Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The response and management of species sensitive to altered fire regimes

Abstract

Fire regimes (the sequence of fires and their attributes including intensity, frequency and patchiness) are fundamental to the structure and function of many ecosystems. In many locations, changes in fire regimes are threatening large numbers of species. In this Review, we discuss the factors that cause certain species and groups of species to be harmed by fire regime changes and identify strategies to manage the species that are most sensitive to fire regime change. Variation in species sensitivity to fire and fire regime change is influenced by species life history characteristics (such as long generation times or low reproductive rates) and landscape characteristics (such as habitat patchiness caused by previous fires). Management considerations include maintaining or restoring appropriate levels of spatial patchiness in fire; avoiding degradation of ecosystem condition; implementing post-fire management that can support species recovery (for example, avoid salvage logging and control invasive species); managing the overall disturbance burden; and minimizing the stressors that can co-occur with (and interact negatively with) altered fire regimes. Progress in identifying and conserving species most sensitive to altered fire regimes requires more long-term studies, particularly those spanning multiple fire events and accounting for stressors that interact with fire regimes and affect ecosystem integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Frequent wildfires in the past two decades have occurred in areas with high species richness.
Fig. 2: Conceptual model of the relationships among ecosystem condition, disturbance history, biodiversity and fire attributes in forest ecosystems.
Fig. 3: Decision tree highlighting important steps for guiding integrated fire and biodiversity management.

Similar content being viewed by others

References

  1. Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    Article  Google Scholar 

  2. Mack, M. C. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475, 489–492 (2011).

    Article  CAS  Google Scholar 

  3. Abram, N. J., Gagan, M. K., Mcculloch, M. T., Chappell, J. & Hantoro, W. S. Coral reef death during the 1997 Indian ocean dipole linked to Indonesian wildfires. Science 301, 952–955 (2003).

    Article  CAS  Google Scholar 

  4. Harmon, M. E., Hanson, C. T. & DellaSala, D. A. Combustion of aboveground wood from live trees in megafires, CA, USA. Forests 13, 391 (2022).

    Article  Google Scholar 

  5. Gomez Isaza, D. F., Cramp, R. L. & Franklin, C. E. Fire and rain: a systematic review of the impacts of wildfire and associated runoff on aquatic fauna. Glob. Change Biol. 28, 2578–2595 (2022).

    Article  CAS  Google Scholar 

  6. Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597, 370–375 (2021).

    Article  CAS  Google Scholar 

  7. Bardales, R. et al. Neotropical mammal responses to megafires in the Brazilian pantanal. Glob. Change Biol. 30, e17278 (2024).

    Article  CAS  Google Scholar 

  8. Legge, S. et al. The conservation impacts of ecological disturbance: time-bound estimates of population loss and recovery for fauna affected by the 2019–20 Australian megafires. Glob. Ecol. Biogeogr. 31, 2085–2104 (2022).

    Article  Google Scholar 

  9. Banks, S. C. et al. How does ecological disturbance influence genetic diversity? Trends Ecol. Evol. 28, 670–679 (2013).

    Article  Google Scholar 

  10. Potvin, D. A. et al. Genetic erosion and escalating extinction risk in frogs with increasing wildfire frequency. J. Appl. Ecol. 54, 945–954 (2016).

    Article  Google Scholar 

  11. Swanson, M. E. et al. The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front. Ecol. Environ. 9, 117–125 (2011).

    Article  Google Scholar 

  12. Turner, M. G., Braziunas, K. H., Hansen, W. D. & Harvey, B. J. Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. Proc. Natl Acad. Sci. USA 116, 11319–11328 (2019).

    Article  CAS  Google Scholar 

  13. Franklin, J. F. et al. Threads of continuity. Conserv. Prac. 1, 8–17 (2000).

    Article  Google Scholar 

  14. Steel, Z. L., Fogg, A. M., Burnett, R., Roberts, L. J. & Safford, H. D. When bigger isn’t better — implications of large high-severity wildfire patches for avian diversity and community composition. Divers. Distrib. 28, 439–453 (2022).

    Article  Google Scholar 

  15. Bergstrom, D. M. et al. Combating ecosystem collapse from the tropics to the Antarctic. Glob. Change Biol. 27, 1692–1703 (2021).

    Article  CAS  Google Scholar 

  16. Odion, D. C., Moritz, M. A. & DellaSala, D. A. Alternative community states maintained by fire in the Klamath Mountains, USA. J. Ecol. 98, 96–105 (2010).

    Article  Google Scholar 

  17. DellaSala, D. A. & Hanson, C. T. Mixed-Severity Fires: Nature’s Phoenix (Elsevier, 2024).

  18. Keeley, J. E. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildl. Fire 18, 116–126 (2009).

    Article  Google Scholar 

  19. Kelly, L., Brotons, L. & McCarthy, M. A. Putting pyrodiversity to work for animal conservation. Conserv. Biol. 31, 952–955 (2017).

    Article  Google Scholar 

  20. Parr, C. L. & Andersen, A. N. Patch mosaic burning for biodiversity conservation: a critique of the pyrodiversity paradigm. Conserv. Biol. 20, 1610–1619 (2006).

    Article  Google Scholar 

  21. Hutto, R. L., Conway, C. J., Saab, V. A. & Walters, J. R. What constitutes a natural fire regime? Insight from the ecology and distribution of coniferous forest birds in North America. Fire Ecol. 4, 115–132 (2008).

    Article  Google Scholar 

  22. Kelly, L. T. et al. Fire and biodiversity in the Anthropocene. Science 370, eabb0355 (2020).

    Article  CAS  Google Scholar 

  23. Hiers, J. K., O’Brien, J. J., Will, R. E. & Mitchell, R. J. Forest floor depth mediates understory vigor in xeric Pinus palustris ecosystems. Ecol. Appl. 17, 806–814 (2007).

    Article  Google Scholar 

  24. Larson, A. J., Belote, R. T., Cansler, C. A., Parks, S. A. & Dietz, M. S. Latent resilience in Ponderosa pine forest: effects of resumed frequent fire. Ecol. Appl. 23, 1243–1249 (2013).

    Article  Google Scholar 

  25. Stephens, S. L., Collins, B. M., Biber, E. & Fulé, P. Z. U. S. federal fire and forest policy: emphasizing resilience in dry forests. Ecosphere 7, e01584 (2016).

    Article  Google Scholar 

  26. Halofsky, J. E., Peterson, D. L. & Harvey, B. J. Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. https://doi.org/10.1186/s42408-019-0062-8 (2020).

  27. Gromtsev, A. Natural disturbance dynamics in the boreal forests of European Russia: a review. Silva Fenn. 36, 41–55 (2002).

    Article  Google Scholar 

  28. Zackrisson, O. Influence of forest fires on the north Swedish boreal forest. Oikos 29, 22–32 (1977).

    Article  Google Scholar 

  29. Kooyman, R. M., Watson, J. & Wilf, P. Protect Australia’s Gondwana rainforests. Science 367, 1083 (2020).

    Article  Google Scholar 

  30. Flores, B. M., Fagoaga, R., Nelson, B. W. & Holmgren, M. Repeated fires trap Amazonian blackwater floodplains in an open vegetation state. J. Appl. Ecol. 53, 1597–1603 (2016).

    Article  Google Scholar 

  31. Harrison, M. E. et al. Impacts of fire and prospects for recovery in a tropical peat forest ecosystem. Proc. Natl Acad. Sci. USA 121, e2307216121 (2024).

    Article  CAS  Google Scholar 

  32. Sanborn, P., Geertsema, M., Jull, A. J. T. & Hawkes, B. Soil and sedimentary charcoal evidence for Holocene forest fires in an Inland temperate rainforest, East-Central British Columbia, Canada. Holocene 16, 415–427 (2006).

    Article  Google Scholar 

  33. Bousfield, C., Lindenmayer, D. B. & Edwards, D. Major and increasing wildfire-driven losses of timber stocks globally. Nat. Geosci. 16, 1145–1150 (2023).

    Article  CAS  Google Scholar 

  34. Doherty, T. S., Macdonald, K. J., Nimmo, D. G., Santos, J. L. & Geary, W. L. Shifting fire regimes cause continent-wide transformation of threatened species habitat. Proc. Natl Acad. Sci. USA 121, e2316417121 (2024).

    Article  CAS  Google Scholar 

  35. Setterfield, S. A., Rossiter Rachor, N. A., Hutley, L. B., Douglas, M. M. & Williams, R. J. Turning up the heat: the impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas. Divers. Distrib. 16, 854–861 (2010).

    Article  Google Scholar 

  36. Hart, S. J. et al. Examining forest resilience to changing fire frequency in a fire-prone region of boreal forest. Glob. Change Biol. 25, 869–884 (2019).

    Article  Google Scholar 

  37. Collins, L. et al. The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire. Environ. Res. Lett. 16, 044029 (2021).

    Article  Google Scholar 

  38. Parks, S. A. et al. Contemporary wildfires are more severe compared to the historical reference period in western US dry conifer forests. For. Ecol. Manag. 544, 121232 (2023).

    Article  Google Scholar 

  39. Lindenmayer, D. B., Taylor, C., Blanchard, W., Zylstra, P. & Evans, M. J. What environmental and climatic factors influence multi-decadal fire frequency? Ecosphere https://doi.org/10.1002/ecs2.4610 (2023).

  40. Mackey, B., Lindenmayer, D. B., Norman, P., Taylor, C. & Gould, S. Are fire refugia less predictable due to climate change? Environ. Res. Lett. 16, 114028 (2021).

    Article  Google Scholar 

  41. Cunningham, C. X., Williamson, G. J. & Bowman, D. M. J. S. Increasing frequency and intensity of the most extreme wildfires on Earth. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-024-02452-2 (2024).

  42. Baker, W. L. Contemporary wildfires not more severe than historically: more fire of all severities needed to sustain and adapt western US dry forests as climate changes. Sustainability 16, 3270 (2024).

    Article  Google Scholar 

  43. Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

    Article  CAS  Google Scholar 

  44. Jain, P. et al. Drivers and impacts of the record-breaking 2023 wildfire season in Canada. Nat. Commun. 15, 6764 (2024).

    Article  CAS  Google Scholar 

  45. Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region — spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33, L09703 (2006).

    Google Scholar 

  46. Ponomarev, E. I. & Kharuk, V. I. Wildfire occurrence in forests of the Altai–Sayan region under current climate changes. Contemp. Probl. Ecol. 9, 29–36 (2016).

    Article  Google Scholar 

  47. Blackwood, E. M. J. et al. Pirra Jungku: comparison of traditional and contemporary fire practices on Karajarri Country, Western Australia. Ecol. Manag. Restor. 23, 83–92 (2021).

    Article  Google Scholar 

  48. Nowacki, G. J. & Abrams, M. D. The demise of fire and ‘mesophication’ of forests in the eastern United States. Bioscience 58, 123–138 (2008).

    Article  Google Scholar 

  49. Santos, J. L. et al. Beyond inappropriate fire regimes: a synthesis of fire-driven declines of threatened mammals in Australia. Conserv. Lett. 15, e12905 (2022).

    Article  Google Scholar 

  50. Driscoll, D. A. et al. Biodiversity impacts of the 2019–2020 Australian megafires. Nature https://doi.org/10.1038/s41586-024-08174-6 (2024).

    Article  Google Scholar 

  51. Grau-Andres, R., Moreira, B. & Pausas, J. Global plant responses to intensified fire regimes. Glob. Ecol. Biogeogr. 33, e13858 (2024).

    Article  Google Scholar 

  52. Pausas, J. G. Generalized fire response strategies in plants and animals. Oikos 128, 147–153 (2019).

    Article  Google Scholar 

  53. Enright, N. J., Fontaine, J. B., Bowman, D. M. J. S., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265–272 (2015).

    Article  Google Scholar 

  54. Geary, W. L., Doherty, T., Nimmo, D. G., Tulloch, A. I. T. & Ritchie, E. Predator responses to fire: a global systematic review and meta-analysis. J. Anim. Ecol. 89, 955–971 (2020).

    Article  Google Scholar 

  55. González, T. M., González-Trujillo, J. D., Muñoz, A. & Armenteras, D. Effects of fire history on animal communities: a systematic review. Ecol. Process. https://doi.org/10.1186/s13717-021-00357-7 (2022).

  56. Forney, R. R. & Peacock, M. M. The effects of fire on large- and medium-sized mammal communities: what do we know? A review. Mammal Rev. 54, 357–372 (2024).

    Article  Google Scholar 

  57. Gordon, L. G., Evans, M. J., Zylstra, P. J. & Lindenmayer, D. B. Trends and gaps in prescribed burning research. Environ. Manage. 75, 746–760 (2025).

    Article  Google Scholar 

  58. Lindenmayer, D. B. et al. Testing hypotheses associated with bird responses to wildfire. Ecol. Appl. 18, 1967–1983 (2008).

    Article  Google Scholar 

  59. Buma, B. Disturbance interactions: characterization, prediction, and the potential for cascading effects. Ecosphere 6, art70 (2015).

    Article  Google Scholar 

  60. Bowd, E. J., Cary, G. J., Freeman, D., Bell-Garner, B. & Lindenmayer, D. B. Plant responses to a re-emergence of cultural burning in long-unburnt, threatened temperate woodlands. Glob. Change Biol. 31, e70230 (2025).

    Article  CAS  Google Scholar 

  61. Lindenmayer, D. B. & Zylstra, P. Identifying and managing disturbance-stimulated flammability in woody ecosystems. Biol. Rev. 99, 699–714 (2024).

    Article  Google Scholar 

  62. Caro, T. Conservation by Proxy. Indicator, Umbrella, Keystone, Flagship, and Other Surrogate Species (Island Press, 2010).

  63. Lambeck, R. J. Focal species: a multi-species umbrella for nature conservation. Conserv. Biol. 11, 849–856 (1997).

    Article  Google Scholar 

  64. Cary, G., Blanchard, W., Foster, C. N. & Lindenmayer, D. B. Effects of altered fire intervals on critical timber production and conservation values. Int. J. Wildl. Fire 30, 322–328 (2021).

    Article  Google Scholar 

  65. Lindenmayer, D., Taylor, C., Bowd, E. & Ashman, K. The case for listing Mountain Ash forests in the Central Highlands of Victoria as a Threatened Ecological Community. Pac. Conserv. Biol. 30, PC23010 (2023).

    Google Scholar 

  66. Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. Ser. B 283, rspb.2015.2592 (2016).

    Article  Google Scholar 

  67. Donato, D. C., Halofsky, J. S. & Reilly, M. J. Corralling a black swan: natural range of variation in a forest landscape driven by rare, extreme events. Ecol. Appl. 30, e02013 (2020).

    Article  Google Scholar 

  68. Parks, S. A. et al. A fire deficit persists across diverse north American forests despite recent increases in area burned. Nat. Commun. 16, 1493 (2025).

    Article  CAS  Google Scholar 

  69. McWethy, D. B. et al. Landscape drivers of recent fire activity (2001–2017) in south-central Chile. PLoS ONE 13, e0201195 (2018).

    Article  Google Scholar 

  70. Kalies, E. L. & Yocom Kent, L. L. Tamm review: are fuel treatments effective at achieving ecological and social objectives? A systematic review. For. Ecol. Manag. 375, 84–95 (2016).

    Article  Google Scholar 

  71. Prichard, S. J. et al. Adapting western North American forests to climate change and wildfires: 10 common questions. Ecol. Appl. 31, e02433 (2021).

    Article  Google Scholar 

  72. Stephens, S. L. et al. Fire and climate change: conserving seasonally dry forests is still possible. Front. Ecol. Environ. 18, 354–360 (2020).

    Article  Google Scholar 

  73. Friederici, P. Ecological Restoration of Southwestern Ponderosa Pine Forests (Island Press, 2003).

  74. Taylor, C., Blanchard, W. & Lindenmayer, D. B. Does forest thinning reduce fire severity in Australian eucalypt forests? Conserv. Lett. 14, e12766 (2020).

    Article  Google Scholar 

  75. Lindenmayer, D. B., Taylor, C., Bowd, E. & Zylstra, P. What did it used to look like? A case study from tall, wet mainland mountain Ash forests prior to British Invasion. Austral Ecol. 49, e13520 (2024).

    Article  Google Scholar 

  76. Calkin, D. E. et al. Wildland–urban fire disasters aren’t actually a wildfire problem. Proc. Natl Acad. Sci. USA 120, e2315797120 (2023).

    Article  CAS  Google Scholar 

  77. Lydersen, J. M. et al. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event. Ecol. Appl. 27, 2013–2030 (2017).

    Article  Google Scholar 

  78. Zylstra, P. J., Bradshaw, S. D. & Lindenmayer, D. B. Reply to comment on ‘Self-thinning forest understoreys reduce wildfire risk, even in a warming climate’. Environ. Res. Lett. 19, 058001 (2024).

    Article  Google Scholar 

  79. Zylstra, P. J. et al. Mechanisms by which growth and succession limit the impact of fire in a south-western Australian forested ecosystem. Funct. Ecol. 37, 1350–1365 (2023).

    Article  CAS  Google Scholar 

  80. Lesmeister, D. B., Davis, R. J., Sovern, S. G. & Yang, Z. Northern spotted owl nesting forests as fire refugia: a 30-year synthesis of large wildfires. Fire Ecol. 17, 32 (2021).

    Article  Google Scholar 

  81. Boer, M. M., Sadler, R. J., Wittkuhn, R. S., McCaw, L. & Grierson, P. F. Long-term impacts of prescribed burning on regional extent and incidence of wildfires — evidence from 50 years of active fire management in SW Australian forests. For. Ecol. Manag. 259, 132–142 (2009).

    Article  Google Scholar 

  82. Stojanovic, D., Neeman, T., Crates, R., Troy, S. & Heinsohn, R. Short-term impacts of prescribed burning on orange-bellied parrot (Neophema chrysogaster) food plant abundance. Ecol. Manag. Restor. 21, 211–217 (2020).

    Article  Google Scholar 

  83. Flint, A. & Fagg, P. Mountain Ash in Victoria’s State Forests (Department of Sustainability and Environment, Melbourne, 2007).

  84. Vranjic, J. A., Morin, L., Reid, A. M. & Groves, R. H. Integrating revegetation with management methods to rehabilitate coastal vegetation invaded by Bitou bush (Chrysanthemoides monilifera ssp. rotundata) in Australia. Austral Ecol. 37, 78–89 (2012).

    Article  Google Scholar 

  85. Hoffman, K. M. et al. Conservation of Earth’s biodiversity is embedded in indigenous fire stewardship. Proc. Natl Acad. Sci. USA 118, e2105073118 (2021).

    Article  CAS  Google Scholar 

  86. Golden-Shouldered Parrot Recovery Team. in The Action Plan for Australian Birds 2020 (eds St Garnett & Baker, S. B.) 419–421 (CSIRO Publishing, 2021).

  87. Templeton, A. R., Brazeal, H. & Neuwald, J. L. The transition from isolated patches to a metapopulation in the eastern collared lizard in response to prescribed fires. Ecology 92, 1736–1747 (2011).

    Article  Google Scholar 

  88. Holland, G. J., Clarke, M. F. & Bennett, A. F. Prescribed burning consumes key forest structural components: implications for landscape heterogeneity. Ecol. Appl. 27, 845–858 (2016).

    Article  Google Scholar 

  89. Dixon, D. J., Callow, J. N., Duncan, J. M. A., Setterfield, S. A. & Pauli, N. Regional-scale fire severity mapping of Eucalyptus forests with the Landsat archive. Remote. Sens. Environ. 270, 112863 (2022).

    Article  Google Scholar 

  90. Zylstra, P. Quantifying the direct fire threat to a critically endangered arboreal marsupial using biophysical, mechanistic modelling. Austral Ecol. 48, 266–238 (2023).

    Article  Google Scholar 

  91. Byram, G. M. in Forest Fire Control and Use (ed. Davies, K. P.) 61–89 (McGraw-Hill, 1959).

  92. Ramberg, E., Strengbom, J., Wikars, L. O. & Ranius, T. Surrounding landscape composition influences saproxylic beetle assemblages after prescribed burning. J. Appl. Ecol. 62, 1685–1695 (2025).

    Article  Google Scholar 

  93. Tingley, M. W., Ruiz-Gutierrez, V., Wilkerson, R. L., Howell, C. & Siegel, R. B. Pyrodiversity promotes avian diversity over the decade following forest fire. Proc. R. Soc. Ser. B 283, 20161703 (2016).

    Article  Google Scholar 

  94. Collins, L. C. et al. Fuel reduction burning reduces wildfire severity during extreme fire events in south-eastern Australia. J. Environ. Manag. 343, 118171 (2023).

    Article  CAS  Google Scholar 

  95. Price, O. F. et al. Global patterns in fire leverage: the response of annual area burnt to previous fire. Int. J. Wildl. Fire 24, 297–306 (2015).

    Article  Google Scholar 

  96. Gosper, C. R. et al. Multi-century periods since fire in an intact woodland landscape favour bird species declining in an adjacent agricultural region. Biol. Conserv. 230, 82–90 (2019).

    Article  Google Scholar 

  97. Palm, E. et al. Increasing fire frequency and severity will increase habitat loss for a boreal forest indicator species. Ecol. Appl. 32, e2549 (2022).

    Article  Google Scholar 

  98. Sopniewski, J., Catullo, R., Ward, M., Mitchell, N. & Scheele, B. C. Niche-based approach to explore the impacts of environmental disturbances on biodiversity. Biol. Conserv. https://doi.org/10.1111/cobi.14277 (2024).

  99. Jones, G. M. et al. Conserving landscape dynamics, not just landscapes. BioScience 75, 409–415 (2025).

    Article  Google Scholar 

  100. Von Takach Dukai, B. et al. Long-unburnt habitat is critical for the conservation of threatened vertebrates across Australia. Landsc. Ecol. 37, 1469–1482 (2022).

    Article  Google Scholar 

  101. Backer, D. M., Jensen, S. E. & McPherson, G. R. Impacts of fire suppression activities on natural communities. Conserv. Biol. 18, 937–944 (2004).

    Article  Google Scholar 

  102. Stewart, J. A. et al. Effects of postfire climate and seed availability on postfire conifer regeneration. Ecol. Appl. 31, e02280 (2021).

    Article  Google Scholar 

  103. Pilliod, D. S., Welty, J. L. & Arkle, R. S. Refining the cheatgrass–fire cycle in the Great Basin: precipitation timing and fine fuel composition predict wildfire trends. Ecol. Evol. 7, 8126–8151 (2017).

    Article  Google Scholar 

  104. Legge, S. et al. Enumerating a continental-scale threat: how many feral cats are in Australia? Biol. Conserv. 206, 293–303 (2017).

    Article  Google Scholar 

  105. Legge, S. et al. in Australia’s 2019–20 Megafires: Biodiversity Impacts and Lessons for the Future (eds Rumpff, L. et al.) 269–284 (CSIRO Publishing, 2023).

  106. Lindenmayer, D. B. et al. Elevation, disturbance, and forest type drive the occurrence of a specialist arboreal folivore. PLoS ONE https://doi.org/10.1371/journal.pone.0265963 (2022).

  107. Taylor, C., McCarthy, M. A. & Lindenmayer, D. B. Non-linear effects of stand age on fire severity. Conserv. Lett. 7, 355–370 (2014).

    Article  Google Scholar 

  108. Lindenmayer, D. B., Bowd, E., Youngentob, K. & Evans, M. J. Quantifying drivers of decline: a case study of long-term changes in arboreal marsupial detections. Biol. Conserv. 293, 110589 (2024).

    Article  Google Scholar 

  109. Lindenmayer, D. B., Blanchard, W., Blair, D., McBurney, L. & Banks, S. C. Environmental and human drivers influencing large old tree abundance in Australian wet forests. For. Ecol. Manag. 372, 226–235 (2016).

    Article  Google Scholar 

  110. Lindenmayer, D. B. et al. What factors influence rapid post-fire site re-occupancy? A case study of the endangered eastern Bristlebird in eastern Australia. Int. J. Wildl. Fire 18, 84–95 (2009).

    Article  Google Scholar 

  111. Thorn, S. et al. Impacts on salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 55, 279–289 (2018).

    Article  Google Scholar 

  112. Bowd, E. J., Lindenmayer, D. B., Banks, S. C. & Blair, D. P. Logging and fire regimes alter plant communities. Ecol. Appl. 28, 826–841 (2018).

    Article  Google Scholar 

  113. McGregor, H. W., Legge, S. M., Jones, M. E. & Johnson, C. N. Extraterritorial hunting expeditions to intense fire scars by feral cats. Sci. Rep. 6, 22559 (2016).

    Article  CAS  Google Scholar 

  114. Dinerstein, E. et al. Conservation imperatives: securing the last unprotected terrestrial sites harboring irreplaceable biodiversity. Front. Sci. 2, 349350 (2024).

    Article  Google Scholar 

  115. Worboys, G. L., Lockwood, M., Kothari, A., Feary, S. & Pulsford, I. Protected Area Governance and Management (ANU Press, 2015).

  116. Rodrigues, A. S. & Brooks, T. M. Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Ann. Rev. Ecol. Evol. Syst. 38, 713–737 (2007).

    Article  Google Scholar 

  117. Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    Article  CAS  Google Scholar 

  118. Lindenmayer, D. & Taylor, C. Extensive recent wildfires demand more stringent protection of critical old growth forest. Pac. Conserv. Biol. 26, 384–394 (2020).

    Article  Google Scholar 

  119. Bowman, D. M. J. S., Williamson, G. J. & Mifsud, B. M. Save the world’s forest giants from infernos. Nature 609, 895 (2022).

    Article  CAS  Google Scholar 

  120. Hannam, P. NSW fires: Wollemi pines saved by secret RFS firefighting mission. The Sydney Morning Herald https://www.smh.com.au/environment/conservation/incredible-secret-firefighting-mission-saves-famous-dinosaur-trees-20200115-p53rom.html (2020).

  121. Hoegh-Guldberg, O. et al. Assisted colonization and rapid climate change. Science 321, 345–346 (2008).

    Article  CAS  Google Scholar 

  122. Baker, W. L. The landscape ecology of large disturbances in the design and management of nature reserves. Landsc. Ecol. 7, 181–194 (1992).

    Article  Google Scholar 

  123. DellaSala, D. A. et al. Building on two decades of ecosystem management and biodiversity conservation under the northwest forest plan, USA. Forests 6, 3326–3352 (2015).

    Article  Google Scholar 

  124. Einoder, L. D. et al. Long term monitoring reveals the importance of large, long unburnt areas and smaller fires in moderating mammal declines in fire-prone Savanna of north Australia. J. Appl. Ecol. 60, 2251–2266 (2023).

    Article  Google Scholar 

  125. Zylinski, S., Swan, M. & Sitters, H. Interrelationships between fire, habitat, and mammals in a fragmented heathy woodland. For. Ecol. Manag. 522, 120464 (2022).

    Article  Google Scholar 

  126. McKenzie, D. et al. eds. The Landscape Ecology of Fire (Springer, 2011).

  127. Leahy, L. et al. Amplified predation after fire suppresses rodent populations in Australia’s tropical savannas. Wildl. Res. 42, 705–716 (2016).

    Article  Google Scholar 

  128. Rumpff, L., Legge, S. M., van Leeuwen, S., Wintle, B. A. & Woinarski, J. C. Z. Australia’s Megafires. Biodiversity Impacts and Lessons from 2019–2020 (CSIRO Publishing, 2023).

  129. Banks, S. C., McBurney, L., Blair, D., Davies, I. D. & Lindenmayer, D. B. Where do animals come from during post-fire population recovery? Implications for ecological and genetic patterns in post-fire landscapes. Ecography 40, 1325–1338 (2017).

    Article  Google Scholar 

  130. Zylstra, P., Bradshaw, D. & Lindenmayer, D. B. Self-thinning forest understoreys reduce wildfire risk, even in a warming climate. Environ. Res. Lett. 17, 044022 (2022).

    Article  Google Scholar 

  131. Bond, M. L., Chi, T. Y., Bradley, C. M. & DellaSala, D. A. Forest management, barred owls, and wildfire in northern spotted owl territories. Forests 13, 17 (2022).

    Article  Google Scholar 

  132. Whelan, R. J. The Ecology of Fire (Cambridge Univ. Press, 1995).

  133. Jolly, C. J. et al. Animal mortality during fire. Glob. Change Biol. 28, 2053–2065 (2022).

    Article  CAS  Google Scholar 

  134. Peters, A., Hume, S., Raidal, S., Crawley, L. & Gowland, D. Mortality associated with bushfire smoke inhalation in a captive population of the smoky mouse (Pseudomys fumeus), a threatened Australian rodent. J. Wildl. Dis. 57, 199–204 (2021).

    Article  Google Scholar 

  135. MacKinnon, A. & Vold, T. Old-growth forests inventory for British Columbia, Canada. Nat. Areas J. 18, 309–318 (1998).

    Google Scholar 

  136. Hobbs, R. J. et al. Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob. Ecol. Biogeogr. 15, 1–7 (2006).

    Article  Google Scholar 

  137. Millar, C., Stephenson, N. L. & Stephens, S. L. Climate change and forests of the future: managing in the face of uncertainty. Ecol. Appl. 17, 2145–2151 (2007).

    Article  Google Scholar 

  138. Nimmo, D. G., Mac Nally, R., Cunningham, S. C., Haslem, A. & Bennett, A. F. Vive la re´ sistance: reviving resistance for 21st century conservation. Trends Ecol. Evol. 30, 516–523 (2015).

    Article  CAS  Google Scholar 

  139. Leverkus, A. et al. Environmental policies to cope with novel disturbance regimes — steps to address a world scientists’ warning to humanity. Environ. Res. Lett. 16, 021003 (2021).

    Article  Google Scholar 

  140. Taylor, C., Blanchard, W. & Lindenmayer, D. B. What are the relationships between thinning and fire severity? Austral Ecol. 46, 1425–1439 (2021).

    Article  Google Scholar 

  141. Lindenmayer, D. B. et al. Fire severity and landscape context effects on arboreal marsupials. Biol. Conserv. 167, 137–148 (2013).

    Article  Google Scholar 

  142. Jones, G. M. et al. Fire-driven animal evolution in the Pyrocene. Trends Ecol. Evol. 38, 1072–1084 (2023).

    Article  Google Scholar 

  143. Nimmo, D. G., Jolly, C. J. & Carthey, A. J. Expanding the scope of fire-driven animal evolution. Trends Ecol. Evol. 38, 1115–1116 (2023).

    Article  Google Scholar 

  144. Pausas, J. G. & Parr, C. L. Towards an understanding of the evolutionary role of fire in animals. Evol. Ecol. 32, 113–125 (2018).

    Article  Google Scholar 

  145. Gibbons, P. et al. Land management practices associated with house loss in wildfires. PLoS ONE 7, e29212 (2012).

    Article  CAS  Google Scholar 

  146. Lindenmayer, D., Zylstra, P. & Yebra, M. Adaptive wildfire mitigation approaches. Science 377, 1163–1164 (2022).

    Article  CAS  Google Scholar 

  147. Liu, X. et al. Environmental impacts of polymeric flame retardant breakdown. Nat. Sustain. 8, 432–445 (2025).

    Article  Google Scholar 

  148. Gustafsson, L. et al. Rapid ecological response and intensified knowledge accumulation following a north European mega-fire. Scand. J. For. Res. 34, 234–253 (2019).

    Article  Google Scholar 

  149. Feng, X. et al. How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature 597, 516–521 (2021).

    Article  CAS  Google Scholar 

  150. Mason, D. S. & Lashley, M. A. Spatial scale in prescribed fire regimes: an understudied aspect in conservation with examples from the southeastern United States. Fire Ecol. 17, 1–14 (2021).

    Google Scholar 

  151. Law, B. et al. Australia’s 2019–20 mega-fires are associated with lower occupancy of a rainforest-dependent bat. Anim. Conserv. 26, 103–111 (2023).

    Article  Google Scholar 

  152. Beranek, C. T. et al. Severe wildfires promoted by climate change negatively impact forest amphibian metacommunities. Divers. Distrib. 29, 785–800 (2023).

    Article  Google Scholar 

  153. Nowack, J., Cooper, C. E. & Geiser, F. Cool echidnas survive the fire. Proc. R. Soc. Ser. B 283, 20160382 (2016).

    Article  Google Scholar 

  154. de Oliveira, M. T. et al. Regeneration of riparian forests of the Brazilian Pantanal under flood and fire influence. For. Ecol. Manag. 331, 256–263 (2014).

    Article  Google Scholar 

  155. Liu, Y., Wooster, M. J., Grosvenor, M. J., Lim, K. S. & Francis, R. A. Strong impacts of smoke polluted air demonstrated on the flight behaviour of the painted lady butterfly (Vanessa cardui L.). Ecol. Entomol. 46, 195–208 (2021).

    Article  CAS  Google Scholar 

  156. Overton, C. T. et al. Megafires and thick smoke portend big problems for migratory birds. Ecology 103, e03552 (2022).

    Article  Google Scholar 

  157. Miller, R. G., Fontaine, J. B., Merritt, D. J., Miller, B. P. & Enright, N. J. Experimental seed sowing reveals seedling recruitment vulnerability to unseasonal fire. Ecol. Appl. 31, 1–14 (2021).

    Article  Google Scholar 

  158. Jones, M. W. et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 60, e2020RG000726 (2022).

    Article  Google Scholar 

  159. Xu, C. & You, C. Climate-linked increasing vegetation fires in global high mountains. Ecography https://doi.org/10.1111/ecog.06527 (2022).

  160. Lindenmayer, D. B. & Fischer, J. Habitat Fragmentation and Landscape Change (Island Press, 2006).

  161. Driscoll, D. A. et al. How fire interacts with habitat loss and fragmentation. Biol. Rev. 96, 976–998 (2021).

    Article  Google Scholar 

  162. Zald, S. J. & Dunn, C. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape. Ecosphere 28, 1068–1080 (2018).

    Google Scholar 

  163. Wilson, N., Bradstock, R. & Bedward, M. Disturbance causes variation in sub-canopy fire weather conditions. Agric. For. Entomol. 323, 109077 (2022).

    Google Scholar 

  164. McCarty, J. L. et al. Reviews & syntheses: Arctic fire regimes and emissions in the 21st century. Biogeosci. Discuss. 18, 1–59 (2021).

    Google Scholar 

  165. Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2018).

    Article  Google Scholar 

  166. IUCN. Species Richness and Rarity-Weighted Richness Data. iucnredlist.org https://www.iucnredlist.org/resources/other-spatial-downloads#SR_2023 (2024).

  167. USGS. MCD64A1 v061 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500 m SIN Grid. lpdaac.usgs.gov https://lpdaac.usgs.gov/products/mcd64a1v061/ (2024).

  168. Lindenmayer, D. B. et al. Rapid bird species recovery following high-severity wildfire but in the absence of early successional specialists. Divers. Distrib. 28, 2110–2123 (2022).

    Article  Google Scholar 

  169. Lindenmayer, D. B. et al. Interacting factors driving a major loss of large trees with cavities in a forest ecosystem. PLoS ONE 7, e41864 (2012).

    Article  CAS  Google Scholar 

  170. Lindenmayer, D. B. et al. The response of arboreal marsupials to long-term changes in forest disturbance. Anim. Conserv. 24, 246–258 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

L. Gordon and K. Brock assisted with many aspects of manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

D.L. led the writing and all authors contributed substantially to discussion of the content and reviewed and edited the manuscript.

Corresponding author

Correspondence to David Lindenmayer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindenmayer, D., Zylstra, P., DellaSala, D.A. et al. The response and management of species sensitive to altered fire regimes. Nat. Rev. Biodivers. (2025). https://doi.org/10.1038/s44358-025-00086-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44358-025-00086-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing