance and Management (ANU Press, 2015).
Rodrigues, A. S. & Brooks, T. M. Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Ann. Rev. Ecol. Evol. Syst. 38, 713–737 (2007).
Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).
Lindenmayer, D. & Taylor, C. Extensive recent wildfires demand more stringent protection of critical old growth forest. Pac. Conserv. Biol. 26, 384–394 (2020).
Bowman, D. M. J. S., Williamson, G. J. & Mifsud, B. M. Save the world’s forest giants from infernos. Nature 609, 895 (2022).
Hannam, P. NSW fires: Wollemi pines saved by secret RFS firefighting mission. The Sydney Morning Herald https://www.smh.com.au/environment/conservation/incredible-secret-firefighting-mission-saves-famous-dinosaur-trees-20200115-p53rom.html (2020).
Hoegh-Guldberg, O. et al. Assisted colonization and rapid climate change. Science 321, 345–346 (2008).
Baker, W. L. The landscape ecology of large disturbances in the design and management of nature reserves. Landsc. Ecol. 7, 181–194 (1992).
DellaSala, D. A. et al. Building on two decades of ecosystem management and biodiversity conservation under the northwest forest plan, USA. Forests 6, 3326–3352 (2015).
Einoder, L. D. et al. Long term monitoring reveals the importance of large, long unburnt areas and smaller fires in moderating mammal declines in fire-prone Savanna of north Australia. J. Appl. Ecol. 60, 2251–2266 (2023).
Zylinski, S., Swan, M. & Sitters, H. Interrelationships between fire, habitat, and mammals in a fragmented heathy woodland. For. Ecol. Manag. 522, 120464 (2022).
McKenzie, D. et al. eds. The Landscape Ecology of Fire (Springer, 2011).
Leahy, L. et al. Amplified predation after fire suppresses rodent populations in Australia’s tropical savannas. Wildl. Res. 42, 705–716 (2016).
Rumpff, L., Legge, S. M., van Leeuwen, S., Wintle, B. A. & Woinarski, J. C. Z. Australia’s Megafires. Biodiversity Impacts and Lessons from 2019–2020 (CSIRO Publishing, 2023).
Banks, S. C., McBurney, L., Blair, D., Davies, I. D. & Lindenmayer, D. B. Where do animals come from during post-fire population recovery? Implications for ecological and genetic patterns in post-fire landscapes. Ecography 40, 1325–1338 (2017).
Zylstra, P., Bradshaw, D. & Lindenmayer, D. B. Self-thinning forest understoreys reduce wildfire risk, even in a warming climate. Environ. Res. Lett. 17, 044022 (2022).
Bond, M. L., Chi, T. Y., Bradley, C. M. & DellaSala, D. A. Forest management, barred owls, and wildfire in northern spotted owl territories. Forests 13, 17 (2022).
Whelan, R. J. The Ecology of Fire (Cambridge Univ. Press, 1995).
Jolly, C. J. et al. Animal mortality during fire. Glob. Change Biol. 28, 2053–2065 (2022).
Peters, A., Hume, S., Raidal, S., Crawley, L. & Gowland, D. Mortality associated with bushfire smoke inhalation in a captive population of the smoky mouse (Pseudomys fumeus), a threatened Australian rodent. J. Wildl. Dis. 57, 199–204 (2021).
MacKinnon, A. & Vold, T. Old-growth forests inventory for British Columbia, Canada. Nat. Areas J. 18, 309–318 (1998).
Hobbs, R. J. et al. Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob. Ecol. Biogeogr. 15, 1–7 (2006).
Millar, C., Stephenson, N. L. & Stephens, S. L. Climate change and forests of the future: managing in the face of uncertainty. Ecol. Appl. 17, 2145–2151 (2007).
Nimmo, D. G., Mac Nally, R., Cunningham, S. C., Haslem, A. & Bennett, A. F. Vive la re´ sistance: reviving resistance for 21st century conservation. Trends Ecol. Evol. 30, 516–523 (2015).
Leverkus, A. et al. Environmental policies to cope with novel disturbance regimes — steps to address a world scientists’ warning to humanity. Environ. Res. Lett. 16, 021003 (2021).
Taylor, C., Blanchard, W. & Lindenmayer, D. B. What are the relationships between thinning and fire severity? Austral Ecol. 46, 1425–1439 (2021).
Lindenmayer, D. B. et al. Fire severity and landscape context effects on arboreal marsupials. Biol. Conserv. 167, 137–148 (2013).
Jones, G. M. et al. Fire-driven animal evolution in the Pyrocene. Trends Ecol. Evol. 38, 1072–1084 (2023).
Nimmo, D. G., Jolly, C. J. & Carthey, A. J. Expanding the scope of fire-driven animal evolution. Trends Ecol. Evol. 38, 1115–1116 (2023).
Pausas, J. G. & Parr, C. L. Towards an understanding of the evolutionary role of fire in animals. Evol. Ecol. 32, 113–125 (2018).
Gibbons, P. et al. Land management practices associated with house loss in wildfires. PLoS ONE 7, e29212 (2012).
Lindenmayer, D., Zylstra, P. & Yebra, M. Adaptive wildfire mitigation approaches. Science 377, 1163–1164 (2022).
Liu, X. et al. Environmental impacts of polymeric flame retardant breakdown. Nat. Sustain. 8, 432–445 (2025).
Gustafsson, L. et al. Rapid ecological response and intensified knowledge accumulation following a north European mega-fire. Scand. J. For. Res. 34, 234–253 (2019).
Feng, X. et al. How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature 597, 516–521 (2021).
Mason, D. S. & Lashley, M. A. Spatial scale in prescribed fire regimes: an understudied aspect in conservation with examples from the southeastern United States. Fire Ecol. 17, 1–14 (2021).
Law, B. et al. Australia’s 2019–20 mega-fires are associated with lower occupancy of a rainforest-dependent bat. Anim. Conserv. 26, 103–111 (2023).
Beranek, C. T. et al. Severe wildfires promoted by climate change negatively impact forest amphibian metacommunities. Divers. Distrib. 29, 785–800 (2023).
Nowack, J., Cooper, C. E. & Geiser, F. Cool echidnas survive the fire. Proc. R. Soc. Ser. B 283, 20160382 (2016).
de Oliveira, M. T. et al. Regeneration of riparian forests of the Brazilian Pantanal under flood and fire influence. For. Ecol. Manag. 331, 256–263 (2014).
Liu, Y., Wooster, M. J., Grosvenor, M. J., Lim, K. S. & Francis, R. A. Strong impacts of smoke polluted air demonstrated on the flight behaviour of the painted lady butterfly (Vanessa cardui L.). Ecol. Entomol. 46, 195–208 (2021).
Overton, C. T. et al. Megafires and thick smoke portend big problems for migratory birds. Ecology 103, e03552 (2022).
Miller, R. G., Fontaine, J. B., Merritt, D. J., Miller, B. P. & Enright, N. J. Experimental seed sowing reveals seedling recruitment vulnerability to unseasonal fire. Ecol. Appl. 31, 1–14 (2021).
Jones, M. W. et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 60, e2020RG000726 (2022).
Xu, C. & You, C. Climate-linked increasing vegetation fires in global high mountains. Ecography https://doi.org/10.1111/ecog.06527 (2022).
Lindenmayer, D. B. & Fischer, J. Habitat Fragmentation and Landscape Change (Island Press, 2006).
Driscoll, D. A. et al. How fire interacts with habitat loss and fragmentation. Biol. Rev. 96, 976–998 (2021).
Zald, S. J. & Dunn, C. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape. Ecosphere 28, 1068–1080 (2018).
Wilson, N., Bradstock, R. & Bedward, M. Disturbance causes variation in sub-canopy fire weather conditions. Agric. For. Entomol. 323, 109077 (2022).
McCarty, J. L. et al. Reviews & syntheses: Arctic fire regimes and emissions in the 21st century. Biogeosci. Discuss. 18, 1–59 (2021).
Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2018).
IUCN. Species Richness and Rarity-Weighted Richness Data. iucnredlist.org https://www.iucnredlist.org/resources/other-spatial-downloads#SR_2023 (2024).
USGS. MCD64A1 v061 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500 m SIN Grid. lpdaac.usgs.gov https://lpdaac.usgs.gov/products/mcd64a1v061/ (2024).
Lindenmayer, D. B. et al. Rapid bird species recovery following high-severity wildfire but in the absence of early successional specialists. Divers. Distrib. 28, 2110–2123 (2022).
Lindenmayer, D. B. et al. Interacting factors driving a major loss of large trees with cavities in a forest ecosystem. PLoS ONE 7, e41864 (2012).
Lindenmayer, D. B. et al. The response of arboreal marsupials to long-term changes in forest disturbance. Anim. Conserv. 24, 246–258 (2021).
Acknowledgements
L. Gordon and K. Brock assisted with many aspects of manuscript preparation.
Author information
Authors and Affiliations
Contributions
D.L. led the writing and all authors contributed substantially to discussion of the content and reviewed and edited the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Biodiversity thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lindenmayer, D., Zylstra, P., DellaSala, D.A. et al. The response and management of species sensitive to altered fire regimes. Nat. Rev. Biodivers. (2025). https://doi.org/10.1038/s44358-025-00086-1
Accepted:
Published:
DOI: https://doi.org/10.1038/s44358-025-00086-1