Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Eco-evolutionary dynamics shaping biodiversity in the urban mosaic

Abstract

Cities were once considered population sinks for many species, but it is now clear that they can offer viable and even high-quality animal habitats, and thus have an essential role in maintaining global biodiversity. In some ways, cities are island-like habitats connected by human infrastructure, governed by the rules of island biogeography. Yet cities are also unique mosaic landscapes with heterogeneity that reflects both the local, natural ecosystem and an urban landscape common to cities worldwide. Species-specific evolutionary and ecological histories determine how species interact with different features of the landscape and thus the patterns of urban colonization and persistence. In this Review, we explore how ecological and evolutionary processes play out in the urban mosaic and shape urban species assemblages. Accounting for the interplay of complex ecological and evolutionary mechanisms on multiple, hierarchical spatial scales will enhance understanding of how urban biodiversity is accumulated and maintained, and enable better management of species as cities expand and intensify globally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Urban ecosystems.
Fig. 2: Island biogeography reimagined in an urban mosaic landscape.
Fig. 3: Eco-evolutionary dynamics of colonization and persistence.
Fig. 4: Eco-evolutionary dynamics occurring in the city.
Fig. 5: Examples of large datasets quantifying the urban mosaic.

Similar content being viewed by others

References

  1. Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).

    Article  CAS  Google Scholar 

  2. McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).

    Article  CAS  Google Scholar 

  3. Olden, J. D. & Poff, N. L. Toward a mechanistic understanding and prediction of biotic homogenization. Am. Nat. 162, 442–460 (2003).

    Article  Google Scholar 

  4. Daru, B. H. et al. Widespread homogenization of plant communities in the Anthropocene. Nat. Commun. 12, 6983 (2021).

    Article  CAS  Google Scholar 

  5. McKinney, M. L. Urbanization, biodiversity, and conservation. Bioscience 52, 883–890 (2002).

    Article  Google Scholar 

  6. Callaghan, C. T. et al. Heterogeneous urban green areas are bird diversity hotspots: insights using continental-scale citizen science data. Landsc. Ecol. 34, 1231–1246 (2019).

    Article  Google Scholar 

  7. Sultana, M., Corlatti, L. & Storch, I. The interaction of imperviousness and habitat heterogeneity drives bird richness patterns in south Asian cities. Urban Ecosyst. 24, 335–344 (2021).

    Article  Google Scholar 

  8. McKinney, M. L. Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).

    Article  Google Scholar 

  9. Kowarik, I. et al. Promoting urban biodiversity for the benefit of people and nature. Nat. Rev. Biodivers. 1, 214–232 (2025).

    Article  Google Scholar 

  10. Escobedo, F. J., Kroeger, T. & Wagner, J. E. Urban forests and pollution mitigation: analyzing ecosystem services and disservices. Environ. Pollut. 159, 2078–2087 (2011).

    Article  CAS  Google Scholar 

  11. Escobedo, F. J. & Nowak, D. J. Spatial heterogeneity and air pollution removal by an urban forest. Landsc. Urban Plan. 90, 102–110 (2009).

    Article  Google Scholar 

  12. Spotswood, E. N. et al. The biological deserts fallacy: cities in their landscapes contribute more than we think to regional biodiversity. Bioscience 71, 148–160 (2021).

    Article  Google Scholar 

  13. Faeth, S. H., Bang, C. & Saari, S. Urban biodiversity: patterns and mechanisms: Urban biodiversity. Ann. NY Acad. Sci. 1223, 69–81 (2011).

    Article  Google Scholar 

  14. Wu, J. Urban ecology and sustainability: the state-of-the-science and future directions. Landsc. Urban Plan. 125, 209–221 (2014).

    Article  Google Scholar 

  15. Tavernia, B. G. & Reed, J. M. Spatial extent and habitat context influence the nature and strength of relationships between urbanization measures. Landsc. Urban Plan. 92, 47–52 (2009).

    Article  Google Scholar 

  16. Szulkin, M., Garroway, C. J., Corsini, M., Kotarba, A. Z. & Dominoni, D. in Urban Evolutionary Biology (eds Szulkin, M. et al.) 13–35 (Oxford Univ. Press, 2020).

  17. McDonnell, M. J. & Hahs, A. K. The future of urban biodiversity research: moving beyond the ‘low-hanging fruit’. Urban Ecosyst. 16, 397–409 (2013).

    Article  Google Scholar 

  18. Alberti, M. Eco-evolutionary dynamics in an urbanizing planet. Trends Ecol. Evol. 30, 114–126 (2015).

    Article  Google Scholar 

  19. Winchell, K. M. et al. Moving past the challenges and misconceptions in urban adaptation research. Ecol. Evol. 12, e9552 (2022).

    Article  Google Scholar 

  20. Schell, C. J. et al. The ecological and evolutionary consequences of systemic racism in urban environments. Science 369, eaay4497 (2020).

    Article  CAS  Google Scholar 

  21. Alberti, M. et al. The complexity of urban eco-evolutionary dynamics. Bioscience 70, 772–793 (2020).

    Article  Google Scholar 

  22. Rivkin, L. R. et al. A roadmap for urban evolutionary ecology. Evol. Appl. 12, 384–398 (2019).

    Article  Google Scholar 

  23. Shochat, E., Warren, P. S., Faeth, S. H., McIntyre, N. E. & Hope, D. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol. Evol. 21, 186–191 (2006).

    Article  Google Scholar 

  24. Verrelli, B. C. et al. A global horizon scan for urban evolutionary ecology. Trends Ecol. Evol. 37, 1006–1019 (2022).

    Article  Google Scholar 

  25. delBarco-Trillo, J. & Putman, B. J. Not all cities are the same: variation in animal phenotypes across cities within urban ecology studies. Urban Ecosyst. 26, 1725–1737 (2023).

    Article  Google Scholar 

  26. Davis, A. M. & Glick, T. F. Urban ecosystems and island biogeography. Environ. Conserv. 5, 299–304 (1978).

    Article  Google Scholar 

  27. Carlen, E. J. et al. Legacy effects of religion, politics and war on urban evolutionary biology. Nat. Cities 2, 593–602 (2025).

    Article  Google Scholar 

  28. Schmidt, C. & Garroway, C. Systemic racism alters wildlife genetic diversity. Proc. Natl Acad. Sci. USA 119, e2102860119 (2022).

    Article  CAS  Google Scholar 

  29. Lambert, M. R. & Donihue, C. M. Urban biodiversity management using evolutionary tools. Nat. Ecol. Evol. 4, 903–910 (2020).

    Article  Google Scholar 

  30. Des Roches, S. et al. Socio-eco-evolutionary dynamics in cities. Evol. Appl. 14, 248–267 (2021).

    Article  Google Scholar 

  31. Dunn, R. R. et al. A theory of city biogeography and the origin of urban species. Front. Conserv. Sci. 3, 761449 (2022).

    Article  Google Scholar 

  32. Piano, E., Giuliano, D. & Isaia, M. Islands in cities: urbanization and fragmentation drive taxonomic and functional variation in ground arthropods. Basic Appl. Ecol. 43, 86–98 (2020).

    Article  Google Scholar 

  33. Platt, A. & Lill, A. Composition and conservation value of bird assemblages of urban ‘habitat islands’: do pedestrian traffic and landscape variables exert an influence? Urban Ecosyst. 9, 83–97 (2006).

    Article  Google Scholar 

  34. Fattorini, S., Mantoni, C., de Simoni, L. & Galassi, D. M. P. Island biogeography of insect conservation in urban green spaces. Environ. Conserv. 45, 1–10 (2017).

    Article  Google Scholar 

  35. Fattorini, S. Island biogeography of urban insects: tenebrionid beetles from Rome tell a different story. J. Insect Conserv. 18, 729–735 (2014).

    Article  Google Scholar 

  36. Medeiros-Sousa, A. R., Fernandes, A., Ceretti-Junior, W., Wilke, A. B. B. & Marrelli, M. T. Mosquitoes in urban green spaces: using an island biogeographic approach to identify drivers of species richness and composition. Sci. Rep. 7, 17826 (2017).

    Article  Google Scholar 

  37. Fernández-Juricic, E. & Jokimäki, J. A habitat island approach to conserving birds in urban landscapes: case studies from southern and northern Europe. Biodivers. Conserv. 10, 2023–2043 (2001).

    Article  Google Scholar 

  38. Shanahan, D. F., Miller, C., Possingham, H. P. & Fuller, R. A. The influence of patch area and connectivity on avian communities in urban revegetation. Biol. Conserv. 144, 722–729 (2011).

    Article  Google Scholar 

  39. Adams, H. & McGuire, L. P. Island biogeography theory and the urban landscape: stopover site selection by the silver-haired bat (Lasionycteris noctivagans). Can. J. Zool. 100, 243–250 (2022).

    Article  Google Scholar 

  40. Olejniczak, M. J., Spiering, D. J., Potts, D. L. & Warren, R. J. I. I. Urban forests form isolated archipelagos. J. Urban Ecol. 4, juy007 (2018).

    Article  Google Scholar 

  41. Malkinson, D., Kopel, D. & Wittenberg, L. From rural–urban gradients to patch–matrix frameworks: plant diversity patterns in urban landscapes. Landsc. Urban Plan. 169, 260–268 (2018).

    Article  Google Scholar 

  42. Liu, J. et al. Plant diversity on islands in the Anthropocene: integrating the effects of the theory of island biogeography and human activities. Basic. Appl. Ecol. 72, 45–53 (2023).

    Article  Google Scholar 

  43. Rastandeh, A., Pedersen Zari, M. & Brown, D. K. Components of landscape pattern and urban biodiversity in an era of climate change: a global survey of expert knowledge. Urban Ecosyst. 21, 903–920 (2018).

    Article  Google Scholar 

  44. Niemelä, J. Is there a need for a theory of urban ecology? Urban Ecosyst. 3, 57–65 (1999).

    Article  Google Scholar 

  45. Richardson, J. L. et al. Dispersal ability predicts spatial genetic structure in native mammals persisting across an urbanization gradient. Evol. Appl. 14, 163–177 (2021).

    Article  CAS  Google Scholar 

  46. Itescu, Y. Are island-like systems biologically similar to islands? A review of the evidence. Ecography 42, 1298–1314 (2019).

    Article  Google Scholar 

  47. Dornier, A., Pons, V. & Cheptou, P.-O. Colonization and extinction dynamics of an annual plant metapopulation in an urban environment. Oikos 120, 1240–1246 (2011).

    Article  Google Scholar 

  48. Savage, A. M., Hackett, B., Guénard, B., Youngsteadt, E. K. & Dunn, R. R. Fine-scale heterogeneity across Manhattan’s urban habitat mosaic is associated with variation in ant composition and richness. Insect Conserv. Divers. 8, 216–228 (2015).

    Article  Google Scholar 

  49. Salinitro, M., Alessandrini, A., Zappi, A. & Tassoni, A. Impact of climate change and urban development on the flora of a southern European city: analysis of biodiversity change over a 120-year period. Sci. Rep. 9, 9464 (2019).

    Article  Google Scholar 

  50. Jha, S. & Kremen, C. Urban land use limits regional bumble bee gene flow. Mol. Ecol. 22, 2483–2495 (2013).

    Article  Google Scholar 

  51. Unfried, T. M., Hauser, L. & Marzluff, J. M. Effects of urbanization on song sparrow (Melospiza melodia) population connectivity. Conserv. Genet. 14, 41–53 (2013).

    Article  Google Scholar 

  52. Remon, J. et al. Patterns of gene flow across multiple anthropogenic infrastructures: insights from a multi-species approach. Landsc. Urban Plan. 226, 104507 (2022).

    Article  Google Scholar 

  53. Planchuelo, G., Kowarik, I. & von der Lippe, M. Endangered plants in novel urban ecosystems are filtered by strategy type and dispersal syndrome, not by spatial dependence on natural remnants. Front. Ecol. Evol. 8, 18 (2020).

    Article  Google Scholar 

  54. Demartín, R. P., Ghirardi, R. & López, J. A. High amphibian diversity throughout urban environmental heterogeneity. Urban Ecosyst. 27, 2061–2072 (2024).

    Article  Google Scholar 

  55. Menke, S. B. et al. Urban areas may serve as habitat and corridors for dry-adapted, heat tolerant species; an example from ants. Urban Ecosyst. 14, 135–163 (2011).

    Article  Google Scholar 

  56. Lequerica Tamara, M. E., Latty, T., Threlfall, C. G. & Hochuli, D. F. Major insect groups show distinct responses to local and regional attributes of urban green spaces. Landsc. Urban Plan. 216, 104238 (2021).

    Article  Google Scholar 

  57. Combs, M., Puckett, E. E., Richardson, J., Mims, D. & Munshi-South, J. Spatial population genomics of the brown rat (Rattus norvegicus) in New York City. Mol. Ecol. 27, 83–98 (2018).

    Article  Google Scholar 

  58. Yang, J., Luo, X., Lu, S., Yang, Y. & Yang, J. Effects of compositional and configurational heterogeneity of the urban matrix on the species richness of woody plants in urban remnant forest patches. Landsc. Ecol. 37, 619–632 (2022).

    Article  Google Scholar 

  59. Kirstin, D., Angela, L., Ingolf, K. & Stefan, K. Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Glob. Ecol. Biogeog. 12, 299–311 (2003).

    Article  Google Scholar 

  60. Osborne, J. L. et al. Quantifying and comparing bumblebee nest densities in gardens and countryside habitats: bumblebee nest survey in gardens and countryside. J. Appl. Ecol. 45, 784–792 (2007).

    Article  Google Scholar 

  61. Bullock, J. M. et al. Human-mediated dispersal and the rewiring of spatial networks. Trends Ecol. Evol. 33, 958–970 (2018).

    Article  Google Scholar 

  62. Medley, K. A., Jenkins, D. G. & Hoffman, E. A. Human-aided and natural dispersal drive gene flow across the range of an invasive mosquito. Mol. Ecol. 24, 284–295 (2015).

    Article  Google Scholar 

  63. Gonçalves da Silva, A. et al. Gene flow networks among American Aedes aegypti populations. Evol. Appl. 5, 664–676 (2012).

    Article  Google Scholar 

  64. von der Lippe, M. & Kowarik, I. Do cities export biodiversity? Traffic as dispersal vector across urban–rural gradients. Divers. Distrib. 14, 18–25 (2008).

    Article  Google Scholar 

  65. Zhou, D., Zhao, S., Liu, S., Zhang, L. & Zhu, C. Surface urban heat island in China’s 32 major cities: spatial patterns and drivers. Remote Sens. Environ. 152, 51–61 (2014).

    Article  Google Scholar 

  66. Oudin, L., Salavati, B., Furusho-Percot, C., Ribstein, P. & Saadi, M. Hydrological impacts of urbanization at the catchment scale. J. Hydrol. 559, 774–786 (2018).

    Article  Google Scholar 

  67. Threlfall, C. G. et al. Increasing biodiversity in urban green spaces through simple vegetation interventions. J. Appl. Ecol. 54, 1874–1883 (2017).

    Article  Google Scholar 

  68. Suarez-Rubio, M., Ille, C. & Bruckner, A. Insectivorous bats respond to vegetation complexity in urban green spaces. Ecol. Evol. 8, 3240–3253 (2018).

    Article  Google Scholar 

  69. Hodgson, P., French, K. & Major, R. E. Avian movement across abrupt ecological edges: differential responses to housing density in an urban matrix. Landsc. Urban Plan. 79, 266–272 (2007).

    Article  Google Scholar 

  70. Aronson, M. F. J. et al. Hierarchical filters determine community assembly of urban species pools. Ecology 97, 2952–2963 (2016).

    Article  Google Scholar 

  71. Neate-Clegg, M. H. C. et al. Traits shaping urban tolerance in birds differ around the world. Curr. Biol. 33, 1677–1688.e6 (2023).

    Article  CAS  Google Scholar 

  72. Schleicher, A., Biedermann, R. & Kleyer, M. Dispersal traits determine plant response to habitat connectivity in an urban landscape. Landsc. Ecol. 26, 529–540 (2011).

    Article  Google Scholar 

  73. Padayachee, A. L. et al. How do invasive species travel to and through urban environments? Biol. Invasions 19, 3557–3570 (2017).

    Article  Google Scholar 

  74. Gherghel, I. & Tedrow, R. Manmade structures are used by an invasive species to colonize new territory across a fragmented landscape. Acta Oecol. 101, 103479 (2019).

    Article  Google Scholar 

  75. Beninde, J., Feldmeier, S., Veith, M. & Hochkirch, A. Admixture of hybrid swarms of native and introduced lizards in cities is determined by the cityscape structure and invasion history. Proc. Biol. Sci. 285, 20180143 (2018).

    Google Scholar 

  76. Kowarik, I. & von der Lippe, M. Secondary wind dispersal enhances long-distance dispersal of an invasive species in urban road corridors. NeoBiota 9, 49–70 (2011).

    Article  Google Scholar 

  77. Balbi, M. et al. Functional connectivity in replicated urban landscapes in the land snail (Cornu aspersum). Mol. Ecol. 27, 1357–1370 (2018).

    Article  Google Scholar 

  78. Valls, L., Castillo-Escrivà, A., Mesquita-Joanes, F. & Armengol, X. Human-mediated dispersal of aquatic invertebrates with waterproof footwear. Ambio 45, 99–109 (2016).

    Article  Google Scholar 

  79. Ward, D., Harris, R. & Stanley, M. Human-mediated range expansion of Argentine ants Linepithema humile (Hymenoptera: Formicidae) in New Zealand. Sociobiology 45, 401–407 (2005).

    Google Scholar 

  80. Rebelo, A. D., Bates, M. F., Burger, M., Branch, W. R. & Conradie, W. Range expansion of the common dwarf gecko, Lygodactylus capensis: South Africa’s most successful reptile invader. Herpetol. Notes 12, 643–650 (2019).

    Google Scholar 

  81. Arca, M. et al. Reconstructing the invasion and the demographic history of the yellow-legged hornet, Vespa velutina, in Europe. Biol. Invasions 17, 2357–2371 (2015).

    Article  Google Scholar 

  82. Ladin, Z. S., Eggen, D. A., Trammell, T. L. E. & D’Amico, V. Human-mediated dispersal drives the spread of the spotted lanternfly (Lycorma delicatula). Sci. Rep. 13, 1098 (2023).

    Article  CAS  Google Scholar 

  83. Tóth, Z. et al. Earthworm assemblages in urban habitats across biogeographical regions. Appl. Soil Ecol. 151, 103530 (2020).

    Article  Google Scholar 

  84. Wichmann, M. C. et al. Human-mediated dispersal of seeds over long distances. Proc. Biol. Sci. 276, 523–532 (2009).

    Google Scholar 

  85. Oskyrko, O., Sreelatha, L. B., Hanke, G. F., Deichsel, G. & Carretero, M. A. Origin of introduced Italian wall lizards, Podarcis siculus (Rafinesque-Schmaltz, 1810) (Squamata: Lacertidae) in North America. BioInvasions Rec. 11, 1095–1106 (2022).

    Article  Google Scholar 

  86. Velo-Antón, G. et al. Phylogenetic study of Eleutherodactylus coqui (Anura: Leptodactylidae) reveals deep genetic fragmentation in Puerto Rico and pinpoints origins of Hawaiian populations. Mol. Phylogenet. Evol. 45, 716–728 (2007).

    Article  Google Scholar 

  87. Bertolino, S. Animal trade and non-indigenous species introduction: the world-wide spread of squirrels. Divers. Distrib. 15, 701–708 (2009).

    Article  Google Scholar 

  88. Barbato, D., Benocci, A., Caruso, T. & Manganelli, G. The role of dispersal and local environment in urban land snail assemblages: an example of three cities in central Italy. Urban Ecosyst. 20, 919–931 (2017).

    Article  Google Scholar 

  89. Marzluff, J. M. A decadal review of urban ornithology and a prospectus for the future. Ibis 159, 1–13 (2017).

    Article  Google Scholar 

  90. Møller, A. P. Flight distance of urban birds, predation, and selection for urban life. Behav. Ecol. Sociobiol. 63, 63–75 (2008).

    Article  Google Scholar 

  91. Caizergues, A. E., Grégoire, A., Choquet, R., Perret, S. & Charmantier, A. Are behaviour and stress-related phenotypes in urban birds adaptive? J. Anim. Ecol. 91, 1627–1641 (2022).

    Article  Google Scholar 

  92. Carrete, M. & Tella, J. L. Inter-individual variability in fear of humans and relative brain size of the species are related to contemporary urban invasion in birds. PLoS ONE 6, e18859 (2011).

    Article  CAS  Google Scholar 

  93. Engelhardt, S. C. & Weladji, R. B. Effects of levels of human exposure on flight initiation distance and distance to refuge in foraging eastern gray squirrels (Sciurus carolinensis). Can. J. Zool. 89, 823–830 (2011).

    Article  Google Scholar 

  94. Lapiedra, O., Chejanovski, Z. & Kolbe, J. J. Urbanization and biological invasion shape animal personalities. Glob. Change Biol. 23, 592–603 (2017).

    Article  Google Scholar 

  95. Baxter-Gilbert, J., Riley, J. L. & Whiting, M. J. Bold New World: urbanization promotes an innate behavioral trait in a lizard. Behav. Ecol. Sociobiol. 73, 105 (2019).

    Article  Google Scholar 

  96. Carlen, E. J., Li, R. & Winchell, K. M. Urbanization predicts flight initiation distance in feral pigeons (Columba livia) across New York City. Anim. Behav. 178, 229–245 (2021).

    Article  Google Scholar 

  97. Engel, L. D., Carlen, E. J., Losos, J. & Winchell, K. M. Eastern gray squirrels (Sciurus carolinensis) differ in abundance and response to humans across urban habitats of St. Louis. Urban Natural. 33, 1–16 (2020).

    Google Scholar 

  98. Strubbe, D. et al. Phenotypic signatures of urbanization are scale-dependent: a multi-trait study on a classic urban exploiter. Landsc. Urban Plan. 197, 103767 (2020).

    Article  Google Scholar 

  99. Croci, S., Butet, A. & Clergeau, P. Does urbanization filter birds on the basis of their biological traits? Condor 110, 223–240 (2008).

    Article  Google Scholar 

  100. Rodewald, A. D. & Gehrt, S. D. in Urban Wildlife (McCleery, R. et al.) 117–147 (Springer, 2014).

  101. Ducatez, S., Sayol, F., Sol, D. & Lefebvre, L. Are urban vertebrates city specialists, artificial habitat exploiters, or environmental generalists? Integr. Comp. Biol. 58, 929–938 (2018).

    Article  Google Scholar 

  102. Bonier, F., Martin, P. R. & Wingfield, J. C. Urban birds have broader environmental tolerance. Biol. Lett. 3, 670–673 (2007).

    Article  Google Scholar 

  103. Sol, D., González-Lagos, C., Moreira, D., Maspons, J. & Lapiedra, O. Urbanisation tolerance and the loss of avian diversity. Ecol. Lett. 17, 942–950 (2014).

    Article  Google Scholar 

  104. Callaghan, C. T. et al. Generalists are the most urban-tolerant of birds: a phylogenetically controlled analysis of ecological and life history traits using a novel continuous measure of bird responses to urbanization. Oikos 128, 845–858 (2019).

    Article  Google Scholar 

  105. Winchell, K. M., Schliep, K. P., Mahler, D. L. & Revell, L. J. Phylogenetic signal and evolutionary correlates of urban tolerance in a widespread neotropical lizard clade. Evolution 74, 1274–1288 (2020).

    Article  Google Scholar 

  106. Ancillotto, L. & Labadessa, R. Functional traits drive the fate of Orthoptera in urban areas. Insect Conserv. Divers. 17, 304–311 (2024).

    Article  Google Scholar 

  107. Evans, K. L. et al. Independent colonization of multiple urban centres by a formerly forest specialist bird species. Proc. Biol. Sci. 276, 2403–2410 (2009).

    Google Scholar 

  108. Thogmartin, W. E. et al. Restoring monarch butterfly habitat in the midwestern US: ‘all hands on deck’. Environ. Res. Lett. 12, 074005 (2017).

    Article  Google Scholar 

  109. Hendry, A. P., Farrugia, T. J. & Kinnison, M. T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17, 20–29 (2008).

    Article  Google Scholar 

  110. Sih, A., Ferrari, M. C. O. & Harris, D. J. Evolution and behavioural responses to human-induced rapid environmental change: behaviour and evolution. Evol. Appl. 4, 367–387 (2011).

    Article  Google Scholar 

  111. Partecke, J. in Avian Urban Ecology (eds Gil, D. & Brumm, H.) 131–142 (Oxford Academic, 2013).

  112. Winchell, K. M., Losos, J. B. & Verrelli, B. C. Urban evolutionary ecology brings exaptation back into focus. Trends Ecol. Evol. 38, 719–726 (2023).

    Article  Google Scholar 

  113. Caspi, T., Johnson, J. R., Lambert, M. R., Schell, C. J. & Sih, A. Behavioral plasticity can facilitate evolution in urban environments. Trends Ecol. Evol. 37, 1092–1103 (2022).

    Article  Google Scholar 

  114. Hamblin, A. L., Youngsteadt, E., López-Uribe, M. M. & Frank, S. D. Physiological thermal limits predict differential responses of bees to urban heat-island effects. Biol. Lett. 13, 20170125 (2017).

    Article  Google Scholar 

  115. Piano, E. et al. Urbanization drives community shifts towards thermophilic and dispersive species at local and landscape scales. Glob. Change Biol. 23, 2554–2564 (2017).

    Article  Google Scholar 

  116. Mitchell, B. A., Callaghan, C. T. & Rowley, J. J. L. Continental-scale citizen science data reveal no changes in acoustic responses of a widespread tree frog to an urbanisation gradient. J. Urban Ecol. 6, juaa002 (2020).

    Article  Google Scholar 

  117. Hu, Y. & Cardoso, G. C. Are bird species that vocalize at higher frequencies preadapted to inhabit noisy urban areas? Behav. Ecol. 20, 1268–1273 (2009).

    Article  Google Scholar 

  118. Kark, S., Iwaniuk, A., Schalimtzek, A. & Banker, E. Living in the city: can anyone become an ‘urban exploiter’? J. Biogeogr. 34, 638–651 (2007).

    Article  Google Scholar 

  119. Lim, H. C. & Sodhi, N. S. Responses of avian guilds to urbanisation in a tropical city. Landsc. Urban Plan. 66, 199–215 (2004).

    Article  Google Scholar 

  120. Clergeau, P., Croci, S., Jokimäki, J., Kaisanlahti-Jokimäki, M.-L. & Dinetti, M. Avifauna homogenisation by urbanisation: analysis at different European latitudes. Biol. Conserv. 127, 336–344 (2006).

    Article  Google Scholar 

  121. Lizée, M.-H., Mauffrey, J.-F., Tatoni, T. & Deschamps-Cottin, M. Monitoring urban environments on the basis of biological traits. Ecol. Indic. 11, 353–361 (2011).

    Article  Google Scholar 

  122. González-Lagos, C., Cardador, L. & Sol, D. Invasion success and tolerance to urbanization in birds. Ecography 44, 1642–1652 (2021).

    Article  Google Scholar 

  123. Dennhardt, A. J. & Wakamiya, S. M. Effective dispersal of peregrine falcons (Falco peregrinus) in the Midwest, USA. J. Raptor Res. 47, 262–270 (2013).

    Article  Google Scholar 

  124. Lowry, H., Lill, A. & Wong, B. B. M. Behavioural responses of wildlife to urban environments: behavioural responses to urban environments. Biol. Rev. Camb. Phil. Soc. 88, 537–549 (2013).

    Article  Google Scholar 

  125. Sol, D., Lapiedra, O. & González-Lagos, C. Behavioural adjustments for a life in the city. Anim. Behav. 85, 1101–1112 (2013).

    Article  Google Scholar 

  126. Badyaev, A. V. Stress-induced variation in evolution: from behavioural plasticity to genetic assimilation. Proc. Biol. Sci. 272, 877–886 (2005).

    Google Scholar 

  127. Slabbekoorn, H. Songs of the city: noise-dependent spectral plasticity in the acoustic phenotype of urban birds. Anim. Behav. 85, 1089–1099 (2013).

    Article  Google Scholar 

  128. Higham, V. et al. Traffic noise drives an immediate increase in call pitch in an urban frog. J. Zool. 313, 307–315 (2021).

    Article  Google Scholar 

  129. Heinen-Kay, J. L., Kay, A. D. & Zuk, M. How urbanization affects sexual communication. Ecol. Evol. 11, 17625–17650 (2021).

    Article  Google Scholar 

  130. Marín-Gómez, O. H. & MacGregor-Fors, I. A global synthesis of the impacts of urbanization on bird dawn choruses. Ibis 163, 1133–1154 (2021).

    Article  Google Scholar 

  131. Derryberry, E. P., Phillips, J. N., Derryberry, G. E., Blum, M. J. & Luther, D. Singing in a silent spring: birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science 370, 575–579 (2020).

    Article  CAS  Google Scholar 

  132. Baker, P. J., Dowding, C. V., Molony, S. E., White, P. C. & Harris, S. Activity patterns of urban red foxes (Vulpes vulpes) reduce the risk of traffic-induced mortality. Behav. Ecol. 18, 716–724 (2007).

    Article  Google Scholar 

  133. Dowding, C. V., Harris, S., Poulton, S. & Baker, P. J. Nocturnal ranging behaviour of urban hedgehogs, Erinaceus europaeus, in relation to risk and reward. Anim. Behav. 80, 13–21 (2010).

    Article  Google Scholar 

  134. Dominoni, D. M. & Partecke, J. Does light pollution alter daylength? A test using light loggers on free-ranging European blackbirds (Turdus merula). Phil. Trans. R. Soc. Lond. B 370, 20140118 (2015).

    Article  Google Scholar 

  135. Scholz, C. et al. Individual dietary specialization in a generalist predator: a stable isotope analysis of urban and rural red foxes. Ecol. Evol. 10, 8855–8870 (2020).

    Article  Google Scholar 

  136. Stanton, L. A., Cooley-Ackermann, C., Davis, E. C., Fanelli, R. E. & Benson-Amram, S. Wild raccoons demonstrate flexibility and individuality in innovative problem-solving. Proc. Biol. Sci. 291, 20240911 (2024).

    Google Scholar 

  137. Gámez, S. et al. Downtown diet: a global meta-analysis of increased urbanization on the diets of vertebrate predators. Proc. Biol. Sci. 289, 20212487 (2022).

    Google Scholar 

  138. Jokimäki, J. & Suhonen, J. Distribution and habitat selection of wintering birds in urban environments. Landsc. Urban Plan. 39, 253–263 (1998).

    Article  Google Scholar 

  139. Burghardt, K. T., Tallamy, D. W. & Shriver, W. G. Impact of native plants on bird and butterfly biodiversity in suburban landscapes. Conserv. Biol. 23, 219–224 (2009).

    Article  Google Scholar 

  140. Fuller, R. A., Warren, P. H., Armsworth, P. R., Barbosa, O. & Gaston, K. J. Garden bird feeding predicts the structure of urban avian assemblages: garden bird feeding and avian assemblages. Divers. Distrib. 14, 131–137 (2008).

    Article  Google Scholar 

  141. Cristaldi, M. A., Giraudo, A. R., Arzamendia, V., Bellini, G. P. & Claus, J. Urbanization impacts on the trophic guild composition of bird communities. J. Nat. Hist. 51, 2385–2404 (2017).

    Article  Google Scholar 

  142. Conole, L. E. & Kirkpatrick, J. B. Functional and spatial differentiation of urban bird assemblages at the landscape scale. Landsc. Urban Plan. 100, 11–23 (2011).

    Article  Google Scholar 

  143. Kaiser, A., Merckx, T. & Van Dyck, H. The urban heat island and its spatial scale dependent impact on survival and development in butterflies of different thermal sensitivity. Ecol. Evol. 6, 4129–4140 (2016).

    Article  Google Scholar 

  144. Brans, K. I. & De Meester, L. City life on fast lanes: urbanization induces an evolutionary shift towards a faster lifestyle in the water flea Daphnia. Funct. Ecol. 32, 2225–2240 (2018).

    Article  Google Scholar 

  145. Dominoni, D. M. The effects of light pollution on biological rhythms of birds: an integrated, mechanistic perspective. J. Ornithol. 156, 409–418 (2015).

    Article  Google Scholar 

  146. Czaja, M. & Kołton, A. How light pollution can affect spring development of urban trees and shrubs. Urban For. Urban Green. 77, 127753 (2022).

    Article  Google Scholar 

  147. Cordonnier, M., Bellec, A., Escarguel, G. & Kaufmann, B. Effects of urbanization–climate interactions on range expansion in the invasive European pavement ant. Basic Appl. Ecol. 44, 46–54 (2020).

    Article  Google Scholar 

  148. Owen, H. L., Meng, F. & Winchell, K. M. Urbanization and environmental variation drive phenological changes in the spotted lanternfly Lycorma delicatula (Hemiptera: Fulgoridae). Biol. J. Linn. Soc. 143, blae099 (2024).

    Article  Google Scholar 

  149. Bonier, F. Hormones in the city: endocrine ecology of urban birds. Horm. Behav. 61, 763–772 (2012).

    Article  CAS  Google Scholar 

  150. Isaksson, C. Urbanization, oxidative stress and inflammation: a question of evolving, acclimatizing or coping with urban environmental stress. Funct. Ecol. 29, 913–923 (2015).

    Article  Google Scholar 

  151. Alaasam, V. J. et al. What happens when the lights are left on? Transcriptomic and phenotypic habituation to light pollution. iScience 27, 108864 (2024).

    Article  CAS  Google Scholar 

  152. Alaasam, V. Light at night disrupts nocturnal rest and elevates glucocorticoids at cool color temperatures. J. Vis. 19, 116 (2019) .

    Article  Google Scholar 

  153. French, S. S., Fokidis, H. B. & Moore, M. C. Variation in stress and innate immunity in the tree lizard (Urosaurus ornatus) across an urban–rural gradient. J. Comp. Physiol. B 178, 997–1005 (2008).

    Article  Google Scholar 

  154. Brearley, G., McAlpine, C., Bell, S. & Bradley, A. Influence of urban edges on stress in an arboreal mammal: a case study of squirrel gliders in southeast Queensland, Australia. Landsc. Ecol. 27, 1407–1419 (2012).

    Article  Google Scholar 

  155. Heppner, J. J., Krause, J. S. & Ouyang, J. Q. Urbanization and maternal hormone transfer: endocrine and morphological phenotypes across ontogenetic stages. Gen. Comp. Endocrinol. 333, 114166 (2023).

    Article  CAS  Google Scholar 

  156. Miranda, A. C. in Ecology and Conservation of Birds in Urban Environments (Murgui, E. & Hedblom, M.) 113–132 (Springer, 2017).

  157. Ouyang, J. Q., Baldan, D., Munguia, C. & Davies, S. Genetic inheritance and environment determine endocrine plasticity to urban living. Proc. Biol. Sci. 286, 20191215 (2019).

    CAS  Google Scholar 

  158. Ilyas, M. et al. Adaptation of functional traits and their plasticity of three ornamental trees growing in urban environment. Sci. Hortic. 286, 110248 (2021).

    Article  Google Scholar 

  159. Esperon-Rodriguez, M. et al. Functional adaptations and trait plasticity of urban trees along a climatic gradient. Urban For. Urban Green. 54, 126771 (2020).

    Article  Google Scholar 

  160. Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).

    Article  Google Scholar 

  161. Szulkin, M., Munshi-South, J. & Charmentier, A. (eds) Urban Evolutionary Biology (Oxford Univ. Press, 2020).

  162. Winchell, K. M., Reynolds, R. G., Prado-Irwin, S. R., Puente-Rolón, A. R. & Revell, L. J. Phenotypic shifts in urban areas in the tropical lizard Anolis cristatellus. Evolution 70, 1009–1022 (2016).

    Article  Google Scholar 

  163. Winchell, K. M., Maayan, I., Fredette, J. R. & Revell, L. J. Linking locomotor performance to morphological shifts in urban lizards. Proc. Biol. Sci. 285, 20180229 (2018).

    Google Scholar 

  164. Winchell, K. M. et al. Genome-wide parallelism underlies contemporary adaptation in urban lizards. Proc. Natl Acad. Sci. USA 120, e2216789120 (2023).

    Article  CAS  Google Scholar 

  165. Santangelo, J. S. et al. Global urban environmental change drives adaptation in white clover. Science 375, 1275–1281 (2022).

    Article  CAS  Google Scholar 

  166. Halfwerk, W. et al. Adaptive changes in sexual signalling in response to urbanization. Nat. Ecol. Evol. 3, 374–380 (2019).

    Article  Google Scholar 

  167. Smit, J. A. H., Vooijs, R., Lindenburg, P., Baugh, A. T. & Halfwerk, W. Noise and light pollution elicit endocrine responses in urban but not forest frogs. Horm. Behav. 157, 105453 (2024).

    Article  CAS  Google Scholar 

  168. Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).

    Article  Google Scholar 

  169. Campbell-Staton, S. C. et al. Parallel selection on thermal physiology facilitates repeated adaptation of city lizards to urban heat islands. Nat. Ecol. Evol. 4, 652–658 (2020).

    Article  Google Scholar 

  170. Campbell-Staton, S. C., Velotta, J. P. & Winchell, K. M. Selection on adaptive and maladaptive gene expression plasticity during thermal adaptation to urban heat islands. Nat. Commun. 12, 6195 (2021).

    Article  CAS  Google Scholar 

  171. Lenard, A. & Diamond, S. E. Evidence of plasticity, but not evolutionary divergence, in the thermal limits of a highly successful urban butterfly. J. Insect Physiol. 155, 104648 (2024).

    Article  CAS  Google Scholar 

  172. Diamond, S. E. & Martin, R. A. Physiological adaptation to cities as a proxy to forecast global-scale responses to climate change. J. Exp. Biol. 224, jeb229336 (2021).

    Article  Google Scholar 

  173. Diamond, S. E. & Martin, R. A. The interplay between plasticity and evolution in response to human-induced environmental change. F1000 Res. 5, 2835 (2016).

    Article  Google Scholar 

  174. Merckx, T. et al. Continent-wide parallel urban evolution of increased heat tolerance in a common moth. Evol. Appl. 17, e13636 (2024).

    Article  Google Scholar 

  175. Kanamori, S. et al. Detection of genes positively selected in Cuban Anolis lizards that naturally inhabit hot and open areas and currently thrive in urban areas. Ecol. Evol. 11, 1719–1728 (2021).

    Article  Google Scholar 

  176. Diamond, S. E., Kolaske, L. R. & Martin, R. A. Physiology evolves convergently but lags behind warming in cities. Integr. Comp. Biol. 64, 402–413 (2024).

    Article  Google Scholar 

  177. Angilletta, M. J. Jr et al. Urban physiology: city ants possess high heat tolerance. PLoS ONE 2, e258 (2007).

    Article  Google Scholar 

  178. Diamond, S. E., Chick, L. D., Perez, A., Strickler, S. A. & Martin, R. A. Evolution of thermal tolerance and its fitness consequences: parallel and non-parallel responses to urban heat islands across three cities. Proc. Biol. Sci. 285, 20180036 (2018).

    Google Scholar 

  179. Brans, K. I. et al. The heat is on: genetic adaptation to urbanization mediated by thermal tolerance and body size. Glob. Change Biol. 23, 5218–5227 (2017).

    Article  Google Scholar 

  180. Prileson, E. G. & Martin, R. A. Evolution and plasticity of physiological traits in the collembolan Orchesella villosa at fine spatial scales within the city. Biol. J. Linn. Soc. Lond. 144, blae038 (2025).

    Article  Google Scholar 

  181. Yilmaz, A. R., Diamond, S. E. & Martin, R. A. Evidence for the evolution of thermal tolerance, but not desiccation tolerance, in response to hotter, drier city conditions in a cosmopolitan, terrestrial isopod. Evol. Appl. 14, 12–23 (2021).

    Article  Google Scholar 

  182. Atwell, J. W. et al. Boldness behavior and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation. Behav. Ecol. 23, 960–969 (2012).

    Article  Google Scholar 

  183. Maklakov, A. A., Immler, S., Gonzalez-Voyer, A., Rönn, J. & Kolm, N. Brains and the city: big-brained passerine birds succeed in urban environments. Biol. Lett. 7, 730–732 (2011).

    Article  Google Scholar 

  184. Kozlovsky, D. Y., Weissgerber, E. A. & Pravosudov, V. V. What makes specialized food-caching mountain chickadees successful city slickers? Proc. Biol. Sci. 284, 20162613 (2017).

    Google Scholar 

  185. Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P. & Lefebvre, L. Big brains, enhanced cognition, and response of birds to novel environments. Proc. Natl Acad. Sci. USA 102, 5460–5465 (2005).

    Article  CAS  Google Scholar 

  186. Overington, S. E., Morand-Ferron, J., Boogert, N. J. & Lefebvre, L. Technical innovations drive the relationship between innovativeness and residual brain size in birds. Anim. Behav. 78, 1001–1010 (2009).

    Article  Google Scholar 

  187. Gaynor, K. M. et al. The human shield hypothesis: does predator avoidance of humans create refuges for prey? Ecol. Lett. 28, e70138 (2025).

    Article  Google Scholar 

  188. Gopal, A. C., Alujević, K. & Logan, M. L. Temperature and the pace of life. Behav. Ecol. Sociobiol. 77, 59 (2023).

    Article  Google Scholar 

  189. Sadoul, B., Blumstein, D. T., Alfonso, S. & Geffroy, B. Human protection drives the emergence of a new coping style in animals. PLoS Biol. 19, e3001186 (2021).

    Article  CAS  Google Scholar 

  190. Ferraro, D. M., Le, M.-L. T. & Francis, C. D. Combined effect of anthropogenic noise and artificial night lighting negatively affect western bluebird chick development. Condor 122, duaa037 (2020).

    Article  Google Scholar 

  191. Wilson, A. A. et al. Artificial night light and anthropogenic noise interact to influence bird abundance over a continental scale. Glob. Change Biol. 27, 3987–4004 (2021).

    Article  CAS  Google Scholar 

  192. Cheptou, P.-O., Carrue, O., Rouifed, S. & Cantarel, A. Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta. Proc. Natl Acad. Sci. USA 105, 3796–3799 (2008).

    Article  CAS  Google Scholar 

  193. Demeyrier, V., Lambrechts, M. M., Perret, P. & Grégoire, A. Experimental demonstration of an ecological trap for a wild bird in a human-transformed environment. Anim. Behav. 118, 181–190 (2016).

    Article  Google Scholar 

  194. Robertson, B. A. & Chalfoun, A. D. Evolutionary traps as keys to understanding behavioral maladapation. Curr. Opin. Behav. Sci. 12, 12–17 (2016).

    Article  Google Scholar 

  195. Plaza, P. I. & Lambertucci, S. A. How are garbage dumps impacting vertebrate demography, health, and conservation? Glob. Ecol. Conserv. 12, 9–20 (2017).

    Google Scholar 

  196. Aronson, M. F. J. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. Biol. Sci. 281, 20133330 (2014).

    Google Scholar 

  197. Beninde, J., Veith, M. & Hochkirch, A. Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 18, 581–592 (2015).

    Article  Google Scholar 

  198. Stadler, J., Trefflich, A., Klotz, S. & Brandl, R. Exotic plant species invade diversity hot spots: the alien flora of northwestern Kenya. Ecography 23, 169–176 (2000).

    Article  Google Scholar 

  199. Bode, R. F. & Maciejewski, A. Herbivore biodiversity varies with patch size in an urban archipelago. Int. J. Insect Sci. 6, IJIS.S13896 (2014).

    Article  Google Scholar 

  200. Schwartz, M. W., Thorne, J. H. & Viers, J. H. Biotic homogenization of the California flora in urban and urbanizing regions. Biol. Conserv. 127, 282–291 (2006).

    Article  Google Scholar 

  201. Verbeylen, G., De Bruyn, L., Adriaensen, F. & Matthysen, E. Does matrix resistance influence red squirrel (Sciurus vulgaris L. 1758) distribution in an urban landscape? Landsc. Ecol. 18, 791–805 (2003).

    Article  Google Scholar 

  202. FitzGibbon, S. I., Putland, D. A. & Goldizen, A. W. The importance of functional connectivity in the conservation of a ground-dwelling mammal in an urban Australian landscape. Landsc. Ecol. 22, 1513–1525 (2007).

    Article  Google Scholar 

  203. Chapman, D., Purse, B. V., Roy, H. E. & Bullock, J. M. Global trade networks determine the distribution of invasive non-native species. Glob. Ecol. Biogeogr. 26, 907–917 (2017).

    Article  Google Scholar 

  204. Pysek, P. et al. Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc. Natl Acad. Sci. USA 107, 12157–12162 (2010).

    Article  CAS  Google Scholar 

  205. Banks, N. C., Paini, D. R., Bayliss, K. L. & Hodda, M. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecol. Lett. 18, 188–199 (2015).

    Article  Google Scholar 

  206. Potgieter, L. J. et al. Cities shape the diversity and spread of nonnative species. Annu. Rev. Ecol. Evol. Syst. 55, 157–180 (2024).

    Article  Google Scholar 

  207. Aronson, M. F. J., Patel, M. V., O’Neill, K. M. & Ehrenfeld, J. G. Urban riparian systems function as corridors for both native and invasive plant species. Biol. Invasions 19, 3645–3657 (2017).

    Article  Google Scholar 

  208. Foucaud, J. et al. Worldwide invasion by the little fire ant: routes of introduction and eco-evolutionary pathways: worldwide invasion by W. auropunctata. Evol. Appl. 3, 363–374 (2010).

    Article  Google Scholar 

  209. Levine, J. M. & D’Antonio, C. M. Forecasting biological invasions with increasing international trade. Conserv. Biol. 17, 322–326 (2003).

    Article  Google Scholar 

  210. Olden, J. D., Whattam, E. & Wood, S. A. Online auction marketplaces as a global pathway for aquatic invasive species. Hydrobiologia 848, 1967–1979 (2021).

    Article  Google Scholar 

  211. Bertelsmeier, C. et al. Temporal dynamics and global flows of insect invasions in an era of globalization. Nat. Rev. Biodivers. 1, 90–103 (2025).

    Article  Google Scholar 

  212. Munschek, M. et al. Putting conservation gardening into practice. Sci. Rep. 13, 12671 (2023).

    Article  CAS  Google Scholar 

  213. Segar, J. et al. Urban conservation gardening in the decade of restoration. Nat. Sustain. 5, 649–656 (2022).

    Article  Google Scholar 

  214. Kark, S. in Encyclopedia of Biodiversity 2nd edn Reference Module in Life Sciences (ed. Levin, S. A.) 142–148 (Elsevier, 2017).

  215. Wood, B. C. & Pullin, A. S. Persistence of species in a fragmented urban landscape: the importance of dispersal ability and habitat availability for grassland butterflies. Biodivers. Conserv. 11, 1451–1468 (2002).

    Article  Google Scholar 

  216. Carlon, E. & Dominoni, D. M. The role of urbanization in facilitating the introduction and establishment of non-native animal species: a comprehensive review. J. Urban Ecol. 10, juae015 (2024).

    Article  Google Scholar 

  217. Hufbauer, R. A. et al. Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions. Evol. Appl. 5, 89–101 (2012).

    Article  Google Scholar 

  218. Borden, J. B. & Flory, S. L. Urban evolution of invasive species. Front. Ecol. Environ. 19, 184–191 (2021).

    Article  Google Scholar 

  219. Mogi, M., Armbruster, P. A. & Tuno, N. Differences in responses to urbanization between invasive mosquitoes, Aedes japonicus japonicus (Diptera: Culicidae) and Aedes albopictus, in their native range, Japan. J. Med. Entomol. 57, 104–112 (2020).

    Article  Google Scholar 

  220. Yakub, M. & Tiffin, P. Living in the city: urban environments shape the evolution of a native annual plant. Glob. Change Biol. 23, 2082–2089 (2017).

    Article  Google Scholar 

  221. Carlen, E. & Munshi-South, J. Widespread genetic connectivity of feral pigeons across the northeastern megacity. Evol. Appl. 14, 150–162 (2021).

    Article  Google Scholar 

  222. Miles, L. S., Rivkin, L. R., Johnson, M. T. J., Munshi-South, J. & Verrelli, B. C. Gene flow and genetic drift in urban environments. Mol. Ecol. 28, 4138–4151 (2019).

    Article  Google Scholar 

  223. Gortat, T. et al. Anthropopressure gradients and the population genetic structure of Apodemus agrarius. Conserv. Genet. 16, 649–659 (2015).

    Article  Google Scholar 

  224. Perrier, C. et al. Great tits and the city: distribution of genomic diversity and gene–environment associations along an urbanization gradient. Evol. Appl. 11, 593–613 (2018).

    Article  Google Scholar 

  225. Fusco, N. A., Pehek, E. & Munshi-South, J. Urbanization reduces gene flow but not genetic diversity of stream salamander populations in the New York City metropolitan area. Evol. Appl. 14, 99–116 (2021).

    Article  CAS  Google Scholar 

  226. Patenković, A. et al. Urban ecosystem drives genetic diversity in feral honey bee. Sci. Rep. 12, 17692 (2022).

    Article  Google Scholar 

  227. Lourenço, A., Álvarez, D., Wang, I. J. & Velo-Antón, G. Trapped within the city: integrating demography, time since isolation and population-specific traits to assess the genetic effects of urbanization. Mol. Ecol. 26, 1498–1514 (2017).

    Article  Google Scholar 

  228. Schmidt, C. & Garroway, C. J. The population genetics of urban and rural amphibians in North America. Mol. Ecol. 30, 3918–3929 (2021).

    Article  Google Scholar 

  229. Saarikivi, J., Knopp, T., Granroth, A. & Merilä, J. The role of golf courses in maintaining genetic connectivity between common frog (Rana temporaria) populations in an urban setting. Conserv. Genet. 14, 1057–1064 (2013).

    Article  Google Scholar 

  230. Mueller, J. C. et al. Evolution of genomic variation in the burrowing owl in response to recent colonization of urban areas. Proc. Biol. Sci. 285, 20180206 (2018).

    Google Scholar 

  231. Stracey, C. M. & Robinson, S. K. Are urban habitats ecological traps for a native songbird? Season-long productivity, apparent survival, and site fidelity in urban and rural habitats. J. Avian Biol. 43, 50–60 (2012).

    Article  Google Scholar 

  232. Millsap, B. A. Demography and metapopulation dynamics of an urban Cooper’s hawk subpopulation. Condor 120, 63–80 (2018).

    Article  Google Scholar 

  233. Björklund, M., Ruiz, I. & Senar, J. C. Genetic differentiation in the urban habitat: the great tits (Parus major) of the parks of Barcelona city: genetic differentation in Barcelona. Biol. J. Linn. Soc. Lond. 99, 9–19 (2009).

    Article  Google Scholar 

  234. Salmón, P. et al. Continent-wide genomic signatures of adaptation to urbanisation in a songbird across Europe. Nat. Commun. 12, 2983 (2021).

    Article  Google Scholar 

  235. Kawecki, T. J. in Ecology, Genetics and Evolution of Metapopulations (eds Hanski, I. & Gaggiotti, O. E.) 387–414 (Elsevier, 2004).

  236. Lenormand, T. Gene flow and the limits to natural selection. Trends Ecol. Evol. 17, 183–189 (2002).

    Article  Google Scholar 

  237. Lemke, A., Kowarik, I. & von der Lippe, M. How traffic facilitates population expansion of invasive species along roads: the case of common ragweed in Germany. J. Appl. Ecol. 56, 413–422 (2019).

    Article  Google Scholar 

  238. Diamond, S. E. & Martin, R. A. Evolution is a double-edged sword, not a silver bullet, to confront global change. Ann. NY Acad. Sci.1469, 38–51 (2020).

    Article  Google Scholar 

  239. Urban, M. C. et al. Interactions between climate change and urbanization will shape the future of biodiversity. Nat. Clim. Change 14, 436–447 (2024).

    Article  Google Scholar 

  240. Kühn, I., Wolf, J. & Schneider, A. Is there an urban effect in alien plant invasions? Biol. Invasions 19, 3505–3513 (2017).

    Article  Google Scholar 

  241. Buckley, Y. M. & Catford, J. Does the biogeographic origin of species matter? Ecological effects of native and non-native species and the use of origin to guide management. J. Ecol. 104, 4–17 (2016).

    Article  Google Scholar 

  242. Dueñas, M.-A., Hemming, D. J., Roberts, A. & Diaz-Soltero, H. The threat of invasive species to IUCN-listed critically endangered species: a systematic review. Glob. Ecol. Conserv. 26, e01476 (2021).

    Google Scholar 

  243. Lee, C. E. & Gelembiuk, G. W. Evolutionary origins of invasive populations: evolution of invasive populations. Evol. Appl. 1, 427–448 (2008).

    Article  Google Scholar 

  244. van Kleunen, M. et al. The changing role of ornamental horticulture in alien plant invasions: horticulture and plant invasions. Biol. Rev. Camb. Phil. Soc. 93, 1421–1437 (2018).

    Article  Google Scholar 

  245. Peterson, A. T. Predicting the geography of species’ invasions via ecological niche modeling. Q. Rev. Biol. 78, 419–433 (2003).

    Article  Google Scholar 

  246. Buczkowski, G. Extreme life history plasticity and the evolution of invasive characteristics in a native ant. Biol. Invasions 12, 3343–3349 (2010).

    Article  Google Scholar 

  247. Møller, A. P. et al. Urbanized birds have superior establishment success in novel environments. Oecologia 178, 943–950 (2015).

    Article  Google Scholar 

  248. Barnett, L. K., Phillips, B. L. & Hoskin, C. J. Going feral: time and propagule pressure determine range expansion of Asian house geckos into natural environments. Austral. Ecol. 42, 165–175 (2017).

    Article  Google Scholar 

  249. Foucaud, J. et al. Reproductive system, social organization, human disturbance and ecological dominance in native populations of the little fire ant, Wasmannia auropunctata: factors of ecological dominance in an ant. Mol. Ecol. 18, 5059–5073 (2009).

    Article  Google Scholar 

  250. Sexton, A. N. & Lawhorn, K. A. Best practices for designing resilient urban ecosystems through native species restoration. Urban For. Urban Green. 104, 128657 (2025).

    Article  Google Scholar 

  251. Blouin, D., Pellerin, S. & Poulin, M. Increase in non-native species richness leads to biotic homogenization in vacant lots of a highly urbanized landscape. Urban Ecosyst. 22, 879–892 (2019).

    Article  Google Scholar 

  252. McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).

    Article  Google Scholar 

  253. Hope, D. et al. Socioeconomics drive urban plant diversity. Proc. Natl Acad. Sci. USA 100, 8788–8792 (2003).

    Article  CAS  Google Scholar 

  254. Chamberlain, D. et al. Wealth, water and wildlife: landscape aridity intensifies the urban luxury effect. Glob. Ecol. Biogeogr. 29, 1595–1605 (2020).

    Article  Google Scholar 

  255. Gopal, D., von der Lippe, M. & Kowarik, I. Sacred sites, biodiversity and urbanization in an Indian megacity. Urban Ecosyst. 22, 161–172 (2019).

    Article  Google Scholar 

  256. Droz, B. et al. Moderately urbanized areas as a conservation opportunity for an endangered songbird. Landsc. Urban Plan. 181, 1–9 (2019).

    Article  Google Scholar 

  257. Kendal, D. et al. The importance of small urban reserves for plant conservation. Biol. Conserv. 213, 146–153 (2017).

    Article  Google Scholar 

  258. Schell, C. J. et al. The evolutionary consequences of human–wildlife conflict in cities. Evol. Appl. 14, 178–197 (2021).

    Article  Google Scholar 

  259. Diamant, E. S. et al. The importance of biome in shaping urban biodiversity. Trends Ecol. Evol. 40, 601–612 (2025).

    Article  CAS  Google Scholar 

  260. Ellis-Soto, D. et al. A vision for incorporating human mobility in the study of human–wildlife interactions. Nat. Ecol. Evol. 7, 1362–1372 (2023).

    Article  Google Scholar 

  261. Wang, D., Xu, P.-Y., An, B.-W. & Guo, Q.-P. Urban green infrastructure: bridging biodiversity conservation and sustainable urban development through adaptive management approach. Front. Ecol. Evol. 12, 1440477 (2024).

    Article  Google Scholar 

  262. Fitzpatrick, S. W. & Reid, B. N. Does gene flow aggravate or alleviate maladaptation to environmental stress in small populations? Evol. Appl. 12, 1402–1416 (2019).

    Article  Google Scholar 

  263. Di Pietro, S., Mantoni, C. & Fattorini, S. Influence of urbanization on the avian species-area relationship: insights from the breeding birds of Rome. Urban Ecosyst. 24, 779–788 (2021).

    Article  Google Scholar 

  264. Vega, K. A. & Küffer, C. Promoting wildflower biodiversity in dense and green cities: the important role of small vegetation patches. Urban For. Urban Green. 62, 127165 (2021).

    Article  Google Scholar 

  265. Delaney, K. S., Busteed, G., Fisher, R. N. & Riley, S. P. D. Reptile and amphibian diversity and abundance in an urban landscape: impacts of fragmentation and the conservation value of small patches. Ichthyol. Herpetol. 109, 424–435 (2021).

    Article  Google Scholar 

  266. Lizee, M.-H., Tatoni, T. & Deschamps-Cottin, M. Nested patterns in urban butterfly species assemblages: respective roles of plot management, park layout and landscape features. Urban Ecosyst. 19, 205–224 (2016).

    Article  Google Scholar 

  267. Gaublomme, E., Hendrickx, F., Dhuyvetter, H. & Desender, K. The effects of forest patch size and matrix type on changes in carabid beetle assemblages in an urbanized landscape. Biol. Conserv. 141, 2585–2596 (2008).

    Article  Google Scholar 

  268. Lintott, P. R. et al. Moth species richness, abundance and diversity in fragmented urban woodlands: implications for conservation and management strategies. Biodivers. Conserv. 23, 2875–2901 (2014).

    Article  Google Scholar 

  269. Oropeza-Sánchez, M. T. et al. Urban green spaces with high connectivity and complex vegetation promote occupancy and richness of birds in a tropical megacity. Urban Ecosyst. 28, 50 (2025).

    Article  Google Scholar 

  270. Straka, T. M., Lentini, P. E., Lumsden, L. F., Wintle, B. A. & van der Ree, R. Urban bat communities are affected by wetland size, quality, and pollution levels. Ecol. Evol. 6, 4761–4774 (2016).

    Article  Google Scholar 

  271. Russo, D. & Ancillotto, L. Sensitivity of bats to urbanization: a review. Mamm. Biol. 80, 205–212 (2015).

    Article  Google Scholar 

  272. Center for International Earth Science Information Network-CIESIN-Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population density, Revision 11. Socioeconomic Data and Applications Center (SEDAC) https://doi.org/10.7927/H49C6VHW (2017).

  273. Wei, J. et al. First close insight into global daily gapless 1 km PM2.5 pollution, variability, and health impact. Nat. Commun. 14, 8349 (2023).

    Article  CAS  Google Scholar 

  274. Elvidge, C. D., Zhizhin, M., Ghosh, T., Hsu, F.-C. & Taneja, J. Annual time series of global VIIRS nighttime lights derived from monthly averages: 2012 to 2019. Remote Sens. 13, 922 (2021).

    Article  Google Scholar 

  275. Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).

    Article  Google Scholar 

  276. Che, Y. et al. 3D-GloBFP: the first global three-dimensional building footprint dataset. Earth Syst. Sci. Data 16, 5357–5374 (2024).

    Article  Google Scholar 

  277. Wan, Z., Hook, S. & Hulley, G. MOD11A1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V006 dataset. NASA Land Processes Distributed Active Archive Center https://doi.org/10.5067/MODIS/MOD11A1.006 (2015).

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the conceptualization, writing and review/editing of the manuscript before submission.

Corresponding author

Correspondence to Kristin M. Winchell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks Marc Johnson, Ella Martin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

DEA Land Cover (Landsat): https://knowledge.dea.ga.gov.au/data/product/dea-land-cover-landsat/

Land Cover Raster Data (2017) – 6in Resolution: https://data.cityofnewyork.us/Environment/Land-Cover-Raster-Data-2017-6in-Resolution/he6d-2qns/about_data

Mapbox: https://www.mapbox.com/movement-data

Mapping Inequality: https://dsl.richmond.edu/panorama/redlining

NYCCAS Air Pollution Rasters: https://data.cityofnewyork.us/Environment/NYCCAS-Air-Pollution-Rasters/q68s-8qxv/about_data

OpenStreetMap: https://www.openstreetmap.org/#map=4/38.01/-95.84

Urban Heat Island (UHI) intensity modelling: http://data.europa.eu/88u/dataset/45b703bb-d4f3-4eaa-8b73-13fde2041f01

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaasam, V., Snead, A., Thonis, A. et al. Eco-evolutionary dynamics shaping biodiversity in the urban mosaic. Nat. Rev. Biodivers. (2026). https://doi.org/10.1038/s44358-026-00138-0

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44358-026-00138-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing