Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advanced electrode processing for lithium-ion battery manufacturing

Abstract

Lithium-ion batteries (LIBs) need to be manufactured at speed and scale for their use in electric vehicles and devices. However, LIB electrode manufacturing via conventional wet slurry processing is energy-intensive and costly, challenging the goal to achieve sustainable, affordable and facile manufacturing of high-performance LIBs. In this Review, we discuss advanced electrode processing routes (dry processing, radiation curing processing, advanced wet processing and 3D-printing processing) that could reduce energy usage and material waste. Maxwell-type dry processing is a scalable alternative to conventional processing and has relatively low manufacturing cost and energy consumption. Radiation curing processing could enable high-throughput manufacturing, but binder selection is limited to certain radiation curable chemistries. 3D-printing processing can produce electrodes with diverse architectures and improved rate performance, but scalability is yet to be demonstrated. 3D-printing processing is good for special applications where throughput and cost can be compromised for performance.

Key points

  • Conventional lithium-ion battery electrode processing heavily relies on wet processing, which is time-consuming and energy-consuming.

  • Compared with conventional routes, advanced electrode processing strategies can be more affordable and less energy-intensive and generate less waste.

  • Electrode architectures can be tailored through advanced wet processing to improve charge and discharge rate performance, at the expense of increased manufacturing cost.

  • Dry processing can simplify the electrode manufacturing process with lower manufacturing costs (~11.5%) and energy consumption (>46% lower).

  • Radiation curing technologies can have the highest electrode manufacturing throughput, whereas 3D printing can fabricate electrodes with different geometries and structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrode processing techniques.
Fig. 2: Modified electrodes manufactured by conventional slurry-based processing.
Fig. 3: Properties and performance of dry-processed electrodes.
Fig. 4: Dry processing methods.
Fig. 5: Radiation curing electrode processing.
Fig. 6: 3D-printing electrode processing.

Similar content being viewed by others

References

  1. Rajaeifar, M. A., Ghadimi, P., Raugei, M., Wu, Y. & Heidrich, O. Challenges and recent developments in supply and value chains of electric vehicle batteries: a sustainability perspective. Resour. Conserv. Recycl. 180, 106144 (2022).

    Google Scholar 

  2. Goodenough, J. B. How we made the Li-ion rechargeable battery. Nat. Electron. 1, 204 (2018).

    Google Scholar 

  3. Tao, R. et al. Insight into the fast-rechargeability of a novel Mo1.5W1.5Nb14O44 anode material for high-performance lithium-ion batteries. Adv. Energy Mater. 12, 2200519 (2022).

    CAS  Google Scholar 

  4. Tarascon, J. M. & Guyomard, D. The Li1+xMn2O4/C rocking-chair system: a review. Electrochim. Acta 38, 1221–1231 (1993).

    CAS  Google Scholar 

  5. Li, J., Fleetwood, J., Hawley, W. B. & Kays, W. From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem. Rev. 122, 903–956 (2022).

    CAS  Google Scholar 

  6. Zhang, Y. et al. Recent technology development in solvent-free electrode fabrication for lithium-ion batteries. Renew. Sustain. Energy Rev. 183, 113515 (2023).

    CAS  Google Scholar 

  7. Li, J., Daniel, C. & Wood III, D. L. in Handbook of Battery Materials (eds Daniel, C. & Besenhard, J. O.) 939–960 (Wiley, 2011).

  8. Liu, Y., Zhang, R., Wang, J. & Wang, Y. Current and future lithium-ion battery manufacturing. iScience 24, 102332 (2021).

    CAS  Google Scholar 

  9. Wood, D. L. et al. Technical and economic analysis of solvent-based lithium-ion electrode drying with water and NMP. Dry. Technol. 36, 234–244 (2018).

    CAS  Google Scholar 

  10. Ahmed, S., Nelson, P. A., Gallagher, K. G. & Dees, D. W. Energy impact of cathode drying and solvent recovery during lithium-ion battery manufacturing. J. Power Sources 322, 169–178 (2016).

    CAS  Google Scholar 

  11. Susarla, N., Ahmed, S. & Dees, D. W. Modeling and analysis of solvent removal during Li-ion battery electrode drying. J. Power Sources 378, 660–670 (2018).

    CAS  Google Scholar 

  12. Stein, M., Mistry, A. & Mukherjee, P. P. Mechanistic understanding of the role of evaporation in electrode processing. J. Electrochem. Soc. 164, A1616 (2017).

    CAS  Google Scholar 

  13. Polizos, G. et al. Two-layer cathode architecture for high-energy density and high-power density solid state batteries. Mater. Today Chem. 33, 101704 (2023).

    CAS  Google Scholar 

  14. Parikh, D. & Li, J. Bilayer hybrid graphite anodes via freeze tape casting for extreme fast charging applications. Carbon 196, 525–531 (2022).

    CAS  Google Scholar 

  15. Tao, R. et al. High-throughput and high-performance lithium-ion batteries via dry processing. Chem. Eng. J. 471, 144300 (2023).

    CAS  Google Scholar 

  16. Arnold, J., Voelker, G., Fasolo, J. & Laden, P. UV or EB cured polymer-bonded ceramic particle lithium secondary battery separators, method for the production thereof. US Patent US10818900B2 (2020).

  17. Pei, M. et al. 3D printing of advanced lithium batteries: a designing strategy of electrode/electrolyte architectures. J. Mater. Chem. A 9, 25237–25257 (2021).

    CAS  Google Scholar 

  18. Ank, M. et al. Lithium-ion cells in automotive applications: Tesla 4680 cylindrical cell teardown and characterization. J. Electrochem. Soc. 170, 120536 (2023).

    CAS  Google Scholar 

  19. Wood, D. L. III et al. Perspectives on the relationship between materials chemistry and roll-to-roll electrode manufacturing for high-energy lithium-ion batteries. Energy Storage Mater. 29, 254–265 (2020).

    Google Scholar 

  20. Li, J., Daniel, C. & Wood, D. Materials processing for lithium-ion batteries. J. Power Sources 196, 2452–2460 (2011).

    CAS  Google Scholar 

  21. Sherwood, J., Farmer, T. J. & Clark, J. H. Catalyst: possible consequences of the N-methyl pyrrolidone REACH restriction. Chem 4, 2010–2012 (2018).

    CAS  Google Scholar 

  22. Wang, M., Dong, X., Escobar, I. C. & Cheng, Y.-T. Lithium ion battery electrodes made using dimethyl sulfoxide (DMSO)—a green solvent. ACS Sustain. Chem. Eng. 8, 11046–11051 (2020).

    CAS  Google Scholar 

  23. Zhou, H., Pei, B., Fan, Q., Xin, F. & Whittingham, M. S. Can greener cyrene replace NMP for electrode preparation of NMC 811 cathodes? J. Electrochem. Soc. 168, 040536 (2021).

    CAS  Google Scholar 

  24. Ravikumar, V. R. et al. γ-Valerolactone: an alternative solvent for manufacturing of lithium-ion battery electrodes. ACS Appl. Energy Mater. 4, 696–703 (2021).

    CAS  Google Scholar 

  25. Sarkar, A., May, R., Valmonte, Z. & Marbella, L. E. PolarClean & dimethyl isosorbide: green matches in formulating cathode slurry. Energy Adv. 1, 671–676 (2022).

    CAS  Google Scholar 

  26. Li, J., Armstrong, B. L., Daniel, C., Kiggans, J. & Wood, D. L. III Optimization of multicomponent aqueous suspensions of lithium iron phosphate (LiFePO4) nanoparticles and carbon black for lithium-ion battery cathodes. J. Colloid Interface Sci. 405, 118–124 (2013).

    CAS  Google Scholar 

  27. Du, Z. et al. Enabling aqueous processing for crack-free thick electrodes. J. Power Sources 354, 200–206 (2017).

    CAS  Google Scholar 

  28. Sliz, R. et al. Suitable cathode NMP replacement for efficient sustainable printed Li-ion batteries. ACS Appl. Energy Mater. 5, 4047–4058 (2022).

    CAS  Google Scholar 

  29. Wood, M. et al. Chemical stability and long-term cell performance of low-cobalt, Ni-rich cathodes prepared by aqueous processing for high-energy Li-ion batteries. Energy Storage Mater. 24, 188–197 (2020).

    Google Scholar 

  30. Hofmann, M., Nagler, F., Kapuschinski, M., Guntow, U. & Giffin, G. A. Surface modification of LiNi0.8Co0.15Al0.05O2 particles via Li3PO4 coating to enable aqueous electrode processing. ChemSusChem 13, 5962–5971 (2020).

    CAS  Google Scholar 

  31. Hawley, W. B. & Li, J. Electrode manufacturing for lithium-ion batteries—analysis of current and next generation processing. J. Energy Storage 25, 100862 (2019).

    Google Scholar 

  32. Li, C.-C. & Lin, Y.-S. Interactions between organic additives and active powders in water-based lithium iron phosphate electrode slurries. J. Power Sources 220, 413–421 (2012).

    CAS  Google Scholar 

  33. Chai, L. et al. Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries. Electrochim. Acta 105, 378–383 (2013).

    CAS  Google Scholar 

  34. Kovalenko, I. et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75–79 (2011).

    CAS  Google Scholar 

  35. Li, J., Armstrong, B. L., Kiggans, J., Daniel, C. & Wood, D. L. III Optimization of LiFePO4 nanoparticle suspensions with polyethyleneimine for aqueous processing. Langmuir 28, 3783–3790 (2012).

    CAS  Google Scholar 

  36. Versaci, D. et al. New eco-friendly low-cost binders for Li-ion anodes. J. Solid State Electrochem. 21, 3429–3435 (2017).

    CAS  Google Scholar 

  37. Kalnaus, S., Livingston, K., Hawley, W. B., Wang, H. & Li, J. Design and processing for high performance Li ion battery electrodes with double-layer structure. J. Energy Storage 44, 103582 (2021).

    Google Scholar 

  38. Sahore, R. et al. Performance of different water-based binder formulations for Ni-rich cathodes evaluated in LiNi0.8Mn0.1Co0.1O2//graphite pouch cells. J. Electrochem. Soc. 169, 040567 (2022).

    CAS  Google Scholar 

  39. Reissig, F. et al. Investigation of lithium polyacrylate binders for aqueous processing of Ni-rich lithium layered oxide cathodes for lithium-ion batteries. ChemSusChem 15, e202200401 (2022).

    CAS  Google Scholar 

  40. Hays, K. A. et al. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon–graphite composite anodes? J. Power Sources 384, 136–144 (2018).

    CAS  Google Scholar 

  41. Uzun, K. et al. Investigating the structure and performance of electrodes made by dry and wet slurry processes. J. Electrochem. Soc. 171, 020516 (2024).

    CAS  Google Scholar 

  42. Boz, B. et al. Evaluating polyacrylic acid as a universal aqueous binder for Ni-rich cathodes NMC811 and Si anodes in full cell lithium-ion batteries. ChemPlusChem 89, e202400195 (2024).

    CAS  Google Scholar 

  43. Aguiló-Aguayo, N., Hubmann, D., Khan, F. U., Arzbacher, S. & Bechtold, T. Water-based slurries for high-energy LiFePO4 batteries using embroidered current collectors. Sci. Rep. 10, 5565 (2020).

    Google Scholar 

  44. Surace, Y., Jahn, M. & Cupid, D. M. The rate capability performance of high-areal-capacity water-based NMC811 electrodes: the role of binders and current collectors. Batteries 10, 100 (2024).

    CAS  Google Scholar 

  45. Porcher, W., Lestriez, B., Jouanneau, S. & Guyomard, D. Design of aqueous processed thick LiFePO4 composite electrodes for high-energy lithium battery. J. Electrochem. Soc. 156, A133 (2009).

    CAS  Google Scholar 

  46. Sahore, R. et al. Towards understanding of cracking during drying of thick aqueous-processed LiNi0.8Mn0.1Co0.1O2 cathodes. ACS Sustain. Chem. Eng. 8, 3162–3169 (2020).

    CAS  Google Scholar 

  47. Hawley, W. B. et al. Lithium and transition metal dissolution due to aqueous processing in lithium-ion battery cathode active materials. J. Power Sources 466, 228315 (2020).

    CAS  Google Scholar 

  48. Li, J. et al. Toward low-cost, high-energy density, and high-power density lithium-ion batteries. JOM 69, 1484–1496 (2017).

    CAS  Google Scholar 

  49. Loeffler, N. et al. In situ coating of Li[Ni0.33Mn0.33Co0.33]O2 particles to enable aqueous electrode processing. ChemSusChem 9, 1112–1117 (2016).

    CAS  Google Scholar 

  50. Sharma, J. et al. Enhancing the electrochemical performance of aqueous processed Li-ion cathodes with silicon oxide coatings. ChemSusChem 16, e202300350 (2023).

    CAS  Google Scholar 

  51. Nagler, F. et al. Influence of phosphate surface coating on performance of aqueous-processed NMC811 cathodes in 3 Ah lithium-ion cells. ChemElectroChem 11, e202300748 (2024).

    CAS  Google Scholar 

  52. Kukay, A. et al. Aqueous Ni-rich-cathode dispersions processed with phosphoric acid for lithium-ion batteries with ultra-thick electrodes. J. Colloid Interface Sci. 581, 635–643 (2021).

    CAS  Google Scholar 

  53. Kong, J. et al. Toward high-energy-density aqueous lithium-ion batteries using silver nanowires as current collectors. Molecules 27, 8207 (2022).

    CAS  Google Scholar 

  54. Li, J., Rulison, C., Kiggans, J., Daniel, C. & Wood, D. L. Superior performance of LiFePO4 aqueous dispersions via corona treatment and surface energy optimization. J. Electrochem. Soc. 159, A1152 (2012).

    CAS  Google Scholar 

  55. Neidhart, L., Fröhlich, K., Winter, F. & Jahn, M. Implementing binder gradients in thick water-based NMC811 cathodes via multi-layer coating. Batteries 9, 171 (2023).

    CAS  Google Scholar 

  56. Ibing, L. et al. Towards water based ultra-thick Li ion battery electrodes—a binder approach. J. Power Sources 423, 183–191 (2019).

    CAS  Google Scholar 

  57. Porcher, W., Lestriez, B., Jouanneau, S. & Guyomard, D. Optimizing the surfactant for the aqueous processing of LiFePO4 composite electrodes. J. Power Sources 195, 2835–2843 (2010).

    CAS  Google Scholar 

  58. Lee, J., Kumar, P., Lee, G., Moudgil, B. M. & Singh, R. K. Electrochemical performance of surfactant-processed LiFePO4 as a cathode material for lithium-ion rechargeable batteries. Ionics 19, 371–378 (2013).

    CAS  Google Scholar 

  59. Li, J., Daniel, C., An, S. J. & Wood, D. Evaluation residual moisture in lithium-ion battery electrodes and its effect on electrode performance. MRS Adv. 1, 1029–1035 (2016).

    CAS  Google Scholar 

  60. Hays, K. A., Key, B., Li, J., Wood, D. L. III & Veith, G. M. Si oxidation and H2 gassing during aqueous slurry preparation for Li-ion battery anodes. J. Phys. Chem. C 122, 9746–9754 (2018).

    CAS  Google Scholar 

  61. Reynolds, C. D., Slater, P. R., Hare, S. D., Simmons, M. J. H. & Kendrick, E. A review of metrology in lithium-ion electrode coating processes. Mater. Des. 209, 109971 (2021).

    CAS  Google Scholar 

  62. Hawley, W. B., Kays, W. & Li, J. in Processing and Manufacturing of Electrodes for Lithium-Ion Batteries Ch. 8 (eds Li, J. & Jin, C.) (Institution of Engineering and Technology, 2024).

  63. Hawley, W. B. & Li, J. Beneficial rheological properties of lithium-ion battery cathode slurries from elevated mixing and coating temperatures. J. Energy Storage 26, 100994 (2019).

    Google Scholar 

  64. Parikh, D., Christensen, T. & Li, J. Correlating the influence of porosity, tortuosity, and mass loading on the energy density of LiNi0.6Mn0.2Co0.2O2 cathodes under extreme fast charging (XFC) conditions. J. Power Sources 474, 228601 (2020).

    CAS  Google Scholar 

  65. Du, Z. et al. Three-dimensional conductive network formed by carbon nanotubes in aqueous processed NMC electrode. Electrochim. Acta 270, 54–61 (2018).

    CAS  Google Scholar 

  66. Wood, M. et al. Impact of secondary particle size and two-layer architectures on the high-rate performance of thick electrodes in lithium-ion battery pouch cells. J. Power Sources 515, 230429 (2021).

    CAS  Google Scholar 

  67. Kang, H., Kim, Y., Yoon, T. & Mun, J. Improved performance of lithium-ion batteries using a multilayer cathode of LiFePO4 and LiNi0.8Co0.1Mn0.1O2. J. Electrochem. Sci. Technol. 14, 320–325 (2023).

    CAS  Google Scholar 

  68. Neidhart, L. et al. Aqueous manufacturing of defect-free thick multi-layer NMC811 electrodes. Nanomaterials 12, 317 (2022).

    CAS  Google Scholar 

  69. Yu, S., Kim, S., Kim, T. Y., Nam, J. H. & Cho, W. I. Model prediction and experiments for the electrode design optimization of LiFePO4/graphite electrodes in high capacity lithium-ion batteries. Bull. Korean Chem. Soc. 34, 79–88 (2013).

    CAS  Google Scholar 

  70. Li, J. & Jin, C. Processing and Manufacturing of Electrodes for Lithium-Ion Batteries (Institution of Engineering and Technology, 2023).

  71. Zhu, P., Han, J. & Pfleging, W. Characterization and laser structuring of aqueous processed Li(Ni0.6Mn0.2Co0.2)O2 thick-film cathodes for lithium-ion batteries. Nanomaterials 11, 1840 (2021).

    CAS  Google Scholar 

  72. Cobb, C. L. & Blanco, M. Modeling mass and density distribution effects on the performance of co-extruded electrodes for high energy density lithium-ion batteries. J. Power Sources 249, 357–366 (2014).

    CAS  Google Scholar 

  73. Tao, R. et al. Freeze tape casting electrode with bilayered architecture for high-performance lithium-ion batteries. ACS Appl. Energy Mater. 7, 856–861 (2024).

    CAS  Google Scholar 

  74. Shodiev, A. et al. Designing electrode architectures to facilitate electrolyte infiltration for lithium-ion batteries. Energy Storage Mater. 49, 268–277 (2022).

    Google Scholar 

  75. Smyrek, P. & Pfleging, W. in Processing and Manufacturing of Electrodes for Lithium-Ion Batteries Energy Engineering (eds Li, J. & Jin, C.) 101–127 (Institution of Engineering and Technology, 2023).

  76. Cobb, C. L. & Solberg, S. E. Communication—analysis of thick co-extruded cathodes for higher-energy-and-power lithium-ion batteries. J. Electrochem. Soc. 164, A1339 (2017).

    CAS  Google Scholar 

  77. Pfleging, W. A review of laser electrode processing for development and manufacturing of lithium-ion batteries. Nanophotonics 7, 549–573 (2018).

    CAS  Google Scholar 

  78. Naguib, M. et al. Limiting internal short-circuit damage by electrode partition for impact-tolerant Li-ion batteries. Joule 2, 155–167 (2018).

    CAS  Google Scholar 

  79. Kalnaus, S. et al. Multifunctional approaches for safe structural batteries. J. Energy Storage 40, 102747 (2021).

    Google Scholar 

  80. Li, J. et al. Water-based electrode manufacturing and direct recycling of lithium-ion battery electrodes—a green and sustainable manufacturing system. iScience 23, 101081 (2020).

    CAS  Google Scholar 

  81. Mohanty, D. et al. Non-destructive evaluation of slot-die-coated lithium secondary battery electrodes by in-line laser caliper and IR thermography methods. Anal. Methods 6, 674–683 (2014).

    CAS  Google Scholar 

  82. Qu, Z. et al. Thermal-assisted dry coating electrode unlocking sustainable and high-performance batteries. Adv. Mater. https://doi.org/10.1002/adma.202410974 (2024).

  83. Kletz, T. A. Inherently safer design: the growth of an idea. Process. Saf. Prog. 15, 5–8 (1996).

    CAS  Google Scholar 

  84. Kletz, T. A. & Amyotte, P. Process Plants: A Handbook for Inherently Safer Design (CRC, 2010).

  85. Tao, R. et al. Unraveling the impact of the degree of dry mixing on dry-processed lithium-ion battery electrodes. J. Power Sources 580, 233379 (2023).

    CAS  Google Scholar 

  86. Bouguern, M. D. et al. Engineering dry electrode manufacturing for sustainable lithium-ion batteries. Batteries 10, 39 (2024).

    CAS  Google Scholar 

  87. Degen, F. & Krätzig, O. Future in battery production: an extensive benchmarking of novel production technologies as guidance for decision making in engineering. IEEE Trans. Eng. Manag. 71, 1038–1056 (2024).

    Google Scholar 

  88. Liu, Y. et al. Roll-to-roll solvent-free manufactured electrodes for fast-charging batteries. Joule 7, 952–970 (2023).

    CAS  Google Scholar 

  89. Lu, Y. et al. Dry electrode technology, the rising star in solid-state battery industrialization. Matter 5, 876–898 (2022).

    CAS  Google Scholar 

  90. Gao, Z. et al. Particle interactions during dry powder mixing and their effect on solvent-free manufactured electrode properties. J. Energy Storage 83, 110605 (2024).

    Google Scholar 

  91. Li, B., Sosik, R. & Wixom, M. Compositions and methods for electro-chemical cell component fabrication. US Patent US20230076834A1 (2023).

  92. Bockholt, H., Haselrieder, W. & Kwade, A. Intensive powder mixing for dry dispersing of carbon black and its relevance for lithium-ion battery cathodes. Powder Technol. 297, 266–274 (2016).

    CAS  Google Scholar 

  93. Wang, M. et al. Influence of mixing process on the performance of electrodes made by a dry coating method. J. Electrochem. Soc. 170, 010541 (2023).

    CAS  Google Scholar 

  94. Gyulai, A., Bauer, W. & Ehrenberg, H. Dry electrode manufacturing in a calender: the role of powder premixing for electrode quality and electrochemical performance. ACS Appl. Energy Mater. 6, 5122–5134 (2023).

    CAS  Google Scholar 

  95. Ludwig, B. et al. Understanding interfacial-energy-driven dry powder mixing for solvent-free additive manufacturing of Li-ion battery electrodes. Adv. Mater. Interfaces 4, 1700570 (2017).

    Google Scholar 

  96. Bruckner, J., Tschocke, S., Althues, H., Kaskel, S. & Thieme, S. Cathode for lithium-containing batteries and solvent-free method for the production thereof. US Patent 10,062,900 (2018).

  97. Yang, G. et al. Robust solid/electrolyte interphase (SEI) formation on Si anodes using glyme-based electrolytes. ACS Energy Lett. 6, 1684–1693 (2021).

    CAS  Google Scholar 

  98. Zhang, W. et al. In-situ constructing hetero-structured Mo2C–Mo2N embedded in carbon nanosheet as an efficient separator modifier for high-performance lithium-sulfur batteries. Chem. Eng. J. 475, 146133 (2023).

    CAS  Google Scholar 

  99. Fiedler, M. et al. Mechanistic insights into the cycling behavior of sulfur dry-film cathodes. Adv. Sustain. Syst. 7, 2200439 (2023).

    CAS  Google Scholar 

  100. Verdier, N. et al. Challenges in solvent-free methods for manufacturing electrodes and electrolytes for lithium-based batteries. Polymers 13, 323 (2021).

    CAS  Google Scholar 

  101. Oh, H. et al. Development of a feasible and scalable manufacturing method for PTFE-based solvent-free lithium-ion battery electrodes. Chem. Eng. J. 491, 151957 (2024).

    CAS  Google Scholar 

  102. Furukawa, G. T., McCoskey, R. E. & King, G. J. Calorimetric properties of polytetrafluoroethylene (Teflon) from 0 to 365 K. J. Res. Natl. Bur. Stand. 49, 273–276 (1952).

    CAS  Google Scholar 

  103. Noda, Y., Hosokawa, K., Mizuno, T., Ihara, K. & Shimizu, T. Polytetrafluoroethylene fine particles and powder. US Patent 5,324,785 (1994).

  104. Li, Y. et al. Progress in solvent-free dry-film technology for batteries and supercapacitors. Mater. Today 55, 92–109 (2022).

    CAS  Google Scholar 

  105. Yao, W. et al. A 5 V-class cobalt-free battery cathode with high loading enabled by dry coating. Energy Environ. Sci. 16, 1620–1630 (2023).

    CAS  Google Scholar 

  106. Tao, R. et al. Correlation among porosity, mechanical properties, morphology, electronic conductivity and electrochemical kinetics of dry-processed electrodes. J. Power Sources 581, 233481 (2023).

    CAS  Google Scholar 

  107. Moiseev, I. A. et al. Single crystal Ni-rich NMC cathode materials for lithium-ion batteries with ultra-high volumetric energy density. Energy Adv. 1, 677–681 (2022).

    CAS  Google Scholar 

  108. Min, J., Suk, W., Wong, S. C. Y. & Li, Y. Single-particle electrochemical cycling single-crystal and polycrystalline NMC particles. Adv. Funct. Mater. 34, 2410241 (2024).

    CAS  Google Scholar 

  109. Bi, Y. et al. Simultaneous single crystal growth and segregation of Ni-rich cathode enabled by nanoscale phase separation for advanced lithium-ion batteries. Energy Storage Mater. 62, 102947 (2023).

    Google Scholar 

  110. Tao, R. et al. Exploring the potential and impact of single-crystal active materials on dry-processed electrodes for high-performance lithium-ion batteries. Chem. Eng. J. 500, 157194 (2024).

    CAS  Google Scholar 

  111. Tao, R. et al. Insights into the chemistry of the cathodic electrolyte interphase for PTFE-based dry-processed cathodes. ACS Appl. Mater. Interfaces 15, 40488–40495 (2023).

    CAS  Google Scholar 

  112. Liu, W. et al. Electrochemical and X-ray photospectroscopy studies of polytetrafluoroethylene and polyvinylidene fluoride in Li/C batteries. J. Power Sources 68, 344–347 (1997).

    CAS  Google Scholar 

  113. Li, G., Xue, R. & Chen, L. The influence of polytetrafluorethylene reduction on the capacity loss of the carbon anode for lithium ion batteries. Solid. State Ion. 90, 221–225 (1996).

    CAS  Google Scholar 

  114. Wei, Z. et al. Removing electrochemical constraints on polytetrafluoroethylene as dry-process binder for high-loading graphite anodes. Joule 8, 1350–1363 (2024).

    CAS  Google Scholar 

  115. Lee, T. et al. Non-electroconductive polymer coating on graphite mitigating electrochemical degradation of PTFE for a dry-processed lithium-ion battery anode. ACS Appl. Mater. Interfaces 16, 8930–8938 (2024).

    CAS  Google Scholar 

  116. Zhang, Y. et al. Revisiting polytetrafluorethylene binder for solvent-free lithium-ion battery anode fabrication. Batteries 8, 57 (2022).

    Google Scholar 

  117. Zhang, Y., Lu, S., Lou, F. & Yu, Z. Leveraging synergies by combining polytetrafluorethylene with polyvinylidene fluoride for solvent-free graphite anode fabrication. Energy Technol. 10, 2200732 (2022).

    CAS  Google Scholar 

  118. Ryu, M., Hong, Y.-K., Lee, S.-Y. & Park, J. H. Ultrahigh loading dry-process for solvent-free lithium-ion battery electrode fabrication. Nat. Commun. 14, 1316 (2023).

    CAS  Google Scholar 

  119. Helmers, L. et al. Sustainable solvent-free production and resulting performance of polymer electrolyte-based all-solid-state battery electrodes. Energy Technol. 9, 2000923 (2021).

    CAS  Google Scholar 

  120. de la Torre-Gamarra, C. et al. High mass loading additive-free LiFePO4 cathodes with 500 μm thickness for high areal capacity Li-ion batteries. J. Power Sources 458, 228033 (2020).

    Google Scholar 

  121. Yuan, L., Liu, H. & Jiang, X. Employing polyaniline conductive binders for graphite lithium-ion anodes via a dry process. J. Energy Storage 90, 111912 (2024).

    Google Scholar 

  122. Wang, J. et al. High-area-capacity cathode by ultralong carbon nanotubes for secondary binder-assisted dry coating technology. ACS Appl. Mater. Interfaces 16, 26209–26216 (2024).

    CAS  Google Scholar 

  123. Park, D.-W., Cañas, N. A., Wagner, N. & Friedrich, K. A. Novel solvent-free direct coating process for battery electrodes and their electrochemical performance. J. Power Sources 306, 758–763 (2016).

    CAS  Google Scholar 

  124. Uzun, K. et al. Investigating the effect of electrode compositions on dry-made NMC811 positive electrodes. J. Electrochem. Soc. 171, 080532 (2024).

    CAS  Google Scholar 

  125. Chen, Z., Rana, D., Matsuura, T., Meng, D. & Lan, C. Q. Study on structure and vacuum membrane distillation performance of PVDF membranes: II. Influence of molecular weight. Chem. Eng. J. 276, 174–184 (2015).

    CAS  Google Scholar 

  126. Wang, M., Hu, J., Wang, Y. & Cheng, Y.-T. The influence of polyvinylidene fluoride (PVDF) binder properties on LiNi0.33Co0.33Mn0.33O2 (NMC) electrodes made by a dry-powder-coating process. J. Electrochem. Soc. 166, A2151 (2019).

    CAS  Google Scholar 

  127. Zhen, E. et al. Effects of binder content on low-cost solvent-free electrodes made by dry-spraying manufacturing for lithium-ion batteries. J. Power Sources 515, 230644 (2021).

    CAS  Google Scholar 

  128. Al-Shroofy, M. et al. Solvent-free dry powder coating process for low-cost manufacturing of LiNi1/3Mn1/3Co1/3O2 cathodes in lithium-ion batteries. J. Power Sources 352, 187–193 (2017).

    CAS  Google Scholar 

  129. Liu, J. et al. Scalable dry printing manufacturing to enable long-life and high energy lithium-ion batteries. Adv. Mater. Technol. 2, 1700106 (2017).

    Google Scholar 

  130. Shiraki, S. et al. Fabrication of all-solid-state battery using epitaxial LiCoO2 thin films. J. Power Sources 267, 881–887 (2014).

    CAS  Google Scholar 

  131. Reyes Jiménez, A. et al. A step toward high-energy silicon-based thin film lithium ion batteries. ACS Nano 11, 4731–4744 (2017).

    Google Scholar 

  132. Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A. & Evans, C. D. Thin-film lithium and lithium-ion batteries. Solid. State Ion. 135, 33–45 (2000).

    CAS  Google Scholar 

  133. Kirsch, D. J. et al. Scalable dry processing of binder-free lithium-ion battery electrodes enabled by holey graphene. ACS Appl. Energy Mater. 2, 2990–2997 (2019).

    CAS  Google Scholar 

  134. Gazda, J. et al. Advanced lithium (Li) ion and lithium sulfur (LiS) batteries. US Patent US11133495B2 (2021).

  135. Lanning, B., Stowell, M. W., Gazda, J. & Bell, J. 3D self-assembled multi-modal carbon-based particle. US Patent 11,198,611 (2021).

  136. Tao, R. et al. In-situ ionothermal synthesis of nanoporous carbon/oxide composites: a new key to functional separators for stable lithium–sulfur batteries. Nano Energy 130, 110091 (2024).

    CAS  Google Scholar 

  137. Hippauf, F. et al. Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach. Energy Storage Mater. 21, 390–398 (2019).

    Google Scholar 

  138. Wang, C. et al. Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes. ACS Energy Lett. 7, 410–416 (2022).

    CAS  Google Scholar 

  139. Zhang, P., Wixom, M. & Sosik, R. Dry process formation of solid state lithium ion cell. US Patent 11,870,057 (2024).

  140. Tan, D. H. S., Meng, Y. S. & Jang, J. Scaling up high-energy-density sulfidic solid-state batteries: a lab-to-pilot perspective. Joule 6, 1755–1769 (2022).

    CAS  Google Scholar 

  141. Sul, H., Lee, D. & Manthiram, A. High-loading lithium–sulfur batteries with solvent-free dry-electrode processing. Small 20, 2400728 (2024).

    CAS  Google Scholar 

  142. Hu, J.-K. et al. Dry electrode technology for scalable and flexible high-energy sulfur cathodes in all-solid-state lithium–sulfur batteries. J. Energy Chem. 71, 612–618 (2022).

    CAS  Google Scholar 

  143. Schwalm, R. UV Coatings: Basics, Recent Developments and New Applications (Elsevier, 2007).

  144. Du, Z., Janke, C. J., Li, J., Daniel, C. & Wood, D. Electron beam curing of composite positive electrode for Li-ion battery. J. Electrochem. Soc. 163, A2776 (2016).

    CAS  Google Scholar 

  145. Du, Z., Janke, C. J., Li, J. & Wood, D. L. High–speed electron beam curing of thick electrode for high energy density Li-ion batteries. Green. Energy Environ. 4, 375–381 (2019).

    Google Scholar 

  146. Xue, Z., Hu, L., Amine, K. & Zhang, Z. High-speed fabrication of lithium-ion battery electrodes by UV-curing. Energy Technol. 3, 469–475 (2015).

    CAS  Google Scholar 

  147. Voelker, G. & Arnold, D. J. Development of Ultraviolet Curable Binder Technology to Reduce Manufacturing Cost and Improve Performance of Lithium ion Battery Electrodes (Miltec UV, 2019).

  148. Voelker, G. & Arnold, J. Dramatically Improve the Safety Performance of Li Ion Battery Separators and Reduce the Manufacturing Cost Using Ultraviolet Curing and High Precision Coating Technologies (Miltec UV, 2017).

  149. Hoyle, C. E. & Kinstle, J. F. Radiation Curing of Polymeric Materials (eds Hoyle, C. E. & Kinstle, J. F.) Vol. 417 (American Chemical Society, 1990).

  150. Abou Elmaaty, T., Okubayashi, S., Elsisi, H. & Abouelenin, S. Electron beam irradiation treatment of textiles materials: a review. J. Polym. Res. 29, 117 (2022).

    CAS  Google Scholar 

  151. Du, Z., Wood, D. L., Daniel, C., Kalnaus, S. & Li, J. Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries. J. Appl. Electrochem. 47, 405–415 (2017).

    CAS  Google Scholar 

  152. Je, M. et al. Formulating electron beam-induced covalent linkages for stable and high-energy-density silicon microparticle anode. Adv. Sci. 11, 2305298 (2024).

    CAS  Google Scholar 

  153. Zhou, L. et al. 3D-printed microelectrodes with a developed conductive network and hierarchical pores toward high areal capacity for microbatteries. Adv. Mater. Technol. 4, 1800402 (2019).

    Google Scholar 

  154. Li, J., Leu, M. C., Panat, R. & Park, J. A hybrid three-dimensionally structured electrode for lithium-ion batteries via 3D printing. Mater. Des. 119, 417–424 (2017).

    CAS  Google Scholar 

  155. Praveen, S., Santhoshkumar, P., Joe, Y. C., Senthil, C. & Lee, C. W. 3D-printed architecture of Li-ion batteries and its applications to smart wearable electronic devices. Appl. Mater. Today 20, 100688 (2020).

    Google Scholar 

  156. Ao, S., Guo, Z., Song, Y., Fang, D. & Bao, Y. Clog-free, low-cost, and uniform electrode inks for 3D printed lithium-ion batteries. ACS Appl. Energy Mater. 5, 6970–6979 (2022).

    CAS  Google Scholar 

  157. Saleh, M. S., Li, J., Park, J. & Panat, R. 3D printed hierarchically-porous microlattice electrode materials for exceptionally high specific capacity and areal capacity lithium ion batteries. Addit. Manuf. 23, 70–78 (2018).

    CAS  Google Scholar 

  158. Praveen, S., Sim, G. S., Ho, C. W. & Lee, C. W. 3D-printed twisted yarn-type Li-ion battery towards smart fabrics. Energy Stor. Mater. 41, 748–757 (2021).

    Google Scholar 

  159. Pang, Y. et al. Additive manufacturing of batteries. Adv. Funct. Mater. 30, 1906244 (2020).

    CAS  Google Scholar 

  160. Yan, J. et al. Direct-ink writing 3D printed energy storage devices: from material selectivity, design and optimization strategies to diverse applications. Mater. Today 54, 110–152 (2022).

    Google Scholar 

  161. Yang, Y. et al. Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries. Appl. Energy 257, 114002 (2020).

    CAS  Google Scholar 

  162. Sun, C. et al. 3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery. Chem. Eng. J. 381, 122641 (2020).

    CAS  Google Scholar 

  163. Tao, R., Gu, Y., Sharma, J., Hong, K. & Li, J. A conformal heat-drying direct ink writing 3D printing for high-performance lithium-ion batteries. Mater. Today Chem. 32, 101672 (2023).

    CAS  Google Scholar 

  164. Bao, Y., Liu, Y., Kuang, Y., Fang, D. & Li, T. 3D-printed highly deformable electrodes for flexible lithium ion batteries. Energy Storage Mater. 33, 55–61 (2020).

    Google Scholar 

  165. Sun, K. et al. 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 25, 4539–4543 (2013).

    CAS  Google Scholar 

  166. Yang, P. & Fan, H. J. Inkjet and extrusion printing for electrochemical energy storage: a minireview. Adv. Mater. Technol. 5, 2000217 (2020).

    CAS  Google Scholar 

  167. Foresti, D. et al. Acoustophoretic printing. Sci. Adv. 4, eaat1659 (2018).

    CAS  Google Scholar 

  168. Delannoy, P. E. et al. Ink-jet printed porous composite LiFePO4 electrode from aqueous suspension for microbatteries. J. Power Sources 287, 261–268 (2015).

    CAS  Google Scholar 

  169. Mosa, M. A., Jo, J. Y. & Kwon, K.-S. Fast on-off jet control of aerosol jet printing (AJP) using internal rotary valve. Addit. Manuf. 67, 103466 (2023).

    Google Scholar 

  170. Deiner, L. J., Jenkins, T., Powell, A., Howell, T. & Rottmayer, M. High capacity rate capable aerosol jet printed Li-ion battery cathode. Adv. Eng. Mater. 21, 1801281 (2019).

    Google Scholar 

  171. Flowers, P. F., Reyes, C., Ye, S., Kim, M. J. & Wiley, B. J. 3D printing electronic components and circuits with conductive thermoplastic filament. Addit. Manuf. 18, 156–163 (2017).

    CAS  Google Scholar 

  172. Zhang, W. et al. 3D printed micro-electrochemical energy storage devices: from design to integration. Adv. Funct. Mater. 31, 2104909 (2021).

    CAS  Google Scholar 

  173. Mishra, V., Negi, S. & Kar, S. FDM-based additive manufacturing of recycled thermoplastics and associated composites. J. Mater. Cycles Waste Manag. 25, 758–784 (2023).

    Google Scholar 

  174. Foster, C. W. et al. Next-generation additive manufacturing: tailorable graphene/polylactic(acid) filaments allow the fabrication of 3D printable porous anodes for utilisation within lithium-ion batteries. Batteries Supercaps 2, 448–453 (2019).

    CAS  Google Scholar 

  175. Maurel, A. et al. Highly loaded graphite–polylactic acid composite-based filaments for lithium-ion battery three-dimensional printing. Chem. Mater. 30, 7484–7493 (2018).

    CAS  Google Scholar 

  176. Maines, E. M., Porwal, M. K., Ellison, C. J. & Reineke, T. M. Sustainable advances in SLA/DLP 3D printing materials and processes. Green. Chem. 23, 6863–6897 (2021).

    CAS  Google Scholar 

  177. Salas, A., Zanatta, M., Sans, V. & Roppolo, I. Chemistry in light-induced 3D printing. ChemTexts 9, 4 (2023).

    Google Scholar 

  178. Katsuyama, Y. et al. A 3D-printed, freestanding carbon lattice for sodium ion batteries. Small 18, 2202277 (2022).

    CAS  Google Scholar 

  179. Pikul, J. H., Gang Zhang, H., Cho, J., Braun, P. V. & King, W. P. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013).

    Google Scholar 

  180. Duffner, F. et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 6, 123–134 (2021).

    CAS  Google Scholar 

  181. Janek, J. & Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy 8, 230–240 (2023).

    Google Scholar 

  182. Hawley, W. B. et al. Deconvoluting sources of failure in lithium metal batteries containing NMC and PEO-based electrolytes. Electrochim. Acta 404, 139579 (2022).

    CAS  Google Scholar 

  183. Sahore, R. et al. A bilayer electrolyte design to enable high-areal-capacity composite cathodes in polymer electrolytes based solid-state lithium metal batteries. ACS Appl. Energy Mater. 5, 1409–1413 (2022).

    CAS  Google Scholar 

  184. Kalnaus, S., Dudney, N. J., Westover, A. S., Herbert, E. & Hackney, S. Solid-state batteries: the critical role of mechanics. Science 381, eabg5998 (2023).

    CAS  Google Scholar 

  185. Wang, C. et al. Boosting the performance of lithium batteries with solid–liquid hybrid electrolytes: interfacial properties and effects of liquid electrolytes. Nano Energy 48, 35–43 (2018).

    CAS  Google Scholar 

  186. Lv, C. et al. Machine learning: an advanced platform for materials development and state prediction in lithium-ion batteries. Adv. Mater. 34, 2101474 (2022).

    CAS  Google Scholar 

  187. Chan, C. H., Sun, M. & Huang, B. Application of machine learning for advanced material prediction and design. EcoMat 4, e12194 (2022).

    CAS  Google Scholar 

  188. Reynolds, C. et al. Impact of formulation and slurry properties on lithium-ion electrode manufacturing. Batteries Supercaps 7, e202300396 (2024).

    CAS  Google Scholar 

  189. Faraji Niri, M., Reynolds, C., Román Ramírez, L. A. A., Kendrick, E. & Marco, J. Systematic analysis of the impact of slurry coating on manufacture of Li-ion battery electrodes via explainable machine learning. Energy Storage Mater. 51, 223–238 (2022).

    Google Scholar 

  190. Duquesnoy, M., Lombardo, T., Chouchane, M., Primo, E. N. & Franco, A. A. Data-driven assessment of electrode calendering process by combining experimental results, in silico mesostructures generation and machine learning. J. Power Sources 480, 229103 (2020).

    CAS  Google Scholar 

  191. Shodiev, A. et al. Machine learning 3D-resolved prediction of electrolyte infiltration in battery porous electrodes. J. Power Sources 511, 230384 (2021).

    CAS  Google Scholar 

  192. Diddens, D. et al. Modeling the solid electrolyte interphase: machine learning as a game changer? Adv. Mater. Interfaces 9, 2101734 (2022).

    CAS  Google Scholar 

  193. Rauf, H., Khalid, M. & Arshad, N. Machine learning in state of health and remaining useful life estimation: theoretical and technological development in battery degradation modelling. Renew. Sustain. Energy Rev. 156, 111903 (2022).

    Google Scholar 

  194. Lombardo, T. et al. Artificial intelligence applied to battery research: hype or reality? Chem. Rev. 122, 10899–10969 (2022).

    CAS  Google Scholar 

  195. Wu, X. et al. Progress, key issues, and future prospects for Li-ion battery recycling. Glob. Chall. 6, 2200067 (2022).

    Google Scholar 

  196. Wu, J. et al. Direct recovery: a sustainable recycling technology for spent lithium-ion battery. Energy Storage Mater. 54, 120–134 (2023).

    CAS  Google Scholar 

  197. Bai, Y., Essehli, R., Jafta, C. J., Livingston, K. M. & Belharouak, I. Recovery of cathode materials and aluminum foil using a green solvent. ACS Sustain. Chem. Eng. 9, 6048–6055 (2021).

    CAS  Google Scholar 

  198. Wang, M., Tan, Q., Liu, L. & Li, J. A facile, environmentally friendly, and low-temperature approach for decomposition of polyvinylidene fluoride from the cathode electrode of spent lithium-ion batteries. ACS Sustain. Chem. Eng. 7, 12799–12806 (2019).

    CAS  Google Scholar 

  199. Bai, Y., Muralidharan, N., Li, J., Essehli, R. & Belharouak, I. Sustainable direct recycling of lithium-ion batteries via solvent recovery of electrode materials. ChemSusChem 13, 5664–5670 (2020).

    CAS  Google Scholar 

  200. Zhang, X., Xie, Y., Cao, H., Nawaz, F. & Zhang, Y. A novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps intended for lithium-ion batteries. Waste Manag. 34, 1715–1724 (2014).

    Google Scholar 

  201. Sajid, M. & Ilyas, M. PTFE-coated non-stick cookware and toxicity concerns: a perspective. Environ. Sci. Pollut. Res. 24, 23436–23440 (2017).

    CAS  Google Scholar 

  202. Purser, D. A. Recent developments in understanding the toxicity of PTFE thermal decomposition products. Fire Mater. 16, 67–75 (1992).

    CAS  Google Scholar 

  203. Fang, Z. et al. The role of surface oxygen in eliminating fluorine impurities and relithiation toward direct cathode recycling. ACS Appl. Energy Mater. 7, 8943–8953 (2024).

    CAS  Google Scholar 

  204. Du, K. et al. In-situ synthesis of porous metal fluoride@carbon composite via simultaneous etching/fluorination enabled superior Li storage performance. Nano Energy 103, 107862 (2022).

    CAS  Google Scholar 

  205. Park, J. S., Kim, T. & Kim, W. S. Conductive cellulose composites with low percolation threshold for 3D printed electronics. Sci. Rep. 7, 3246 (2017).

    Google Scholar 

  206. Xu, F., Wang, T., Li, W. & Jiang, Z. Preparing ultra-thin nano-MnO2 electrodes using computer jet-printing method. Chem. Phys. Lett. 375, 247–251 (2003).

    CAS  Google Scholar 

  207. Sanumi, O. J., Ndungu, P. G. & Oboirien, B. O. Challenges of 3D printing in LIB electrodes: emphasis on material-design properties, and performance of 3D printed Si-based LIB electrodes. J. Power Sources 543, 231840 (2022).

    CAS  Google Scholar 

Download references

Acknowledgements

The submitted manuscript was created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (‘Argonne’). Argonne, a US Department of Energy (DOE) Office of Science laboratory, is operated under Contract DE-AC02-06CH11357. Part of the work was performed at Oak Ridge National Laboratory, managed by UT Battelle, LLC, for the US DOE under contract DE-AC05-00OR22725. R.T. and J.L. thank the US DOE Advanced Materials & Manufacturing Technology Office and Vehicle Technologies Office (VTO) for support. Z.D. thanks the sponsorship of VTO. Y.G. was funded by the National Science Foundation (NSF 21-013), which was granted to C. Yuan, Case Western Reserve University, and is supplementary funding for Award no. 2101129 from the Division of Chemical, Bioengineering, Environmental, and Transport Systems. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a non-exclusive, paid-up, irrevocable, worldwide licence to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purposes. The DOE will provide public access to these results of federally sponsored research under the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Author information

Authors and Affiliations

Contributions

All authors researched data and wrote the article. R.T. and J.L. contributed substantially to the coordination and supervision. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Runming Tao or Jianlin Li.

Ethics declarations

Competing interests

J.L. and Z.D. are inventors on issued US Patents 11,289,689 and 11,984,577 for method of solvent-free manufacturing of composite electrodes incorporating radiation curable binders that are licensed to Ateois; they receive royalties for this invention. J.L. is an inventor on issued US Patents 8,845,768 and 9,527,044 for proton conducting membranes for hydrogen production and separation that are licensed to Redox Power Systems, and receives royalties for these inventions; is an inventor on issued US Patents 9,847,531 and 10,374,234 for current collectors for improved safety that are licensed to Soteria Battery Innovation Group, and receives loyalties for these inventions; is an inventor on US Patent 10,910,628 for fast formation cycling for rechargeable batteries and US Patent 11,362,333 for cobalt-free layered oxide cathodes that are licensed to SPARZ, and receives loyalties for these inventions; and is an inventor on US Patents 8,956,688 and 9,685,652 for aqueous processing of composite lithium-ion electrode material, US Patent 10,684,128 for batch and continuous methods for evaluating the physical and thermal properties of films, US Patent 11,065,719 for laser-interference surface preparation for enhanced coating adhesion, US Patent 11,791,477 for roll-to-roll SOFC manufacturing method and system, and US Patents 11,916,206, 11,996,557 and 12,068,472 for battery recycling. J.L. and Z.D. declare that they are inventors on US Patent 10,601,027 for manufacturing of thick composite electrode using solvent mixtures. R.T., Y.G. and X.L. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clean Technology thanks Kun Fu, Sang-Young Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, R., Gu, Y., Du, Z. et al. Advanced electrode processing for lithium-ion battery manufacturing. Nat. Rev. Clean Technol. 1, 116–131 (2025). https://doi.org/10.1038/s44359-024-00018-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44359-024-00018-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing