Abstract
Cities were once considered population sinks for many species, but it is now clear that they can offer viable and even high-quality animal habitats, and thus have an essential role in maintaining global biodiversity. In some ways, cities are island-like habitats connected by human infrastructure, governed by the rules of island biogeography. Yet cities are also unique mosaic landscapes with heterogeneity that reflects both the local, natural ecosystem and an urban landscape common to cities worldwide. Species-specific evolutionary and ecological histories determine how species interact with different features of the landscape and thus the patterns of urban colonization and persistence. In this Review, we explore how ecological and evolutionary processes play out in the urban mosaic and shape urban species assemblages. Accounting for the interplay of complex ecological and evolutionary mechanisms on multiple, hierarchical spatial scales will enhance understanding of how urban biodiversity is accumulated and maintained, and enable better management of species as cities expand and intensify globally.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).
McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).
Olden, J. D. & Poff, N. L. Toward a mechanistic understanding and prediction of biotic homogenization. Am. Nat. 162, 442–460 (2003).
Daru, B. H. et al. Widespread homogenization of plant communities in the Anthropocene. Nat. Commun. 12, 6983 (2021).
McKinney, M. L. Urbanization, biodiversity, and conservation. Bioscience 52, 883–890 (2002).
Callaghan, C. T. et al. Heterogeneous urban green areas are bird diversity hotspots: insights using continental-scale citizen science data. Landsc. Ecol. 34, 1231–1246 (2019).
Sultana, M., Corlatti, L. & Storch, I. The interaction of imperviousness and habitat heterogeneity drives bird richness patterns in south Asian cities. Urban Ecosyst. 24, 335–344 (2021).
McKinney, M. L. Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).
Kowarik, I. et al. Promoting urban biodiversity for the benefit of people and nature. Nat. Rev. Biodivers. 1, 214–232 (2025).
Escobedo, F. J., Kroeger, T. & Wagner, J. E. Urban forests and pollution mitigation: analyzing ecosystem services and disservices. Environ. Pollut. 159, 2078–2087 (2011).
Escobedo, F. J. & Nowak, D. J. Spatial heterogeneity and air pollution removal by an urban forest. Landsc. Urban Plan. 90, 102–110 (2009).
Spotswood, E. N. et al. The biological deserts fallacy: cities in their landscapes contribute more than we think to regional biodiversity. Bioscience 71, 148–160 (2021).
Faeth, S. H., Bang, C. & Saari, S. Urban biodiversity: patterns and mechanisms: Urban biodiversity. Ann. NY Acad. Sci. 1223, 69–81 (2011).
Wu, J. Urban ecology and sustainability: the state-of-the-science and future directions. Landsc. Urban Plan. 125, 209–221 (2014).
Tavernia, B. G. & Reed, J. M. Spatial extent and habitat context influence the nature and strength of relationships between urbanization measures. Landsc. Urban Plan. 92, 47–52 (2009).
Szulkin, M., Garroway, C. J., Corsini, M., Kotarba, A. Z. & Dominoni, D. in Urban Evolutionary Biology (eds Szulkin, M. et al.) 13–35 (Oxford Univ. Press, 2020).
McDonnell, M. J. & Hahs, A. K. The future of urban biodiversity research: moving beyond the ‘low-hanging fruit’. Urban Ecosyst. 16, 397–409 (2013).
Alberti, M. Eco-evolutionary dynamics in an urbanizing planet. Trends Ecol. Evol. 30, 114–126 (2015).
Winchell, K. M. et al. Moving past the challenges and misconceptions in urban adaptation research. Ecol. Evol. 12, e9552 (2022).
Schell, C. J. et al. The ecological and evolutionary consequences of systemic racism in urban environments. Science 369, eaay4497 (2020).
Alberti, M. et al. The complexity of urban eco-evolutionary dynamics. Bioscience 70, 772–793 (2020).
Rivkin, L. R. et al. A roadmap for urban evolutionary ecology. Evol. Appl. 12, 384–398 (2019).
Shochat, E., Warren, P. S., Faeth, S. H., McIntyre, N. E. & Hope, D. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol. Evol. 21, 186–191 (2006).
Verrelli, B. C. et al. A global horizon scan for urban evolutionary ecology. Trends Ecol. Evol. 37, 1006–1019 (2022).
delBarco-Trillo, J. & Putman, B. J. Not all cities are the same: variation in animal phenotypes across cities within urban ecology studies. Urban Ecosyst. 26, 1725–1737 (2023).
Davis, A. M. & Glick, T. F. Urban ecosystems and island biogeography. Environ. Conserv. 5, 299–304 (1978).
Carlen, E. J. et al. Legacy effects of religion, politics and war on urban evolutionary biology. Nat. Cities 2, 593–602 (2025).
Schmidt, C. & Garroway, C. Systemic racism alters wildlife genetic diversity. Proc. Natl Acad. Sci. USA 119, e2102860119 (2022).
Lambert, M. R. & Donihue, C. M. Urban biodiversity management using evolutionary tools. Nat. Ecol. Evol. 4, 903–910 (2020).
Des Roches, S. et al. Socio-eco-evolutionary dynamics in cities. Evol. Appl. 14, 248–267 (2021).
Dunn, R. R. et al. A theory of city biogeography and the origin of urban species. Front. Conserv. Sci. 3, 761449 (2022).
Piano, E., Giuliano, D. & Isaia, M. Islands in cities: urbanization and fragmentation drive taxonomic and functional variation in ground arthropods. Basic Appl. Ecol. 43, 86–98 (2020).
Platt, A. & Lill, A. Composition and conservation value of bird assemblages of urban ‘habitat islands’: do pedestrian traffic and landscape variables exert an influence? Urban Ecosyst. 9, 83–97 (2006).
Fattorini, S., Mantoni, C., de Simoni, L. & Galassi, D. M. P. Island biogeography of insect conservation in urban green spaces. Environ. Conserv. 45, 1–10 (2017).
Fattorini, S. Island biogeography of urban insects: tenebrionid beetles from Rome tell a different story. J. Insect Conserv. 18, 729–735 (2014).
Medeiros-Sousa, A. R., Fernandes, A., Ceretti-Junior, W., Wilke, A. B. B. & Marrelli, M. T. Mosquitoes in urban green spaces: using an island biogeographic approach to identify drivers of species richness and composition. Sci. Rep. 7, 17826 (2017).
Fernández-Juricic, E. & Jokimäki, J. A habitat island approach to conserving birds in urban landscapes: case studies from southern and northern Europe. Biodivers. Conserv. 10, 2023–2043 (2001).
Shanahan, D. F., Miller, C., Possingham, H. P. & Fuller, R. A. The influence of patch area and connectivity on avian communities in urban revegetation. Biol. Conserv. 144, 722–729 (2011).
Adams, H. & McGuire, L. P. Island biogeography theory and the urban landscape: stopover site selection by the silver-haired bat (Lasionycteris noctivagans). Can. J. Zool. 100, 243–250 (2022).
Olejniczak, M. J., Spiering, D. J., Potts, D. L. & Warren, R. J. I. I. Urban forests form isolated archipelagos. J. Urban Ecol. 4, juy007 (2018).
Malkinson, D., Kopel, D. & Wittenberg, L. From rural–urban gradients to patch–matrix frameworks: plant diversity patterns in urban landscapes. Landsc. Urban Plan. 169, 260–268 (2018).
Liu, J. et al. Plant diversity on islands in the Anthropocene: integrating the effects of the theory of island biogeography and human activities. Basic. Appl. Ecol. 72, 45–53 (2023).
Rastandeh, A., Pedersen Zari, M. & Brown, D. K. Components of landscape pattern and urban biodiversity in an era of climate change: a global survey of expert knowledge. Urban Ecosyst. 21, 903–920 (2018).
Niemelä, J. Is there a need for a theory of urban ecology? Urban Ecosyst. 3, 57–65 (1999).
Richardson, J. L. et al. Dispersal ability predicts spatial genetic structure in native mammals persisting across an urbanization gradient. Evol. Appl. 14, 163–177 (2021).
Itescu, Y. Are island-like systems biologically similar to islands? A review of the evidence. Ecography 42, 1298–1314 (2019).
Dornier, A., Pons, V. & Cheptou, P.-O. Colonization and extinction dynamics of an annual plant metapopulation in an urban environment. Oikos 120, 1240–1246 (2011).
Savage, A. M., Hackett, B., Guénard, B., Youngsteadt, E. K. & Dunn, R. R. Fine-scale heterogeneity across Manhattan’s urban habitat mosaic is associated with variation in ant composition and richness. Insect Conserv. Divers. 8, 216–228 (2015).
Salinitro, M., Alessandrini, A., Zappi, A. & Tassoni, A. Impact of climate change and urban development on the flora of a southern European city: analysis of biodiversity change over a 120-year period. Sci. Rep. 9, 9464 (2019).
Jha, S. & Kremen, C. Urban land use limits regional bumble bee gene flow. Mol. Ecol. 22, 2483–2495 (2013).
Unfried, T. M., Hauser, L. & Marzluff, J. M. Effects of urbanization on song sparrow (Melospiza melodia) population connectivity. Conserv. Genet. 14, 41–53 (2013).
Remon, J. et al. Patterns of gene flow across multiple anthropogenic infrastructures: insights from a multi-species approach. Landsc. Urban Plan. 226, 104507 (2022).
Planchuelo, G., Kowarik, I. & von der Lippe, M. Endangered plants in novel urban ecosystems are filtered by strategy type and dispersal syndrome, not by spatial dependence on natural remnants. Front. Ecol. Evol. 8, 18 (2020).
Demartín, R. P., Ghirardi, R. & López, J. A. High amphibian diversity throughout urban environmental heterogeneity. Urban Ecosyst. 27, 2061–2072 (2024).
Menke, S. B. et al. Urban areas may serve as habitat and corridors for dry-adapted, heat tolerant species; an example from ants. Urban Ecosyst. 14, 135–163 (2011).
Lequerica Tamara, M. E., Latty, T., Threlfall, C. G. & Hochuli, D. F. Major insect groups show distinct responses to local and regional attributes of urban green spaces. Landsc. Urban Plan. 216, 104238 (2021).
Combs, M., Puckett, E. E., Richardson, J., Mims, D. & Munshi-South, J. Spatial population genomics of the brown rat (Rattus norvegicus) in New York City. Mol. Ecol. 27, 83–98 (2018).
Yang, J., Luo, X., Lu, S., Yang, Y. & Yang, J. Effects of compositional and configurational heterogeneity of the urban matrix on the species richness of woody plants in urban remnant forest patches. Landsc. Ecol. 37, 619–632 (2022).
Kirstin, D., Angela, L., Ingolf, K. & Stefan, K. Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Glob. Ecol. Biogeog. 12, 299–311 (2003).
Osborne, J. L. et al. Quantifying and comparing bumblebee nest densities in gardens and countryside habitats: bumblebee nest survey in gardens and countryside. J. Appl. Ecol. 45, 784–792 (2007).
Bullock, J. M. et al. Human-mediated dispersal and the rewiring of spatial networks. Trends Ecol. Evol. 33, 958–970 (2018).
Medley, K. A., Jenkins, D. G. & Hoffman, E. A. Human-aided and natural dispersal drive gene flow across the range of an invasive mosquito. Mol. Ecol. 24, 284–295 (2015).
Gonçalves da Silva, A. et al. Gene flow networks among American Aedes aegypti populations. Evol. Appl. 5, 664–676 (2012).
von der Lippe, M. & Kowarik, I. Do cities export biodiversity? Traffic as dispersal vector across urban–rural gradients. Divers. Distrib. 14, 18–25 (2008).
Zhou, D., Zhao, S., Liu, S., Zhang, L. & Zhu, C. Surface urban heat island in China’s 32 major cities: spatial patterns and drivers. Remote Sens. Environ. 152, 51–61 (2014).
Oudin, L., Salavati, B., Furusho-Percot, C., Ribstein, P. & Saadi, M. Hydrological impacts of urbanization at the catchment scale. J. Hydrol. 559, 774–786 (2018).
Threlfall, C. G. et al. Increasing biodiversity in urban green spaces through simple vegetation interventions. J. Appl. Ecol. 54, 1874–1883 (2017).
Suarez-Rubio, M., Ille, C. & Bruckner, A. Insectivorous bats respond to vegetation complexity in urban green spaces. Ecol. Evol. 8, 3240–3253 (2018).
Hodgson, P., French, K. & Major, R. E. Avian movement across abrupt ecological edges: differential responses to housing density in an urban matrix. Landsc. Urban Plan. 79, 266–272 (2007).
Aronson, M. F. J. et al. Hierarchical filters determine community assembly of urban species pools. Ecology 97, 2952–2963 (2016).
Neate-Clegg, M. H. C. et al. Traits shaping urban tolerance in birds differ around the world. Curr. Biol. 33, 1677–1688.e6 (2023).
Schleicher, A., Biedermann, R. & Kleyer, M. Dispersal traits determine plant response to habitat connectivity in an urban landscape. Landsc. Ecol. 26, 529–540 (2011).
Padayachee, A. L. et al. How do invasive species travel to and through urban environments? Biol. Invasions 19, 3557–3570 (2017).
Gherghel, I. & Tedrow, R. Manmade structures are used by an invasive species to colonize new territory across a fragmented landscape. Acta Oecol. 101, 103479 (2019).
Beninde, J., Feldmeier, S., Veith, M. & Hochkirch, A. Admixture of hybrid swarms of native and introduced lizards in cities is determined by the cityscape structure and invasion history. Proc. Biol. Sci. 285, 20180143 (2018).
Kowarik, I. & von der Lippe, M. Secondary wind dispersal enhances long-distance dispersal of an invasive species in urban road corridors. NeoBiota 9, 49–70 (2011).
Balbi, M. et al. Functional connectivity in replicated urban landscapes in the land snail (Cornu aspersum). Mol. Ecol. 27, 1357–1370 (2018).
Valls, L., Castillo-Escrivà, A., Mesquita-Joanes, F. & Armengol, X. Human-mediated dispersal of aquatic invertebrates with waterproof footwear. Ambio 45, 99–109 (2016).
Ward, D., Harris, R. & Stanley, M. Human-mediated range expansion of Argentine ants Linepithema humile (Hymenoptera: Formicidae) in New Zealand. Sociobiology 45, 401–407 (2005).
Rebelo, A. D., Bates, M. F., Burger, M., Branch, W. R. & Conradie, W. Range expansion of the common dwarf gecko, Lygodactylus capensis: South Africa’s most successful reptile invader. Herpetol. Notes 12, 643–650 (2019).
Arca, M. et al. Reconstructing the invasion and the demographic history of the yellow-legged hornet, Vespa velutina, in Europe. Biol. Invasions 17, 2357–2371 (2015).
Ladin, Z. S., Eggen, D. A., Trammell, T. L. E. & D’Amico, V. Human-mediated dispersal drives the spread of the spotted lanternfly (Lycorma delicatula). Sci. Rep. 13, 1098 (2023).
Tóth, Z. et al. Earthworm assemblages in urban habitats across biogeographical regions. Appl. Soil Ecol. 151, 103530 (2020).
Wichmann, M. C. et al. Human-mediated dispersal of seeds over long distances. Proc. Biol. Sci. 276, 523–532 (2009).
Oskyrko, O., Sreelatha, L. B., Hanke, G. F., Deichsel, G. & Carretero, M. A. Origin of introduced Italian wall lizards, Podarcis siculus (Rafinesque-Schmaltz, 1810) (Squamata: Lacertidae) in North America. BioInvasions Rec. 11, 1095–1106 (2022).
Velo-Antón, G. et al. Phylogenetic study of Eleutherodactylus coqui (Anura: Leptodactylidae) reveals deep genetic fragmentation in Puerto Rico and pinpoints origins of Hawaiian populations. Mol. Phylogenet. Evol. 45, 716–728 (2007).
Bertolino, S. Animal trade and non-indigenous species introduction: the world-wide spread of squirrels. Divers. Distrib. 15, 701–708 (2009).
Barbato, D., Benocci, A., Caruso, T. & Manganelli, G. The role of dispersal and local environment in urban land snail assemblages: an example of three cities in central Italy. Urban Ecosyst. 20, 919–931 (2017).
Marzluff, J. M. A decadal review of urban ornithology and a prospectus for the future. Ibis 159, 1–13 (2017).
Møller, A. P. Flight distance of urban birds, predation, and selection for urban life. Behav. Ecol. Sociobiol. 63, 63–75 (2008).
Caizergues, A. E., Grégoire, A., Choquet, R., Perret, S. & Charmantier, A. Are behaviour and stress-related phenotypes in urban birds adaptive? J. Anim. Ecol. 91, 1627–1641 (2022).
Carrete, M. & Tella, J. L. Inter-individual variability in fear of humans and relative brain size of the species are related to contemporary urban invasion in birds. PLoS ONE 6, e18859 (2011).
Engelhardt, S. C. & Weladji, R. B. Effects of levels of human exposure on flight initiation distance and distance to refuge in foraging eastern gray squirrels (Sciurus carolinensis). Can. J. Zool. 89, 823–830 (2011).
Lapiedra, O., Chejanovski, Z. & Kolbe, J. J. Urbanization and biological invasion shape animal personalities. Glob. Change Biol. 23, 592–603 (2017).
Baxter-Gilbert, J., Riley, J. L. & Whiting, M. J. Bold New World: urbanization promotes an innate behavioral trait in a lizard. Behav. Ecol. Sociobiol. 73, 105 (2019).
Carlen, E. J., Li, R. & Winchell, K. M. Urbanization predicts flight initiation distance in feral pigeons (Columba livia) across New York City. Anim. Behav. 178, 229–245 (2021).
Engel, L. D., Carlen, E. J., Losos, J. & Winchell, K. M. Eastern gray squirrels (Sciurus carolinensis) differ in abundance and response to humans across urban habitats of St. Louis. Urban Natural. 33, 1–16 (2020).
Strubbe, D. et al. Phenotypic signatures of urbanization are scale-dependent: a multi-trait study on a classic urban exploiter. Landsc. Urban Plan. 197, 103767 (2020).
Croci, S., Butet, A. & Clergeau, P. Does urbanization filter birds on the basis of their biological traits? Condor 110, 223–240 (2008).
Rodewald, A. D. & Gehrt, S. D. in Urban Wildlife (McCleery, R. et al.) 117–147 (Springer, 2014).
Ducatez, S., Sayol, F., Sol, D. & Lefebvre, L. Are urban vertebrates city specialists, artificial habitat exploiters, or environmental generalists? Integr. Comp. Biol. 58, 929–938 (2018).
Bonier, F., Martin, P. R. & Wingfield, J. C. Urban birds have broader environmental tolerance. Biol. Lett. 3, 670–673 (2007).
Sol, D., González-Lagos, C., Moreira, D., Maspons, J. & Lapiedra, O. Urbanisation tolerance and the loss of avian diversity. Ecol. Lett. 17, 942–950 (2014).
Callaghan, C. T. et al. Generalists are the most urban-tolerant of birds: a phylogenetically controlled analysis of ecological and life history traits using a novel continuous measure of bird responses to urbanization. Oikos 128, 845–858 (2019).
Winchell, K. M., Schliep, K. P., Mahler, D. L. & Revell, L. J. Phylogenetic signal and evolutionary correlates of urban tolerance in a widespread neotropical lizard clade. Evolution 74, 1274–1288 (2020).
Ancillotto, L. & Labadessa, R. Functional traits drive the fate of Orthoptera in urban areas. Insect Conserv. Divers. 17, 304–311 (2024).
Evans, K. L. et al. Independent colonization of multiple urban centres by a formerly forest specialist bird species. Proc. Biol. Sci. 276, 2403–2410 (2009).
Thogmartin, W. E. et al. Restoring monarch butterfly habitat in the midwestern US: ‘all hands on deck’. Environ. Res. Lett. 12, 074005 (2017).
Hendry, A. P., Farrugia, T. J. & Kinnison, M. T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17, 20–29 (2008).
Sih, A., Ferrari, M. C. O. & Harris, D. J. Evolution and behavioural responses to human-induced rapid environmental change: behaviour and evolution. Evol. Appl. 4, 367–387 (2011).
Partecke, J. in Avian Urban Ecology (eds Gil, D. & Brumm, H.) 131–142 (Oxford Academic, 2013).
Winchell, K. M., Losos, J. B. & Verrelli, B. C. Urban evolutionary ecology brings exaptation back into focus. Trends Ecol. Evol. 38, 719–726 (2023).
Caspi, T., Johnson, J. R., Lambert, M. R., Schell, C. J. & Sih, A. Behavioral plasticity can facilitate evolution in urban environments. Trends Ecol. Evol. 37, 1092–1103 (2022).
Hamblin, A. L., Youngsteadt, E., López-Uribe, M. M. & Frank, S. D. Physiological thermal limits predict differential responses of bees to urban heat-island effects. Biol. Lett. 13, 20170125 (2017).
Piano, E. et al. Urbanization drives community shifts towards thermophilic and dispersive species at local and landscape scales. Glob. Change Biol. 23, 2554–2564 (2017).
Mitchell, B. A., Callaghan, C. T. & Rowley, J. J. L. Continental-scale citizen science data reveal no changes in acoustic responses of a widespread tree frog to an urbanisation gradient. J. Urban Ecol. 6, juaa002 (2020).
Hu, Y. & Cardoso, G. C. Are bird species that vocalize at higher frequencies preadapted to inhabit noisy urban areas? Behav. Ecol. 20, 1268–1273 (2009).
Kark, S., Iwaniuk, A., Schalimtzek, A. & Banker, E. Living in the city: can anyone become an ‘urban exploiter’? J. Biogeogr. 34, 638–651 (2007).
Lim, H. C. & Sodhi, N. S. Responses of avian guilds to urbanisation in a tropical city. Landsc. Urban Plan. 66, 199–215 (2004).
Clergeau, P., Croci, S., Jokimäki, J., Kaisanlahti-Jokimäki, M.-L. & Dinetti, M. Avifauna homogenisation by urbanisation: analysis at different European latitudes. Biol. Conserv. 127, 336–344 (2006).
Lizée, M.-H., Mauffrey, J.-F., Tatoni, T. & Deschamps-Cottin, M. Monitoring urban environments on the basis of biological traits. Ecol. Indic. 11, 353–361 (2011).
González-Lagos, C., Cardador, L. & Sol, D. Invasion success and tolerance to urbanization in birds. Ecography 44, 1642–1652 (2021).
Dennhardt, A. J. & Wakamiya, S. M. Effective dispersal of peregrine falcons (Falco peregrinus) in the Midwest, USA. J. Raptor Res. 47, 262–270 (2013).
Lowry, H., Lill, A. & Wong, B. B. M. Behavioural responses of wildlife to urban environments: behavioural responses to urban environments. Biol. Rev. Camb. Phil. Soc. 88, 537–549 (2013).
Sol, D., Lapiedra, O. & González-Lagos, C. Behavioural adjustments for a life in the city. Anim. Behav. 85, 1101–1112 (2013).
Badyaev, A. V. Stress-induced variation in evolution: from behavioural plasticity to genetic assimilation. Proc. Biol. Sci. 272, 877–886 (2005).
Slabbekoorn, H. Songs of the city: noise-dependent spectral plasticity in the acoustic phenotype of urban birds. Anim. Behav. 85, 1089–1099 (2013).
Higham, V. et al. Traffic noise drives an immediate increase in call pitch in an urban frog. J. Zool. 313, 307–315 (2021).
Heinen-Kay, J. L., Kay, A. D. & Zuk, M. How urbanization affects sexual communication. Ecol. Evol. 11, 17625–17650 (2021).
Marín-Gómez, O. H. & MacGregor-Fors, I. A global synthesis of the impacts of urbanization on bird dawn choruses. Ibis 163, 1133–1154 (2021).
Derryberry, E. P., Phillips, J. N., Derryberry, G. E., Blum, M. J. & Luther, D. Singing in a silent spring: birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science 370, 575–579 (2020).
Baker, P. J., Dowding, C. V., Molony, S. E., White, P. C. & Harris, S. Activity patterns of urban red foxes (Vulpes vulpes) reduce the risk of traffic-induced mortality. Behav. Ecol. 18, 716–724 (2007).
Dowding, C. V., Harris, S., Poulton, S. & Baker, P. J. Nocturnal ranging behaviour of urban hedgehogs, Erinaceus europaeus, in relation to risk and reward. Anim. Behav. 80, 13–21 (2010).
Dominoni, D. M. & Partecke, J. Does light pollution alter daylength? A test using light loggers on free-ranging European blackbirds (Turdus merula). Phil. Trans. R. Soc. Lond. B 370, 20140118 (2015).
Scholz, C. et al. Individual dietary specialization in a generalist predator: a stable isotope analysis of urban and rural red foxes. Ecol. Evol. 10, 8855–8870 (2020).
Stanton, L. A., Cooley-Ackermann, C., Davis, E. C., Fanelli, R. E. & Benson-Amram, S. Wild raccoons demonstrate flexibility and individuality in innovative problem-solving. Proc. Biol. Sci. 291, 20240911 (2024).
Gámez, S. et al. Downtown diet: a global meta-analysis of increased urbanization on the diets of vertebrate predators. Proc. Biol. Sci. 289, 20212487 (2022).
Jokimäki, J. & Suhonen, J. Distribution and habitat selection of wintering birds in urban environments. Landsc. Urban Plan. 39, 253–263 (1998).
Burghardt, K. T., Tallamy, D. W. & Shriver, W. G. Impact of native plants on bird and butterfly biodiversity in suburban landscapes. Conserv. Biol. 23, 219–224 (2009).
Fuller, R. A., Warren, P. H., Armsworth, P. R., Barbosa, O. & Gaston, K. J. Garden bird feeding predicts the structure of urban avian assemblages: garden bird feeding and avian assemblages. Divers. Distrib. 14, 131–137 (2008).
Cristaldi, M. A., Giraudo, A. R., Arzamendia, V., Bellini, G. P. & Claus, J. Urbanization impacts on the trophic guild composition of bird communities. J. Nat. Hist. 51, 2385–2404 (2017).
Conole, L. E. & Kirkpatrick, J. B. Functional and spatial differentiation of urban bird assemblages at the landscape scale. Landsc. Urban Plan. 100, 11–23 (2011).
Kaiser, A., Merckx, T. & Van Dyck, H. The urban heat island and its spatial scale dependent impact on survival and development in butterflies of different thermal sensitivity. Ecol. Evol. 6, 4129–4140 (2016).
Brans, K. I. & De Meester, L. City life on fast lanes: urbanization induces an evolutionary shift towards a faster lifestyle in the water flea Daphnia. Funct. Ecol. 32, 2225–2240 (2018).
Dominoni, D. M. The effects of light pollution on biological rhythms of birds: an integrated, mechanistic perspective. J. Ornithol. 156, 409–418 (2015).
Czaja, M. & Kołton, A. How light pollution can affect spring development of urban trees and shrubs. Urban For. Urban Green. 77, 127753 (2022).
Cordonnier, M., Bellec, A., Escarguel, G. & Kaufmann, B. Effects of urbanization–climate interactions on range expansion in the invasive European pavement ant. Basic Appl. Ecol. 44, 46–54 (2020).
Owen, H. L., Meng, F. & Winchell, K. M. Urbanization and environmental variation drive phenological changes in the spotted lanternfly Lycorma delicatula (Hemiptera: Fulgoridae). Biol. J. Linn. Soc. 143, blae099 (2024).
Bonier, F. Hormones in the city: endocrine ecology of urban birds. Horm. Behav. 61, 763–772 (2012).
Isaksson, C. Urbanization, oxidative stress and inflammation: a question of evolving, acclimatizing or coping with urban environmental stress. Funct. Ecol. 29, 913–923 (2015).
Alaasam, V. J. et al. What happens when the lights are left on? Transcriptomic and phenotypic habituation to light pollution. iScience 27, 108864 (2024).
Alaasam, V. Light at night disrupts nocturnal rest and elevates glucocorticoids at cool color temperatures. J. Vis. 19, 116 (2019) .
French, S. S., Fokidis, H. B. & Moore, M. C. Variation in stress and innate immunity in the tree lizard (Urosaurus ornatus) across an urban–rural gradient. J. Comp. Physiol. B 178, 997–1005 (2008).
Brearley, G., McAlpine, C., Bell, S. & Bradley, A. Influence of urban edges on stress in an arboreal mammal: a case study of squirrel gliders in southeast Queensland, Australia. Landsc. Ecol. 27, 1407–1419 (2012).
Heppner, J. J., Krause, J. S. & Ouyang, J. Q. Urbanization and maternal hormone transfer: endocrine and morphological phenotypes across ontogenetic stages. Gen. Comp. Endocrinol. 333, 114166 (2023).
Miranda, A. C. in Ecology and Conservation of Birds in Urban Environments (Murgui, E. & Hedblom, M.) 113–132 (Springer, 2017).
Ouyang, J. Q., Baldan, D., Munguia, C. & Davies, S. Genetic inheritance and environment determine endocrine plasticity to urban living. Proc. Biol. Sci. 286, 20191215 (2019).
Ilyas, M. et al. Adaptation of functional traits and their plasticity of three ornamental trees growing in urban environment. Sci. Hortic. 286, 110248 (2021).
Esperon-Rodriguez, M. et al. Functional adaptations and trait plasticity of urban trees along a climatic gradient. Urban For. Urban Green. 54, 126771 (2020).
Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).
Szulkin, M., Munshi-South, J. & Charmentier, A. (eds) Urban Evolutionary Biology (Oxford Univ. Press, 2020).
Winchell, K. M., Reynolds, R. G., Prado-Irwin, S. R., Puente-Rolón, A. R. & Revell, L. J. Phenotypic shifts in urban areas in the tropical lizard Anolis cristatellus. Evolution 70, 1009–1022 (2016).
Winchell, K. M., Maayan, I., Fredette, J. R. & Revell, L. J. Linking locomotor performance to morphological shifts in urban lizards. Proc. Biol. Sci. 285, 20180229 (2018).
Winchell, K. M. et al. Genome-wide parallelism underlies contemporary adaptation in urban lizards. Proc. Natl Acad. Sci. USA 120, e2216789120 (2023).
Santangelo, J. S. et al. Global urban environmental change drives adaptation in white clover. Science 375, 1275–1281 (2022).
Halfwerk, W. et al. Adaptive changes in sexual signalling in response to urbanization. Nat. Ecol. Evol. 3, 374–380 (2019).
Smit, J. A. H., Vooijs, R., Lindenburg, P., Baugh, A. T. & Halfwerk, W. Noise and light pollution elicit endocrine responses in urban but not forest frogs. Horm. Behav. 157, 105453 (2024).
Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).
Campbell-Staton, S. C. et al. Parallel selection on thermal physiology facilitates repeated adaptation of city lizards to urban heat islands. Nat. Ecol. Evol. 4, 652–658 (2020).
Campbell-Staton, S. C., Velotta, J. P. & Winchell, K. M. Selection on adaptive and maladaptive gene expression plasticity during thermal adaptation to urban heat islands. Nat. Commun. 12, 6195 (2021).
Lenard, A. & Diamond, S. E. Evidence of plasticity, but not evolutionary divergence, in the thermal limits of a highly successful urban butterfly. J. Insect Physiol. 155, 104648 (2024).
Diamond, S. E. & Martin, R. A. Physiological adaptation to cities as a proxy to forecast global-scale responses to climate change. J. Exp. Biol. 224, jeb229336 (2021).
Diamond, S. E. & Martin, R. A. The interplay between plasticity and evolution in response to human-induced environmental change. F1000 Res. 5, 2835 (2016).
Merckx, T. et al. Continent-wide parallel urban evolution of increased heat tolerance in a common moth. Evol. Appl. 17, e13636 (2024).
Kanamori, S. et al. Detection of genes positively selected in Cuban Anolis lizards that naturally inhabit hot and open areas and currently thrive in urban areas. Ecol. Evol. 11, 1719–1728 (2021).
Diamond, S. E., Kolaske, L. R. & Martin, R. A. Physiology evolves convergently but lags behind warming in cities. Integr. Comp. Biol. 64, 402–413 (2024).
Angilletta, M. J. Jr et al. Urban physiology: city ants possess high heat tolerance. PLoS ONE 2, e258 (2007).
Diamond, S. E., Chick, L. D., Perez, A., Strickler, S. A. & Martin, R. A. Evolution of thermal tolerance and its fitness consequences: parallel and non-parallel responses to urban heat islands across three cities. Proc. Biol. Sci. 285, 20180036 (2018).
Brans, K. I. et al. The heat is on: genetic adaptation to urbanization mediated by thermal tolerance and body size. Glob. Change Biol. 23, 5218–5227 (2017).
Prileson, E. G. & Martin, R. A. Evolution and plasticity of physiological traits in the collembolan Orchesella villosa at fine spatial scales within the city. Biol. J. Linn. Soc. Lond. 144, blae038 (2025).
Yilmaz, A. R., Diamond, S. E. & Martin, R. A. Evidence for the evolution of thermal tolerance, but not desiccation tolerance, in response to hotter, drier city conditions in a cosmopolitan, terrestrial isopod. Evol. Appl. 14, 12–23 (2021).
Atwell, J. W. et al. Boldness behavior and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation. Behav. Ecol. 23, 960–969 (2012).
Maklakov, A. A., Immler, S., Gonzalez-Voyer, A., Rönn, J. & Kolm, N. Brains and the city: big-brained passerine birds succeed in urban environments. Biol. Lett. 7, 730–732 (2011).
Kozlovsky, D. Y., Weissgerber, E. A. & Pravosudov, V. V. What makes specialized food-caching mountain chickadees successful city slickers? Proc. Biol. Sci. 284, 20162613 (2017).
Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P. & Lefebvre, L. Big brains, enhanced cognition, and response of birds to novel environments. Proc. Natl Acad. Sci. USA 102, 5460–5465 (2005).
Overington, S. E., Morand-Ferron, J., Boogert, N. J. & Lefebvre, L. Technical innovations drive the relationship between innovativeness and residual brain size in birds. Anim. Behav. 78, 1001–1010 (2009).
Gaynor, K. M. et al. The human shield hypothesis: does predator avoidance of humans create refuges for prey? Ecol. Lett. 28, e70138 (2025).
Gopal, A. C., Alujević, K. & Logan, M. L. Temperature and the pace of life. Behav. Ecol. Sociobiol. 77, 59 (2023).
Sadoul, B., Blumstein, D. T., Alfonso, S. & Geffroy, B. Human protection drives the emergence of a new coping style in animals. PLoS Biol. 19, e3001186 (2021).
Ferraro, D. M., Le, M.-L. T. & Francis, C. D. Combined effect of anthropogenic noise and artificial night lighting negatively affect western bluebird chick development. Condor 122, duaa037 (2020).
Wilson, A. A. et al. Artificial night light and anthropogenic noise interact to influence bird abundance over a continental scale. Glob. Change Biol. 27, 3987–4004 (2021).
Cheptou, P.-O., Carrue, O., Rouifed, S. & Cantarel, A. Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta. Proc. Natl Acad. Sci. USA 105, 3796–3799 (2008).
Demeyrier, V., Lambrechts, M. M., Perret, P. & Grégoire, A. Experimental demonstration of an ecological trap for a wild bird in a human-transformed environment. Anim. Behav. 118, 181–190 (2016).
Robertson, B. A. & Chalfoun, A. D. Evolutionary traps as keys to understanding behavioral maladapation. Curr. Opin. Behav. Sci. 12, 12–17 (2016).
Plaza, P. I. & Lambertucci, S. A. How are garbage dumps impacting vertebrate demography, health, and conservation? Glob. Ecol. Conserv. 12, 9–20 (2017).
Aronson, M. F. J. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. Biol. Sci. 281, 20133330 (2014).
Beninde, J., Veith, M. & Hochkirch, A. Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 18, 581–592 (2015).
Stadler, J., Trefflich, A., Klotz, S. & Brandl, R. Exotic plant species invade diversity hot spots: the alien flora of northwestern Kenya. Ecography 23, 169–176 (2000).
Bode, R. F. & Maciejewski, A. Herbivore biodiversity varies with patch size in an urban archipelago. Int. J. Insect Sci. 6, IJIS.S13896 (2014).
Schwartz, M. W., Thorne, J. H. & Viers, J. H. Biotic homogenization of the California flora in urban and urbanizing regions. Biol. Conserv. 127, 282–291 (2006).
Verbeylen, G., De Bruyn, L., Adriaensen, F. & Matthysen, E. Does matrix resistance influence red squirrel (Sciurus vulgaris L. 1758) distribution in an urban landscape? Landsc. Ecol. 18, 791–805 (2003).
FitzGibbon, S. I., Putland, D. A. & Goldizen, A. W. The importance of functional connectivity in the conservation of a ground-dwelling mammal in an urban Australian landscape. Landsc. Ecol. 22, 1513–1525 (2007).
Chapman, D., Purse, B. V., Roy, H. E. & Bullock, J. M. Global trade networks determine the distribution of invasive non-native species. Glob. Ecol. Biogeogr. 26, 907–917 (2017).
Pysek, P. et al. Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc. Natl Acad. Sci. USA 107, 12157–12162 (2010).
Banks, N. C., Paini, D. R., Bayliss, K. L. & Hodda, M. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecol. Lett. 18, 188–199 (2015).
Potgieter, L. J. et al. Cities shape the diversity and spread of nonnative species. Annu. Rev. Ecol. Evol. Syst. 55, 157–180 (2024).
Aronson, M. F. J., Patel, M. V., O’Neill, K. M. & Ehrenfeld, J. G. Urban riparian systems function as corridors for both native and invasive plant species. Biol. Invasions 19, 3645–3657 (2017).
Foucaud, J. et al. Worldwide invasion by the little fire ant: routes of introduction and eco-evolutionary pathways: worldwide invasion by W. auropunctata. Evol. Appl. 3, 363–374 (2010).
Levine, J. M. & D’Antonio, C. M. Forecasting biological invasions with increasing international trade. Conserv. Biol. 17, 322–326 (2003).
Olden, J. D., Whattam, E. & Wood, S. A. Online auction marketplaces as a global pathway for aquatic invasive species. Hydrobiologia 848, 1967–1979 (2021).
Bertelsmeier, C. et al. Temporal dynamics and global flows of insect invasions in an era of globalization. Nat. Rev. Biodivers. 1, 90–103 (2025).
Munschek, M. et al. Putting conservation gardening into practice. Sci. Rep. 13, 12671 (2023).
Segar, J. et al. Urban conservation gardening in the decade of restoration. Nat. Sustain. 5, 649–656 (2022).
Kark, S. in Encyclopedia of Biodiversity 2nd edn Reference Module in Life Sciences (ed. Levin, S. A.) 142–148 (Elsevier, 2017).
Wood, B. C. & Pullin, A. S. Persistence of species in a fragmented urban landscape: the importance of dispersal ability and habitat availability for grassland butterflies. Biodivers. Conserv. 11, 1451–1468 (2002).
Carlon, E. & Dominoni, D. M. The role of urbanization in facilitating the introduction and establishment of non-native animal species: a comprehensive review. J. Urban Ecol. 10, juae015 (2024).
Hufbauer, R. A. et al. Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions. Evol. Appl. 5, 89–101 (2012).
Borden, J. B. & Flory, S. L. Urban evolution of invasive species. Front. Ecol. Environ. 19, 184–191 (2021).
Mogi, M., Armbruster, P. A. & Tuno, N. Differences in responses to urbanization between invasive mosquitoes, Aedes japonicus japonicus (Diptera: Culicidae) and Aedes albopictus, in their native range, Japan. J. Med. Entomol. 57, 104–112 (2020).
Yakub, M. & Tiffin, P. Living in the city: urban environments shape the evolution of a native annual plant. Glob. Change Biol. 23, 2082–2089 (2017).
Carlen, E. & Munshi-South, J. Widespread genetic connectivity of feral pigeons across the northeastern megacity. Evol. Appl. 14, 150–162 (2021).
Miles, L. S., Rivkin, L. R., Johnson, M. T. J., Munshi-South, J. & Verrelli, B. C. Gene flow and genetic drift in urban environments. Mol. Ecol. 28, 4138–4151 (2019).
Gortat, T. et al. Anthropopressure gradients and the population genetic structure of Apodemus agrarius. Conserv. Genet. 16, 649–659 (2015).
Perrier, C. et al. Great tits and the city: distribution of genomic diversity and gene–environment associations along an urbanization gradient. Evol. Appl. 11, 593–613 (2018).
Fusco, N. A., Pehek, E. & Munshi-South, J. Urbanization reduces gene flow but not genetic diversity of stream salamander populations in the New York City metropolitan area. Evol. Appl. 14, 99–116 (2021).
Patenković, A. et al. Urban ecosystem drives genetic diversity in feral honey bee. Sci. Rep. 12, 17692 (2022).
Lourenço, A., Álvarez, D., Wang, I. J. & Velo-Antón, G. Trapped within the city: integrating demography, time since isolation and population-specific traits to assess the genetic effects of urbanization. Mol. Ecol. 26, 1498–1514 (2017).
Schmidt, C. & Garroway, C. J. The population genetics of urban and rural amphibians in North America. Mol. Ecol. 30, 3918–3929 (2021).
Saarikivi, J., Knopp, T., Granroth, A. & Merilä, J. The role of golf courses in maintaining genetic connectivity between common frog (Rana temporaria) populations in an urban setting. Conserv. Genet. 14, 1057–1064 (2013).
Mueller, J. C. et al. Evolution of genomic variation in the burrowing owl in response to recent colonization of urban areas. Proc. Biol. Sci. 285, 20180206 (2018).
Stracey, C. M. & Robinson, S. K. Are urban habitats ecological traps for a native songbird? Season-long productivity, apparent survival, and site fidelity in urban and rural habitats. J. Avian Biol. 43, 50–60 (2012).
Millsap, B. A. Demography and metapopulation dynamics of an urban Cooper’s hawk subpopulation. Condor 120, 63–80 (2018).
Björklund, M., Ruiz, I. & Senar, J. C. Genetic differentiation in the urban habitat: the great tits (Parus major) of the parks of Barcelona city: genetic differentation in Barcelona. Biol. J. Linn. Soc. Lond. 99, 9–19 (2009).
Salmón, P. et al. Continent-wide genomic signatures of adaptation to urbanisation in a songbird across Europe. Nat. Commun. 12, 2983 (2021).
Kawecki, T. J. in Ecology, Genetics and Evolution of Metapopulations (eds Hanski, I. & Gaggiotti, O. E.) 387–414 (Elsevier, 2004).
Lenormand, T. Gene flow and the limits to natural selection. Trends Ecol. Evol. 17, 183–189 (2002).
Lemke, A., Kowarik, I. & von der Lippe, M. How traffic facilitates population expansion of invasive species along roads: the case of common ragweed in Germany. J. Appl. Ecol. 56, 413–422 (2019).
Diamond, S. E. & Martin, R. A. Evolution is a double-edged sword, not a silver bullet, to confront global change. Ann. NY Acad. Sci.1469, 38–51 (2020).
Urban, M. C. et al. Interactions between climate change and urbanization will shape the future of biodiversity. Nat. Clim. Change 14, 436–447 (2024).
Kühn, I., Wolf, J. & Schneider, A. Is there an urban effect in alien plant invasions? Biol. Invasions 19, 3505–3513 (2017).
Buckley, Y. M. & Catford, J. Does the biogeographic origin of species matter? Ecological effects of native and non-native species and the use of origin to guide management. J. Ecol. 104, 4–17 (2016).
Dueñas, M.-A., Hemming, D. J., Roberts, A. & Diaz-Soltero, H. The threat of invasive species to IUCN-listed critically endangered species: a systematic review. Glob. Ecol. Conserv. 26, e01476 (2021).
Lee, C. E. & Gelembiuk, G. W. Evolutionary origins of invasive populations: evolution of invasive populations. Evol. Appl. 1, 427–448 (2008).
van Kleunen, M. et al. The changing role of ornamental horticulture in alien plant invasions: horticulture and plant invasions. Biol. Rev. Camb. Phil. Soc. 93, 1421–1437 (2018).
Peterson, A. T. Predicting the geography of species’ invasions via ecological niche modeling. Q. Rev. Biol. 78, 419–433 (2003).
Buczkowski, G. Extreme life history plasticity and the evolution of invasive characteristics in a native ant. Biol. Invasions 12, 3343–3349 (2010).
Møller, A. P. et al. Urbanized birds have superior establishment success in novel environments. Oecologia 178, 943–950 (2015).
Barnett, L. K., Phillips, B. L. & Hoskin, C. J. Going feral: time and propagule pressure determine range expansion of Asian house geckos into natural environments. Austral. Ecol. 42, 165–175 (2017).
Foucaud, J. et al. Reproductive system, social organization, human disturbance and ecological dominance in native populations of the little fire ant, Wasmannia auropunctata: factors of ecological dominance in an ant. Mol. Ecol. 18, 5059–5073 (2009).
Sexton, A. N. & Lawhorn, K. A. Best practices for designing resilient urban ecosystems through native species restoration. Urban For. Urban Green. 104, 128657 (2025).
Blouin, D., Pellerin, S. & Poulin, M. Increase in non-native species richness leads to biotic homogenization in vacant lots of a highly urbanized landscape. Urban Ecosyst. 22, 879–892 (2019).
McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).
Hope, D. et al. Socioeconomics drive urban plant diversity. Proc. Natl Acad. Sci. USA 100, 8788–8792 (2003).
Chamberlain, D. et al. Wealth, water and wildlife: landscape aridity intensifies the urban luxury effect. Glob. Ecol. Biogeogr. 29, 1595–1605 (2020).
Gopal, D., von der Lippe, M. & Kowarik, I. Sacred sites, biodiversity and urbanization in an Indian megacity. Urban Ecosyst. 22, 161–172 (2019).
Droz, B. et al. Moderately urbanized areas as a conservation opportunity for an endangered songbird. Landsc. Urban Plan. 181, 1–9 (2019).
Kendal, D. et al. The importance of small urban reserves for plant conservation. Biol. Conserv. 213, 146–153 (2017).
Schell, C. J. et al. The evolutionary consequences of human–wildlife conflict in cities. Evol. Appl. 14, 178–197 (2021).
Diamant, E. S. et al. The importance of biome in shaping urban biodiversity. Trends Ecol. Evol. 40, 601–612 (2025).
Ellis-Soto, D. et al. A vision for incorporating human mobility in the study of human–wildlife interactions. Nat. Ecol. Evol. 7, 1362–1372 (2023).
Wang, D., Xu, P.-Y., An, B.-W. & Guo, Q.-P. Urban green infrastructure: bridging biodiversity conservation and sustainable urban development through adaptive management approach. Front. Ecol. Evol. 12, 1440477 (2024).
Fitzpatrick, S. W. & Reid, B. N. Does gene flow aggravate or alleviate maladaptation to environmental stress in small populations? Evol. Appl. 12, 1402–1416 (2019).
Di Pietro, S., Mantoni, C. & Fattorini, S. Influence of urbanization on the avian species-area relationship: insights from the breeding birds of Rome. Urban Ecosyst. 24, 779–788 (2021).
Vega, K. A. & Küffer, C. Promoting wildflower biodiversity in dense and green cities: the important role of small vegetation patches. Urban For. Urban Green. 62, 127165 (2021).
Delaney, K. S., Busteed, G., Fisher, R. N. & Riley, S. P. D. Reptile and amphibian diversity and abundance in an urban landscape: impacts of fragmentation and the conservation value of small patches. Ichthyol. Herpetol. 109, 424–435 (2021).
Lizee, M.-H., Tatoni, T. & Deschamps-Cottin, M. Nested patterns in urban butterfly species assemblages: respective roles of plot management, park layout and landscape features. Urban Ecosyst. 19, 205–224 (2016).
Gaublomme, E., Hendrickx, F., Dhuyvetter, H. & Desender, K. The effects of forest patch size and matrix type on changes in carabid beetle assemblages in an urbanized landscape. Biol. Conserv. 141, 2585–2596 (2008).
Lintott, P. R. et al. Moth species richness, abundance and diversity in fragmented urban woodlands: implications for conservation and management strategies. Biodivers. Conserv. 23, 2875–2901 (2014).
Oropeza-Sánchez, M. T. et al. Urban green spaces with high connectivity and complex vegetation promote occupancy and richness of birds in a tropical megacity. Urban Ecosyst. 28, 50 (2025).
Straka, T. M., Lentini, P. E., Lumsden, L. F., Wintle, B. A. & van der Ree, R. Urban bat communities are affected by wetland size, quality, and pollution levels. Ecol. Evol. 6, 4761–4774 (2016).
Russo, D. & Ancillotto, L. Sensitivity of bats to urbanization: a review. Mamm. Biol. 80, 205–212 (2015).
Center for International Earth Science Information Network-CIESIN-Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population density, Revision 11. Socioeconomic Data and Applications Center (SEDAC) https://doi.org/10.7927/H49C6VHW (2017).
Wei, J. et al. First close insight into global daily gapless 1 km PM2.5 pollution, variability, and health impact. Nat. Commun. 14, 8349 (2023).
Elvidge, C. D., Zhizhin, M., Ghosh, T., Hsu, F.-C. & Taneja, J. Annual time series of global VIIRS nighttime lights derived from monthly averages: 2012 to 2019. Remote Sens. 13, 922 (2021).
Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).
Che, Y. et al. 3D-GloBFP: the first global three-dimensional building footprint dataset. Earth Syst. Sci. Data 16, 5357–5374 (2024).
Wan, Z., Hook, S. & Hulley, G. MOD11A1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V006 dataset. NASA Land Processes Distributed Active Archive Center https://doi.org/10.5067/MODIS/MOD11A1.006 (2015).
Author information
Authors and Affiliations
Contributions
All authors contributed substantially to the conceptualization, writing and review/editing of the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Biodiversity thanks Marc Johnson, Ella Martin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
DEA Land Cover (Landsat): https://knowledge.dea.ga.gov.au/data/product/dea-land-cover-landsat/
Land Cover Raster Data (2017) – 6in Resolution: https://data.cityofnewyork.us/Environment/Land-Cover-Raster-Data-2017-6in-Resolution/he6d-2qns/about_data
Mapbox: https://www.mapbox.com/movement-data
Mapping Inequality: https://dsl.richmond.edu/panorama/redlining
NYCCAS Air Pollution Rasters: https://data.cityofnewyork.us/Environment/NYCCAS-Air-Pollution-Rasters/q68s-8qxv/about_data
OpenStreetMap: https://www.openstreetmap.org/#map=4/38.01/-95.84
Urban Heat Island (UHI) intensity modelling: http://data.europa.eu/88u/dataset/45b703bb-d4f3-4eaa-8b73-13fde2041f01
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Alaasam, V., Snead, A., Thonis, A. et al. Eco-evolutionary dynamics shaping biodiversity in the urban mosaic. Nat. Rev. Biodivers. (2026). https://doi.org/10.1038/s44358-026-00138-0
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s44358-026-00138-0


