Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Flash Joule heating for synthesis, upcycling and remediation

Abstract

Electric heating methods are being developed and used to electrify industrial applications and lower their carbon emissions. Direct Joule resistive heating is an energy-efficient electric heating technique that has been widely tested at the bench scale and could replace some energy-intensive and carbon-intensive processes. In this Review, we discuss the use of flash Joule heating (FJH) in processes that are traditionally energy-intensive or carbon-intensive. FJH uses pulse current discharge to rapidly heat materials directly to a desired temperature; it has high-temperature capabilities (>3,000 °C), fast heating and cooling rates (>102 °C s−1), short duration (milliseconds to seconds) and high energy efficiency (~100%). Carbon materials and metastable inorganic materials can be synthesized using FJH from virgin materials and waste feedstocks. FJH is also applied in resource recovery (such as from e-waste) and waste upcycling. An emerging application is in environmental remediation, where FJH can be used to rapidly degrade perfluoroalkyl and polyfluoroalkyl substances and to remove or immobilize heavy metals in soil and solid wastes. Life-cycle and technoeconomic analyses suggest that FJH can reduce energy consumption and carbon emissions and be cost-efficient compared with existing methods. Bringing FJH to industrially relevant scales requires further equipment and engineering development.

Key points

  • Flash Joule heating (FJH) uses pulsed intense electric discharge to rapidly and directly heat materials for a short duration.

  • Carbon materials, such as graphene, and inorganic materials can be synthesized using FJH and a variety of feedstocks.

  • Waste can be managed and upcycled using FJH techniques, which are more energy efficient than conventional methods such as furnace-based heating.

  • Remediation of soil contaminated with heavy metals and organic pollutants is feasible at laboratory scales with FJH.

  • Life-cycle assessments suggest that compared with various other synthesis and waste management methods, FJH has reduced energy consumption and carbon emissions, especially when using waste feedstocks; FJH also appears to be cost-effective based on preliminary technoeconomic analyses.

  • FJH is largely demonstrated at the bench scale, but scale-up of FJH is now being demonstrated on an industrial scale for materials production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FJH principle, equipment and scale-up.
Fig. 2: FJH for graphene and related carbon materials synthesis.
Fig. 3: FJH for phase-controlled synthesis of functional inorganic materials.
Fig. 4: Metal recovery and waste upcycling by FJH.
Fig. 5: Upcycling of waste plastics and biomass into flash graphene and clean hydrogen.
Fig. 6: FJH for waste decontamination and soil remediation.
Fig. 7: Life-cycle assessment and technoeconomic analysis of processes conducted by FJH.

Similar content being viewed by others

References

  1. Deshmukh, Y. V. Industrial Heating: Principles, Techniques, Materials, Applications, and Design 1st edn (CRC, 2005).

  2. Hasanuzzaman, M. et al. Energy savings in the combustion based process heating in industrial sector. Renew. Sustain. Energy Rev. 16, 4527–4536 (2012).

    Article  Google Scholar 

  3. Sugiyama, M. Climate change mitigation and electrification. Energy Policy 44, 464–468 (2012).

    Article  Google Scholar 

  4. Global CO2 emissions by sector, 2019–2022. IEA https://www.iea.org/data-and-statistics/charts/global-co2-emissions-by-sector-2019-2022 (2022).

  5. Wei, M., McMillan, C. A. & de la Rue du Can, S. Electrification of industry: potential, challenges and outlook. Curr. Sustain./Renew. Energy Rep. 6, 140–148 (2019).

    Article  Google Scholar 

  6. Fryer, P. & Li, Z. Electrical resistance heating of foods. Trends Food Sci. Technol. 4, 364–369 (1993).

    Article  Google Scholar 

  7. Toulouevski, Y. N. & Zinurov, I. Y. in Innovation in Electric Arc Furnaces: Scientific Basis for Selection (eds Toulouevski, Y. N. & Zinurov, I. Y.) 1–24 (Springer, 2013).

  8. Lucía, O., Maussion, P., Dede, E. J. & Burdío, J. M. Induction heating technology and its applications: past developments, current technology, and future challenges. IEEE Trans. Ind. Electron. 61, 2509–2520 (2014).

    Article  Google Scholar 

  9. Gabriel, C. et al. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev. 27, 213–224 (1998).

    Article  CAS  Google Scholar 

  10. Wismann, S. T. et al. Electrified methane reforming: a compact approach to greener industrial hydrogen production. Science 364, 756–759 (2019).

    Article  CAS  Google Scholar 

  11. Luong, D. X. et al. Gram-scale bottom-up flash graphene synthesis. Nature 577, 647–651 (2020).

    Article  CAS  Google Scholar 

  12. Wyss, K. M. et al. Upcycling end-of-life vehicle waste plastic into flash graphene. Commun. Eng. 1, 3 (2022).

    Article  Google Scholar 

  13. Huang, P., Zhu, R., Zhang, X. & Zhang, W. Effect of free radicals and electric field on preparation of coal pitch-derived graphene using flash Joule heating. Chem. Eng. J. 450, 137999 (2022).

    Article  CAS  Google Scholar 

  14. Wyss, K. M. et al. Upcycling of waste plastic into hybrid carbon nanomaterials. Adv. Mater. 35, 2209621 (2023).

    Article  CAS  Google Scholar 

  15. Deng, B. et al. Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating. Nat. Commun. 13, 262 (2022).

    Article  CAS  Google Scholar 

  16. Taibi, A., Gil-González, E., Sánchez-Jiménez, P. E., Perejón, A. & Pérez-Maqueda, L. A. Flash Joule heating-boro/carbothermal reduction (FJH-BCTR): an approach for the instantaneous synthesis of transition metal diborides. Ceram. Int. https://doi.org/10.1016/j.ceramint.2024.01.144 (2024).

  17. Shen, P. et al. General synthesis of transition metal nitride arrays by ultrafast flash joule heating within 500 ms. Sci. China Chem. 67, 1976–1982 (2024).

    Article  CAS  Google Scholar 

  18. Deng, B. et al. Kinetically controlled synthesis of metallic glass nanoparticles with expanded composition space. Adv. Mater. 36, 2309956 (2024).

    Article  CAS  Google Scholar 

  19. Okulov, I. V. et al. Flash Joule heating for ductilization of metallic glasses. Nat. Commun. 6, 7932 (2015).

    Article  CAS  Google Scholar 

  20. Choi, C. H. et al. Flash-within-flash synthesis of gram-scale solid-state materials. Nat. Chem. 16, 1831–1837 (2024).

    Article  CAS  Google Scholar 

  21. Chen, W. et al. Heteroatom-doped flash graphene. ACS Nano 16, 6646–6656 (2022).

    Article  CAS  Google Scholar 

  22. Cheng, Y. et al. Flash upcycling of waste glass fibre-reinforced plastics to silicon carbide. Nat. Sustain. 7, 452–462 (2024).

    Article  Google Scholar 

  23. Eddy, L. J. et al. Automated laboratory kilogram-scale graphene production from coal. Small Methods 8, 2301144 (2024).

    Article  CAS  Google Scholar 

  24. Cheng, Y. et al. Electrothermal mineralization of per- and polyfluoroalkyl substances for soil remediation. Nat. Commun. 15, 6117 (2024).

    Article  CAS  Google Scholar 

  25. Deng, B. et al. High-temperature electrothermal remediation of multi-pollutants in soil. Nat. Commun. 14, 6371 (2023).

    Article  CAS  Google Scholar 

  26. Wyss, K. M. et al. Synthesis of clean hydrogen gas from waste plastic at zero net cost. Adv. Mater. 35, 2306763 (2023).

    Article  CAS  Google Scholar 

  27. Deng, B. et al. Rare earth elements from waste. Sci. Adv. 8, eabm3132 (2022).

    Article  CAS  Google Scholar 

  28. Joule, J. P. On the production of heat by voltaic electricity. Proc. R. Soc. Lond. 4, 280–281 (1841).

    Google Scholar 

  29. Walton, R. R. in Kirk-Othmer Encyclopedia of Chemical Technology Vol. 7 16–23 (Wiley, 2000).

  30. Eddy, L. et al. Electric field effects in flash Joule heating synthesis. J. Am. Chem. Soc. 146, 16010–16019 (2024).

    Article  CAS  Google Scholar 

  31. Cheng, Y. et al. Electric current aligning component units during graphene fiber Joule heating. Adv. Funct. Mater. 32, 2103493 (2022).

    Article  CAS  Google Scholar 

  32. Zhang, X. H., Han, G. Y. & Zhu, S. Flash nitrogen-doped carbon nanotubes for energy storage and conversion. Small 20, 2305406 (2024).

    Article  CAS  Google Scholar 

  33. Algozeeb, W. A. et al. Flash graphene from plastic waste. ACS Nano 14, 15595–15604 (2020).

    Article  CAS  Google Scholar 

  34. Saadi, M. A. S. R. et al. Sustainable valorization of asphaltenes via flash Joule heating. Sci. Adv. 8, eadd3555 (2022).

    Article  CAS  Google Scholar 

  35. Chen, W. et al. Ultrafast and controllable phase evolution by flash Joule heating. ACS Nano 15, 11158–11167 (2021).

    Article  CAS  Google Scholar 

  36. Deng, B. et al. Urban mining by flash Joule heating. Nat. Commun. 12, 5794 (2021).

    Article  CAS  Google Scholar 

  37. Zhu, X. et al. Continuous and low-carbon production of biomass flash graphene. Nat. Commun. 15, 3218 (2024).

    Article  CAS  Google Scholar 

  38. Wang, C. et al. A general method to synthesize and sinter bulk ceramics in seconds. Science 368, 521–526 (2020).

    Article  CAS  Google Scholar 

  39. Deng, B. et al. High-surface-area corundum nanoparticles by resistive hotspot-induced phase transformation. Nat. Commun. 13, 5027 (2022).

    Article  CAS  Google Scholar 

  40. Mishra, S. & Ullas, A. V. Concept modelling of small scale device for continuous production of graphene using Solidworks. Mater. Today Proc. 79, 345–348 (2023).

    Article  CAS  Google Scholar 

  41. Eddy, L. et al. Kilogram flash Joule heating synthesis with an arc welder. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2024-nfnc9 (2024).

  42. Dwivedi, I. & Subramaniam, C. Joule heating-driven transformation of hard-carbons to onion-like carbon monoliths for efficient capture of volatile organic compounds. ACS Mater. Au 2, 154–162 (2022).

    Article  CAS  Google Scholar 

  43. Dong, S. et al. Rapid carbonization of anthracite coal via flash Joule heating for sodium ion storage. ACS Appl. Energy Mater. https://doi.org/10.1021/acsaem.3c02975 (2024).

  44. Liu, X. & Luo, H. Preparation of coal-based graphene by flash Joule heating. ACS Omega 9, 2657–2663 (2024).

    Article  CAS  Google Scholar 

  45. Advincula, P. A. et al. Flash graphene from rubber waste. Carbon 178, 649–656 (2021).

    Article  CAS  Google Scholar 

  46. Kaur, J. et al. Sustainable manufacturing of graphitic carbon from bio-waste using flash heating for anode material of lithium-ion batteries with optimal performance. Adv. Sustain. Syst. https://doi.org/10.1002/adsu.202300610 (2024).

  47. Advincula, P. A., Meng, W., Beckham, J. L., Nagarajaiah, S. & Tour, J. M. Conversion of CO2-derived amorphous carbon into flash graphene additives. Macromol. Mater. Eng. 309, 2300266 (2024).

    Article  CAS  Google Scholar 

  48. Teng, T. et al. Flash reforming pyrogenic carbon to graphene for boosting advanced oxidation reaction. Adv. Mater. Technol. 8, 2300236 (2023).

    Article  CAS  Google Scholar 

  49. Silva, K. J. et al. Graphene derived from municipal solid waste. Small https://doi.org/10.1002/smll.202311021 (2024).

  50. Cheng, L. et al. Flash healing of laser-induced graphene. Nat. Commun. 15, 2925 (2024).

    Article  CAS  Google Scholar 

  51. ISO/TS 80004-13:2024(en). Nanotechnologies — vocabulary — part 13: graphene and related two-dimensional (2D) materials. ISO https://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-13:ed-2:v1:en (2024).

  52. Partoens, B. & Peeters, F. M. From graphene to graphite: electronic structure around the K point. Phys. Rev. B 74, 075404 (2006).

    Article  Google Scholar 

  53. Lespade, P., Marchand, A., Couzi, M. & Cruege, F. Caracterisation de materiaux carbones par microspectrometrie Raman. Carbon 22, 375–385 (1984).

    Article  CAS  Google Scholar 

  54. Deng, B. et al. Interlayer decoupling in 30° twisted bilayer graphene quasicrystal. ACS Nano 14, 1656–1664 (2020).

    Article  CAS  Google Scholar 

  55. Kokmat, P., Surinlert, P. & Ruammaitree, A. Growth of high-purity and high-quality turbostratic graphene with different interlayer spacings. ACS Omega 8, 4010–4018 (2023).

    Article  CAS  Google Scholar 

  56. Garlow, J. A. et al. Large-area growth of turbostratic graphene on Ni(111) via physical vapor deposition. Sci. Rep. 6, 19804 (2016).

    Article  CAS  Google Scholar 

  57. Malard, L. M., Pimenta, M. A., Dresselhaus, G. & Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009).

    Article  CAS  Google Scholar 

  58. Beckham, J. L. et al. Machine learning guided synthesis of flash graphene. Adv. Mater. 34, 2106506 (2022).

    Article  CAS  Google Scholar 

  59. Wyss, K. M., Wang, Z., Alemany, L. B., Kittrell, C. & Tour, J. M. Bulk production of any ratio 12C:13C turbostratic flash graphene and its unusual spectroscopic characteristics. ACS Nano 15, 10542–10552 (2021).

    Article  CAS  Google Scholar 

  60. Seehra, M. S., Geddam, U. K., Schwegler-Berry, D. & Stefaniak, A. B. Detection and quantification of 2H and 3R phases in commercial graphene-based materials. Carbon 95, 818–823 (2015).

    Article  CAS  Google Scholar 

  61. Stanford, M. G. et al. Flash graphene morphologies. ACS Nano 14, 13691–13699 (2020).

    Article  CAS  Google Scholar 

  62. Deng, B. et al. Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates. ACS Nano 11, 12337–12345 (2017).

    Article  CAS  Google Scholar 

  63. Deng, B. et al. Growth of ultraflat graphene with greatly enhanced mechanical properties. Nano Lett. 20, 6798–6806 (2020).

    Article  CAS  Google Scholar 

  64. Pang, Z., Deng, B., Liu, Z., Peng, H. & Wei, Y. Defects guided wrinkling in graphene on copper substrate. Carbon 143, 736–742 (2019).

    Article  CAS  Google Scholar 

  65. Li, F. et al. Ultrafast synthesis of battery grade graphite enabled by a multi-physics field carbonization. Chem. Eng. J. 461, 142128 (2023).

    Article  CAS  Google Scholar 

  66. Advincula, P. A. et al. Ultra-high loading of coal-derived flash graphene additives in epoxy composites. Macromol. Mater. Eng. 308, 2200640 (2023).

    Article  CAS  Google Scholar 

  67. Advincula, P. A. et al. Replacement of concrete aggregates with coal-derived flash graphene. ACS Appl. Mater. Interfaces 16, 1474–1481 (2024).

    Article  CAS  Google Scholar 

  68. Advincula, P. A. et al. Waste plastic- and coke-derived flash graphene as lubricant additives. Carbon 203, 876–885 (2023).

    Article  CAS  Google Scholar 

  69. Yang, H. et al. Ordered-range tuning of flash graphene for fast-charging lithium-ion batteries. ACS Appl. Nano Mater. 6, 2450–2458 (2023).

    Article  CAS  Google Scholar 

  70. Chen, Y. et al. Bioinspired robust gas-permeable on-skin electronics: armor-designed nanoporous flash graphene assembly enhancing mechanical resilience. Adv. Sci. 11, 2402759 (2024).

    Article  CAS  Google Scholar 

  71. Zhou, C. et al. Preparation of graphene-coated Cu particles with oxidation resistance by flash joule heating. Carbon 224, 119060 (2024).

    Article  CAS  Google Scholar 

  72. Chen, J. et al. Cathode-electrolyte interphase engineering toward fast-charging LiFePO4 cathodes by flash carbon coating. Small Methods https://doi.org/10.1002/smtd.202400680 (2024).

  73. Zhu, S. et al. Flash nitrogen-doped graphene for high-rate supercapacitors. ACS Mater. Lett. 4, 1863–1871 (2022).

    Article  CAS  Google Scholar 

  74. Chen, W. et al. Turbostratic boron–carbon–nitrogen and boron nitride by flash Joule heating. Adv. Mater. 34, 2202666 (2022).

    Article  CAS  Google Scholar 

  75. Cui, P. et al. Enhancing electrochemical performance through swift functional group tuning of MXenes. Batter. Supercaps 7, e202400274 (2024).

    Article  CAS  Google Scholar 

  76. Wyss, K. M., Chen, W., Beckham, J. L., Savas, P. E. & Tour, J. M. Holey and wrinkled flash graphene from mixed plastic waste. ACS Nano 16, 7804–7815 (2022).

    Article  CAS  Google Scholar 

  77. Liao, Y. T. et al. Ultrafast synthesis of 3D porous flash graphene and its adsorption properties. Colloid Surf. A 676, 132178 (2023).

    Article  CAS  Google Scholar 

  78. Li, Q. et al. Rapid preparation of porous carbon by flash Joule heating from bituminous coal and its adsorption mechanism of methylene blue. Colloid Surf. A 682, 132900 (2024).

    Article  CAS  Google Scholar 

  79. Dong, S. et al. Flash Joule heating induced highly defective graphene towards ultrahigh lithium ion storage. Chem. Eng. J. 481, 147988 (2024).

    Article  CAS  Google Scholar 

  80. Xia, D. et al. Electrothermal transformations within graphene-based aerogels through high-temperature flash Joule heating. J. Am. Chem. Soc. 146, 159–169 (2024).

    Article  CAS  Google Scholar 

  81. You, L. et al. A graphene-like hollow sphere anode for lithium-ion batteries. Chem. Commun. 60, 5030–5033 (2024).

    Article  CAS  Google Scholar 

  82. Huang, J., Zhu, S., Zhang, J. & Han, G. One-pot ultrafast molten-salt synthesis of anthracite-based porous carbon for high-performance capacitive energy storage. ACS Mater. Lett. 6, 2144–2152 (2024).

    Article  CAS  Google Scholar 

  83. Ganjoo, R., Sharma, S., Kumar, A. & Daouda, M. M. A. in Activated Carbon: Progress and Applications (eds Verma, C. & Quraishi, M. A.) 1–22 (Royal Society of Chemistry, 2023).

  84. Industrial Grade Multi Walled Carbon Nanotubes. Nanografi https://nanografi.com/carbon-nanotubes/industrial-grade-multi-walled-carbon-nanotubes-purity-92-outside-diameter-8-28-nm/?srsltid=AfmBOoqJyM625L7uy9AfazcwW97b4_PJ2AzmSlEXgA8UXSRS8PFn8T-R (2024).

  85. Multi Wall Carbon Nanotubes 99% Purity ~10-20nm. Carb Lab Tech Supplies https://www.carblabtechsupplies.com.au/product/multi-wall-carbon-nanotubes/2 (2024).

  86. Advincula, P. A. et al. Tunable hybridized morphologies obtained through flash Joule heating of carbon nanotubes. ACS Nano 17, 2506–2516 (2023).

    Article  CAS  Google Scholar 

  87. Qin, G. et al. Millisecond activity modulation of atomically-dispersed Fe–N–C catalysts. Energy Storage Mater 69, 103421 (2024).

    Article  Google Scholar 

  88. Chen, J. et al. Boron nitride nanotube and nanosheet synthesis by flash Joule heating. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2024-mvrmf (2024).

  89. Yuan, M., Yu, S., Wang, K., Mi, C. & Shen, L. Ultrafast synthesis of hard carbon for high-rate and low-temperature sodium-ion storage through flash Joule heating. Solid. State Ion. 414, 116622 (2024).

    Article  CAS  Google Scholar 

  90. Song, Z. et al. Joule heating for structure reconstruction of hard carbon with superior sodium ion storage performance. Chem. Eng. J. 496, 154103 (2024).

    Article  CAS  Google Scholar 

  91. Wang, L. et al. Rapid and up-scalable flash fabrication of graphitic carbon nanocages for robust potassium storage. Adv. Funct. Mater. 34, 2401548 (2024).

    Article  CAS  Google Scholar 

  92. Chen, W. et al. Millisecond conversion of metastable 2D materials by flash Joule heating. ACS Nano 15, 1282–1290 (2021).

    Article  CAS  Google Scholar 

  93. Aykol, M., Dwaraknath, S. S., Sun, W. & Persson, K. A. Thermodynamic limit for synthesis of metastable inorganic materials. Sci. Adv. 4, eaaq0148 (2018).

    Article  Google Scholar 

  94. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  CAS  Google Scholar 

  95. Liu, C. et al. Multiple twin boundary-regulated metastable Pd for ethanol oxidation reaction. Adv. Energy Mater. 12, 2103505 (2022).

    Article  CAS  Google Scholar 

  96. Liu, S. et al. Extreme environmental thermal shock induced dislocation-rich Pt nanoparticles boosting hydrogen evolution reaction. Adv. Mater. 34, 2106973 (2022).

    Article  CAS  Google Scholar 

  97. McHale, J. M., Auroux, A., Perrotta, A. J. & Navrotsky, A. Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277, 788–791 (1997).

    Article  CAS  Google Scholar 

  98. Klement, W., Willens, R. H. & Duwez, P. O. L. Non-crystalline structure in solidified gold–silicon alloys. Nature 187, 869–870 (1960).

    Article  CAS  Google Scholar 

  99. Grover, V., Mandal, B. P. & Tyagi, A. K. in Handbook on Synthesis Strategies for Advanced Materials Vol. I Techniques and Fundamentals (eds Tyagi, A. K. & Ningthoujam, R. S.) 1–49 (Springer Singapore, 2021).

  100. Yu, M., Grasso, S., McKinnon, R., Saunders, T. & Reece, M. J. Review of flash sintering: materials, mechanisms and modelling. Adv. Appl. Ceram. 116, 24–60 (2017).

    Article  CAS  Google Scholar 

  101. Guillon, O. et al. Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv. Eng. Mater. 16, 830–849 (2014).

    Article  CAS  Google Scholar 

  102. Ping, W. et al. Printable, high-performance solid-state electrolyte films. Sci. Adv. 6, eabc8641 (2020).

    Article  CAS  Google Scholar 

  103. Chen, J. et al. Cathode interface construction by rapid sintering in solid-state batteries. Small 20, 2307342 (2024).

    Article  CAS  Google Scholar 

  104. Shin, J. et al. In2Se3 synthesized by the FWF method for neuromorphic computing Adv. Electron. Mater. https://doi.org/10.1002/aelm.202400603 (2024).

  105. Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).

    Article  CAS  Google Scholar 

  106. Chen, Y. et al. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films. Nat. Commun. 7, 12332 (2016).

    Article  CAS  Google Scholar 

  107. Wang, M. et al. In situ generation of flash graphene supported spherical bismuth nanoparticles in less than 200 ms for highly selective carbon dioxide electroreduction. ACS Mater. Lett. 6, 100–108 (2024).

    Article  CAS  Google Scholar 

  108. Yu, F. et al. Rapid self-heating synthesis of Fe-based nanomaterial catalyst for advanced oxidation. Nat. Commun. 14, 4975 (2023).

    Article  CAS  Google Scholar 

  109. Luo, J. et al. Transient co-tuning of atomic Fe and nanoparticle facets for self-relaying Fenton-like catalysis. Commun. Mater. 5, 9 (2024).

    Article  CAS  Google Scholar 

  110. Yang, C. et al. Overcoming immiscibility toward bimetallic catalyst library. Sci. Adv. 6, eaaz6844 (2020).

    Article  Google Scholar 

  111. Liu, S. et al. Dislocation-strained IrNi alloy nanoparticles driven by thermal shock for the hydrogen evolution reaction. Adv. Mater. 32, 2006034 (2020).

    Article  CAS  Google Scholar 

  112. Li, P. et al. Flash joule heating synthesis of carbon supported ultrafine metallic heterostructures for high-performance overall water splitting. J. Alloy. Compd. 947, 169630 (2023).

    Article  CAS  Google Scholar 

  113. Qiu, Y. et al. Hybrid electrocatalyst Ag/Co/C via flash Joule heating for oxygen reduction reaction in alkaline media. Chem. Eng. J. 430, 132769 (2022).

    Article  CAS  Google Scholar 

  114. Xie, P. et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 10, 4011 (2019).

    Article  Google Scholar 

  115. Yao, Y. et al. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Sci. Adv. 6, eaaz0510 (2020).

    Article  CAS  Google Scholar 

  116. Yao, Y. et al. High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 14, 851–857 (2019).

    Article  CAS  Google Scholar 

  117. Zhu, W. et al. Ultrafast non-equilibrium synthesis of cathode materials for Li-ion batteries. Adv. Mater. 35, 2208974 (2023).

    Article  CAS  Google Scholar 

  118. Liao, Y. et al. Transient synthesis of carbon-supported high-entropy alloy sulfide nanoparticles via flash Joule heating for efficient electrocatalytic hydrogen evolution. Nano Res. 17, 3379–3389 (2024).

    Article  CAS  Google Scholar 

  119. Xia, D. et al. Flash Joule-heating synthesis of MoO nanocatalysts in graphene aerogel for deep catalytic oxidative desulfurization. AIChE J. 70, e18357 (2024).

    Article  CAS  Google Scholar 

  120. Wu, Y. et al. Roll-to-roll Joule-heating to construct ferromagnetic carbon fiber felt for superior electromagnetic interference shielding. Carbon 229, 119474 (2024).

    Article  CAS  Google Scholar 

  121. Qian, F. et al. Asymmetric active sites originate from high-entropy metal selenides by Joule heating to boost electrocatalytic water oxidation. Joule 8, 2342–2356 (2024).

    Article  CAS  Google Scholar 

  122. Dong, H. et al. Flash Joule heating: a promising method for preparing heterostructure catalysts to inhibit polysulfide shuttling in Li–S batteries. Adv. Sci. 11, 2405351 (2024).

    Article  CAS  Google Scholar 

  123. Huang, Z. et al. Direct observation of the formation and stabilization of metallic nanoparticles on carbon supports. Nat. Commun. 11, 6373 (2020).

    Article  CAS  Google Scholar 

  124. Song, J.-Y. et al. Generation of high-density nanoparticles in the carbothermal shock method. Sci. Adv. 7, eabk2984 (2021).

    Article  CAS  Google Scholar 

  125. Cui, M. et al. Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition. Sci. Adv. 8, eabm4322 (2022).

    Article  CAS  Google Scholar 

  126. Li, G. et al. Flash Joule heating to enhance water oxidation of hematite photoanode via mediating with an oxidized carbon overlayer. Carbon 215, 118444 (2023).

    Article  CAS  Google Scholar 

  127. Chen, Y. et al. SiC substrate/Pt nanoparticle/graphene nanosheet composite photocatalysts for hydrogen generation. ACS Appl. Nano Mater. 7, 8958–8968 (2024).

    Article  CAS  Google Scholar 

  128. Zhang, L. et al. Sub-second ultrafast yet programmable wet-chemical synthesis. Nat. Commun. 14, 5015 (2023).

    Article  CAS  Google Scholar 

  129. Deng, J. et al. Programmable wet-interfacial Joule heating to rapidly synthesize metastable protohematite photoanodes: metal and lattice oxygen dual sites for improving water oxidation. ACS Catal. 14, 10635–10647 (2024).

    Article  CAS  Google Scholar 

  130. Dong, Q. et al. Programmable heating and quenching for efficient thermochemical synthesis. Nature 605, 470–476 (2022).

    Article  CAS  Google Scholar 

  131. Lindberg, D., Molin, C. & Hupa, M. Thermal treatment of solid residues from WtE units: a review. Waste Manag. 37, 82–94 (2015).

    Article  CAS  Google Scholar 

  132. Chen, W. et al. Battery metal recycling by flash Joule heating. Sci. Adv. 9, eadh5131 (2023).

    Article  CAS  Google Scholar 

  133. Chen, W. et al. Flash recycling of graphite anodes. Adv. Mater. 35, 2207303 (2023).

    Article  CAS  Google Scholar 

  134. Lu, J. et al. Millisecond conversion of photovoltaic silicon waste to binder-free high silicon content nanowires electrodes. Adv. Energy Mater. 11, 2102103 (2021).

    Article  CAS  Google Scholar 

  135. Hao, J., Wang, Y., Wu, Y. & Guo, F. Metal recovery from waste printed circuit boards: a review for current status and perspectives. Resour. Conserv. Recycl. 157, 104787 (2020).

    Article  Google Scholar 

  136. Deng, B. et al. Flash separation of metals by electrothermal chlorination. Nat. Chem. Eng. 1, 627–637 (2024).

    Article  Google Scholar 

  137. Zhu, X.-H. et al. Recycling valuable metals from spent lithium-ion batteries using carbothermal shock method. Angew. Chem. Int. Ed. 62, e202300074 (2023).

    Article  CAS  Google Scholar 

  138. Wang, J. et al. Toward direct regeneration of spent lithium-ion batteries: a next-generation recycling method. Chem. Rev. 124, 2839–2887 (2024).

    Article  CAS  Google Scholar 

  139. Natarajan, S. & Aravindan, V. An urgent call to spent LIB recycling: whys and wherefores for graphite recovery. Adv. Energy Mater. 10, 2002238 (2020).

    Article  CAS  Google Scholar 

  140. Dong, S. et al. Ultra-fast, low-cost, and green regeneration of graphite anode using flash joule heating method. EcoMat 4, e12212 (2022).

    Article  CAS  Google Scholar 

  141. Ji, Y. et al. Regenerated graphite electrodes with reconstructed solid electrolyte interface and enclosed active lithium toward >100% initial coulombic efficiency. Adv. Mater 4, e2312548 (2024).

    Article  Google Scholar 

  142. Huang, P., Zhu, R., Zhang, X. & Zhang, W. A milliseconds flash Joule heating method for the regeneration of spent cathode carbon. J. Environ. Sci. Health A 57, 33–44 (2022).

    Article  CAS  Google Scholar 

  143. Yin, Y.-C. et al. Rapid, direct regeneration of spent LiCoO2 cathodes for Li-ion batteries. ACS Energy Lett. 8, 3005–3012 (2023).

    Article  CAS  Google Scholar 

  144. Chen, W. et al. Nondestructive flash cathode recycling. Nat. Commun. 15, 6250 (2024).

    Article  CAS  Google Scholar 

  145. Lange, J.-P. Managing plastic waste — sorting, recycling, disposal, and product redesign. ACS Sustain. Chem. Eng. 9, 15722–15738 (2021).

    Article  CAS  Google Scholar 

  146. Wyss, K. M. et al. Converting plastic waste pyrolysis ash into flash graphene. Carbon 174, 430–438 (2021).

    Article  CAS  Google Scholar 

  147. Chen, Y. et al. Facilely preparing lignin-derived graphene–ferroferric oxide nanocomposites by flash Joule heating method. Res. Chem. Intermed. 49, 589–601 (2023).

    Article  CAS  Google Scholar 

  148. Khopade, K. V., Chikkali, S. H. & Barsu, N. Metal-catalyzed plastic depolymerization. Cell Rep. Phys. Sci. 4, 101341 (2023).

    Article  CAS  Google Scholar 

  149. Dong, Q. et al. Depolymerization of plastics by means of electrified spatiotemporal heating. Nature 616, 488–494 (2023).

    Article  CAS  Google Scholar 

  150. Selvam, E., Yu, K., Ngu, J., Najmi, S. & Vlachos, D. G. Recycling polyolefin plastic waste at short contact times via rapid Joule heating. Nat. Commun. 15, 5662 (2024).

    Article  CAS  Google Scholar 

  151. Amalina, F. et al. Biochar production techniques utilizing biomass waste-derived materials and environmental applications — a review. J. Hazard. Mater. Adv. 7, 100134 (2022).

    CAS  Google Scholar 

  152. Jia, C. et al. Graphene environmental footprint greatly reduced when derived from biomass waste via flash Joule heating. One Earth 5, 1394–1403 (2022).

    Article  Google Scholar 

  153. Ding, D., Song, X., Wei, C. & LaChance, J. A review on the sustainability of thermal treatment for contaminated soils. Environ. Pollut. 253, 449–463 (2019).

    Article  CAS  Google Scholar 

  154. Gomez, E. et al. Thermal plasma technology for the treatment of wastes: a critical review. J. Hazard. Mater. 161, 614–626 (2009).

    Article  CAS  Google Scholar 

  155. Deng, B. et al. Heavy metal removal from coal fly ash for low carbon footprint cement. Commun. Eng. 2, 13 (2023).

    Article  CAS  Google Scholar 

  156. He, Z. et al. Ground-breaking and safe recycling of hazardous hyperaccumulators. ACS EST. Eng. 3, 1966–1974 (2023).

    Article  CAS  Google Scholar 

  157. Scotland, P. et al. Mineralization of captured per- and polyfluoroalkyl substances at zero net cost using flash Joule heating. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2023-6xj3m (2024).

  158. McCleaf, P. et al. Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests. Water Res. 120, 77–87 (2017).

    Article  CAS  Google Scholar 

  159. Vargette, L. D. S. et al. Prospects of complete mineralization of per- and polyfluoroalkyl substances by thermal destruction methods. Curr. Opin. Chem. Eng. 42, 100954 (2023).

    Article  Google Scholar 

  160. Zhao, C., Dong, Y., Feng, Y., Li, Y. & Dong, Y. Thermal desorption for remediation of contaminated soil: a review. Chemosphere 221, 841–855 (2019).

    Article  CAS  Google Scholar 

  161. Luo, H., Zeng, Y., He, D. & Pan, X. Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: a review. Chem. Eng. J. 407, 127191 (2021).

    Article  CAS  Google Scholar 

  162. Wu, X. et al. Joule heating-induced active Mg0 into nano-Mg composites for boosted oxidation and antiviral performance. ACS EST. Eng. https://doi.org/10.1021/acsestengg.3c00614 (2024).

  163. Roberts, A. L., Totten, L. A., Arnold, W. A., Burris, D. R. & Campbell, T. J. Reductive elimination of chlorinated ethylenes by zero-valent metals. Environ. Sci. Technol. 30, 2654–2659 (1996).

    Article  CAS  Google Scholar 

  164. Sun, L. et al. Millisecond self-heating and quenching synthesis of Fe/carbon nanocomposite for superior reductive remediation. Appl. Catal. B: Environ. 342, 123361 (2024).

    Article  CAS  Google Scholar 

  165. Jia, C. et al. Joule heating induced reductive iron–magnesium bimetallic nanocomposite for eminent heavy metal removal. ACS EST. Eng. 4, 938–946 (2024).

    Article  CAS  Google Scholar 

  166. Wang, K. et al. Energy-efficient catalytic removal of formaldehyde enabled by precisely Joule-heated Ag/Co3O4@mesoporous-carbon monoliths. Carbon 167, 709–717 (2020).

    Article  CAS  Google Scholar 

  167. Du, P. et al. In-situ Joule-heating drives rapid and on-demand catalytic VOCs removal with ultralow energy consumption. Nano Energy 102, 107725 (2022).

    Article  CAS  Google Scholar 

  168. Zhang, L. et al. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon 47, 3365–3368 (2009).

    Article  CAS  Google Scholar 

  169. Deng, B., Liu, Z. F. & Peng, H. L. Toward mass production of CVD graphene films. Adv. Mater. 31, 1800996 (2019).

    Article  Google Scholar 

  170. Lin, L., Deng, B., Sun, J. Y., Peng, H. L. & Liu, Z. F. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 118, 9281–9343 (2018).

    Article  CAS  Google Scholar 

  171. Cao, J. et al. Two-step electrochemical intercalation and oxidation of graphite for the mass production of graphene oxide. J. Am. Chem. Soc. 139, 17446–17456 (2017).

    Article  CAS  Google Scholar 

  172. Zink, T. & Geyer, R. Circular economy rebound. J. Ind. Ecol. 21, 593–602 (2017).

    Article  Google Scholar 

  173. Berkhout, P. H. G., Muskens, J. C. & W. Velthuijsen, J. Defining the rebound effect. Energy Policy 28, 425–432 (2000).

    Article  Google Scholar 

  174. Castro, C. G., Trevisan, A. H., Pigosso, D. C. A. & Mascarenhas, J. The rebound effect of circular economy: definitions, mechanisms and a research agenda. J. Clean. Prod. 345, 131136 (2022).

    Article  Google Scholar 

  175. Font Vivanco, D. et al. Rebound effect and sustainability science: a review. J. Ind. Ecol. 26, 1543–1563 (2022).

    Article  Google Scholar 

  176. Allan, G., Hanley, N., McGregor, P., Swales, K. & Turner, K. The impact of increased efficiency in the industrial use of energy: a computable general equilibrium analysis for the United Kingdom. Energy Econ. 29, 779–798 (2007).

    Article  Google Scholar 

  177. Han, Y.-C., Cao, P.-Y. & Tian, Z.-Q. Controllable synthesis of solid catalysts by high-temperature pulse. Acc. Mater. Res. 4, 648–654 (2023).

    Article  CAS  Google Scholar 

  178. Sahoo, P. K., Kim, K., Powell, M. A. & Equeenuddin, S. M. Recovery of metals and other beneficial products from coal fly ash: a sustainable approach for fly ash management. Int. J. Coal Sci. Technol. 3, 267–283 (2016).

    Article  CAS  Google Scholar 

  179. Furnaces and Boilers. US Department of Energy https://www.energy.gov/energysaver/furnaces-and-boilers (2024).

  180. Jawad, S. K. Investigation of the dimensions design components for the rectangular indirect resistance electrical furnaces. Am. J. Eng. Appl. Sci. 3, 350–354 (2010).

    Article  Google Scholar 

  181. Xie, H. et al. Rapid liquid phase-assisted ultrahigh-temperature sintering of high-entropy ceramic composites. Sci. Adv. 8, abn8241 (2022).

    Article  Google Scholar 

  182. Fuel-fired furnaces and boilers (2022). IPIECA https://www.ipieca.org/resources/energy-efficiency-database/fuel-fired-furnaces-and-boilers-2022 (2022).

  183. Reed, R. J. in North American Combustion Handbook Vol. 1, 3rd edn (North American Manufacturing Co., 1986).

  184. Wei, W. et al. Thermally assisted liberation of concrete and aggregate recycling: comparison between microwave and conventional heating. J, Mater. Civil. Eng. 33, 04021370 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding of the research is provided by the National Natural Science Foundation of China (no. 92475112, B.D.), the National Key R&D Program of China (2024YFC3907000, B.D.), the Air Force Office of Scientific Research (FA9550-22-1-0526, J.M.T.), the US Army Corps of Engineers, ERDC grants (W912HZ-21-2-0050 and W912HZ-24-2-0027, J.M.T.), the Defense Advanced Research Projects Agency (HR00112290122, J.M.T.) and the start-up funds of Tsinghua University (B.D.).

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to the literature searching, writing, reviewing and editing of the manuscript. All aspects of the Review were overseen by J.M.T.

Corresponding authors

Correspondence to Bing Deng  (邓兵) or James M. Tour.

Ethics declarations

Competing interests

Some of the flash Joule heating processes and apparatus are the intellectual property of Rice University. B.D., L.E., K.M.W. and J.M.T. are listed as inventors on some issued patents or patent applications. The intellectual property of flash graphene synthesis has been licensed to Universal Matter Inc. and Universal Matter LLC. MTM Critical Metals and Flash Metals USA Inc. have licensed methods to remove metals from waste and ores. J.M.T. is a stockholder in these licensee companies, but he is not an officer, director or employee in the companies. All conflicts of interest are managed through regular disclosures to and compliance with Rice University’s Office of Sponsored Programs and Research Compliance. K.M.W. is currently an employee of SLB. The authors declare no other competing interests.

Peer review

Peer review information

Nature Reviews Clean Technology thanks Xiangdong Zhu; Micah Green, who co-reviewed with Ramu Banavath; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Ceramic sintering

A process of compacting solid materials that results in a more durable, stronger and harder mass, owing to pressure and high heat that force the atoms to bond more tightly with each other.

Critical metals

A group of metals that are vital to high-tech applications, such as rare earth metals, but whose secure supply is potentially at risk of restriction.

Dielectric heating

The process in which a radiofrequency alternating electric field, radio wave or microwave electromagnetic radiation heats a dielectric material.

Direct heating

The process of transferring heat directly to a target material without using an intermediary fluid or medium. The heat source is in direct contact with the target, or the heat is generated inside the target itself.

Electric arc heating

An electrothermal process in which an electric arc is formed between two electrodes, generating high temperatures.

Flash graphene

The turbostratic graphene produced by the flash Joule heating process.

Flash Joule heating

A resistive heating process that uses pulsed current passing through the target material to rapidly heat it to a high temperature directly followed by ultrafast cooling.

Flash sintering

A sintering technology that involves the application of a direct electrical field via customized electrodes to a material body during the sintering process.

Indirect heating

The process of transferring heat to a target materials through an intermediate.

Induction heating

The process of heating electrically conductive materials by electromagnetic induction, in which heat transfer passing through an inductor that creates an electromagnetic field within the coil to heat up.

Life-cycle assessment

A methodology for assessing environmental impacts associated with all stages of the life cycle of a product, process or service.

Metastability

An intermediate energetic state within a dynamical system other than the system’s state of least energy.

Metastable materials

Materials that have metastable phases with kinetically trapped states with positive free energy above the thermodynamically equilibrium state; these phases can exhibit unique properties compared with their stable counterparts.

Ordered graphene

Ordered graphene refers to graphene that exhibits a high degree of structural organization, typically in terms of its atomic arrangement, stacking or alignment. It implies a regular and well-defined crystalline structure, as opposed to disordered or amorphous forms of graphene.

Perfluoroalkyl and polyfluoroalkyl substances

A group of synthetic organofluorine chemical compounds that have multiple fluorine atoms attached to an alkyl chain.

Solid-state synthesis

A method used to produce materials by reacting solid-phase precursors without involving a liquid or gaseous medium; this process typically involves heating the solid reactants to a high temperature to facilitate the reaction.

Spark plasma sintering

A ceramic sintering process involving the application of pulsed direct current and uniaxial pressure to the powder within a die.

Technoeconomic analysis

A method of analysing the economic performance of an industrial process, product or service.

Upcycling

The process of transforming by-products, waste materials, useless or unwanted products into new materials or products perceived to be of greater quality or higher value.

Urban mining

The extraction of valuable materials, such as metals, from discarded urban materials, particularly electronic wastes.

Variable frequency drive

A type of a.c. motor drive that controls speed and torque by varying the frequency of the input electricity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, B., Eddy, L., Wyss, K.M. et al. Flash Joule heating for synthesis, upcycling and remediation. Nat. Rev. Clean Technol. 1, 32–54 (2025). https://doi.org/10.1038/s44359-024-00002-4

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44359-024-00002-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing