Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Refrigeration technologies to increase cold chain sustainability

Abstract

The cold chain is an essential system of temperature-controlled logistics that ensures the quality and safety of perishable goods. Refrigeration technologies in the chain, which mostly use vapour-compression refrigeration, have large direct and indirect negative environmental impacts linked to high energy consumption and the use of refrigerants with high global warming potential. This Review examines the technical and environmental challenges of refrigeration systems used in transport (road, sea and air) and stationary applications (refrigerated warehouses and retail stores). Across applications, refrigerants with low global warming potential, phase-change materials and vacuum-insulation panels could be used to reduce energy consumption and emissions, with some demonstrations showing reductions of 25–86%. In road transport, photovoltaic-powered refrigeration and hybrid cooling systems could be implemented to reduce emissions but adoption is impeded by high costs and safety concerns. Improved thermal insulation and waste-heat recovery for fresh transportation could be used in sea transport. Advanced energy management and renewable energy integration could be leveraged in stationary storage to reduce emissions by up to 60% and enable off-grid refrigeration. In all of these applications, operational reliability must be maintained, which will require coordinated industry efforts and policy support.

Key points

  • Natural refrigerants like R744 (carbon dioxide), R717 (ammonia) and hydrocarbons are increasingly used in stationary and marine-transport refrigeration systems, but their broader adoption is limited by flammability, toxicity and system-efficiency issues, as well as regulatory gaps, especially in transport applications.

  • Phase-change materials can be adopted in both transport and stationary systems to stabilize temperatures and lower energy use, but their effectiveness is limited by challenges such as material stability, supercooling and long-term performance, and in transport applications, their weight and placement may affect vehicle safety and design constraints.

  • Renewable energy, particularly solar photovoltaics, can be integrated into stationary refrigeration and some road-transport applications, although road systems face space and weight constraints that hinder full deployment compared with more adaptable stationary set-ups.

  • Air transport requires lightweight, compact solutions to balance efficiency and safety, relying on technologies such as electric vapour-compression refrigeration systems, phase-change materials, and vacuum insulation panels, facing strict safety regulations, high operational costs, and limited adoption of natural refrigerants owing to flammability concerns and space constraints.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cold chain transportation temperatures.
Fig. 2: Refrigeration technologies used in cold chain transport.
Fig. 3: Overview and opportunities of refrigeration in the cold chain.

Similar content being viewed by others

References

  1. International dictionary of refrigeration International Institute of Refrigeration https://iifiir.org/en/international-dictionary-of-refrigeration (2025).

  2. Mercier, S., Villeneuve, S., Mondor, M. & Uysal, I. Time–temperature management along the food cold chain: a review of recent developments. Compr. Rev. Food Sci. Food Saf. 16, 647–667 (2017).

    Article  Google Scholar 

  3. Duret, S. et al. Combining quantitative risk assessment of human health, food waste, and energy consumption: the next step in the development of the food cold chain? Risk Anal. 39, 906–925 (2019).

    Article  Google Scholar 

  4. Zhao, X. et al. Study the test method of temperature and humidity monitoring equipment in the cold chain transportation process. J. Phys. Conf. Ser. 2437, 012065 (2023).

    Article  Google Scholar 

  5. She, X. et al. Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: a comprehensive review. Appl. Energy 232, 157–186 (2018).

    Article  CAS  Google Scholar 

  6. Baha, M., Hammami, S. & Dupont, J. L. The role of refrigeration in the global economy: 3rd edn, 60th IIR Technical Brief on refrigeration technologies. International Institute of Refrigeration https://iifiir.org/en/fridoc/the-role-of-refrigeration-in-the-global-economy-3-lt-sup-gt-rd-lt-sup-gt-150413 (2025).

  7. Sarr, J., Dupont, J.-L. & Guilpart, J. The carbon footprint of the cold chain: 7th Informatory Note on refrigeration and food. International Institute of Refrigeration https://iifiir.org/en/fridoc/the-carbon-footprint-of-the-cold-chain-7-lt-sup-gt-th-lt-sup-gt-informatory-143457 (2021).

  8. Abdelaziz, O. & Cotton, N. Technoeconomic evaluations for energy efficient domestic low GWP refrigeration technologies. Int. J. Refrig. 132, 255–262 (2021).

    Article  CAS  Google Scholar 

  9. Zhang, N. et al. A dynamic analysis of the global warming potential associated with air conditioning at a city scale: an empirical study in Shenzhen, China. Environ. Impact Assess. Rev. 81, 106354 (2020).

    Article  Google Scholar 

  10. Ceglia, F., Marrasso, E., Roselli, C. & Sasso, M. An innovative environmental parameter: expanded total equivalent warming impact. Int. J. Refrig. 131, 980–989 (2021).

    Article  CAS  Google Scholar 

  11. Amendment to the Montreal Protocol on substances that deplete the ozone layer. United Nations Environment Programme https://treaties.un.org/doc/Publication/CN/2016/CN.872.2016-Eng.pdf (2016).

  12. Regulation (EU) 2024/573 of the European Parliament and of the Council of 7 February 2024 on fluorinated greenhouse gases, amending directive (EU) 2019/1937 and repealing regulation (EU) No 517/2014. The European Parliament and the Council of the European Union https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202400573 (2024).

  13. Singh, R. R. & Papanastasiou, D. K. Comment on “Scientific basis for managing PFAS as a chemical class”. Environ. Sci. Technol. Lett. 8, 192–194 (2021).

    Article  CAS  Google Scholar 

  14. Stoecker, W. F. & Jones, J. W. Refrigeration and Air Conditioning (McGraw-Hill, 1986).

  15. Hwang, Y. & Qian, S. Caloric cooling technologies: 50th Informatory Note on refrigeration technologies. International Institute of Refrigeration https://iifiir.org/en/fridoc/caloric-cooling-technologies-50-lt-sup-gt-th-lt-sup-gt-informatory-note-on-146206 (2022).

  16. Mehling, H. & Cabeza, L. F. Heat and Cold Storage with PCM (Springer, 2008).

  17. Sustainable food cold chains: opportunities, challenges and the way forward. UNEP and FAO https://openknowledge.fao.org/handle/20.500.14283/cc0923en (2022).

  18. Long-haul vs short-haul: what’s the difference for truckers? ATECH https://www.atechlogistics.com/long-haul-vs-short-haul-whats-the-difference-for-truckers/ (8 July 2024).

  19. Yang, Z., Tate, J. E., Morganti, E. & Shepherd, S. P. Real-world CO2 and NOX emissions from refrigerated vans. Sci. Total Environ. 763, 142974 (2021).

    Article  CAS  Google Scholar 

  20. Ahmed, M., Meade, O. & Medina, M. A. Reducing heat transfer across the insulated walls of refrigerated truck trailers by the application of phase change materials. Energy Convers. Manag. 51, 383–392 (2010).

    Article  CAS  Google Scholar 

  21. Tassou, S. A., De-Lille, G. & Ge, Y. T. Food transport refrigeration — approaches to reduce energy consumption and environmental impacts of road transport. Appl. Therm. Eng. 29, 1467–1477 (2009).

    Article  CAS  Google Scholar 

  22. Yildiz, T. CFD characteristics of refrigerated trailers and improvement of airflow for preserving perishable foods. Logistics 3, 11 (2019).

    Article  Google Scholar 

  23. Maiorino, A., Petruzziello, F. & Aprea, C. Refrigerated transport: state of the art, technical issues, innovations and challenges for sustainability. Energies 14, 7237 (2021).

    Article  CAS  Google Scholar 

  24. Transport Refrigeration catalog. Daikin https://www.daikin.eu/en_us/product-group/transport-refrigeration.html (2025).

  25. Kehinde, A. G., Ngonda, T., Raji, A. & Kanyarusoke, K. A review of different technologies for refrigerated truck. Mater. Today Proc. 56, 2305–2310 (2022).

    Article  Google Scholar 

  26. Calati, M., Hooman, K. & Mancin, S. Thermal storage based on phase change materials (PCMs) for refrigerated transport and distribution applications along the cold chain: a review. Int. J. Thermofluids 16, 100224 (2022).

    Article  CAS  Google Scholar 

  27. Vaitkus, L., Prakopavičius, L. & Balčius, A. Refrigerants for eutectic refrigerating systems — experimental results and future consideration. Int. J. Refrig. 164, 105–116 (2024).

    Article  CAS  Google Scholar 

  28. Rai, A. & Tassou, S. A. Environmental impacts of vapour compression and cryogenic transport refrigeration technologies for temperature controlled food distribution. Energy Convers. Manag. 150, 914–923 (2017).

    Article  CAS  Google Scholar 

  29. Li, Y. et al. A high efficiency hybrid synchronous motor for electric vehicle. In 12th Energy Conversion Congr. Expo. Asia (ECCE-Asia) 1806–1810 (IEEE, 2021).

  30. Liu, H. et al. Investigation on the potential of high efficiency for internal combustion engines. Energies 11, 513 (2018).

    Article  Google Scholar 

  31. Sun, Z. & Hebbale, K. Challenges and opportunities in automotive transmission control. In Proc. 2005 American Control Conf. 3284–3289 (IEEE, 2005).

  32. Moreno, G. et al. Electric-drive vehicle power electronics thermal management: current status, challenges, and future directions. J. Electron. Packag. 144, 011004 (2021).

    Article  Google Scholar 

  33. Huang, J. et al. A hybrid electric vehicle motor cooling system — design, model, and control. IEEE Trans. Veh. Technol. 68, 4467–4478 (2019).

    Article  Google Scholar 

  34. Maiorino, A., Cilenti, C., Petruzziello, F. & Aprea, C. A review on thermal management of battery packs for electric vehicles. Appl. Therm. Eng. 238, 122035 (2024).

    Article  Google Scholar 

  35. Refrigerant report. BITZER https://www.bitzer.de/shared_media/documentation/a-501-21.pdf (2023).

  36. Colbourne, D. et al. Development of R290 transport refrigeration system. International Institute of Refrigeration https://iifiir.org/en/fridoc/development-of-r290-transport-refrigeration-system-32376 (2017).

  37. Kivevele, T. Propane (HC – 290) as an alternative refrigerant in the food transport refrigeration sector in Southern Africa — a review. Automot. Exp. 5, 75–89 (2022).

    Article  Google Scholar 

  38. Minetto, S., Fabris, F., Marinetti, S. & Rossetti, A. A review on present and forthcoming opportunities with natural working fluids in transport refrigeration. Int. J. Refrig. 152, 343–355 (2023).

    Article  CAS  Google Scholar 

  39. Sharma, V., Fricke, B. & Bansal, P. Supermarket refrigeration system charge reduction using cascade systems. In 11th IIR Gustav Lorentzen Conf. Natural Refrigerants: Natural Refrigerants and Environmental Protection 956–962 (International Institute of Refrigeration, 2014).

  40. Das, K. M., Ramgopal, M., Guha, A. & Katu, Y. A. Performance of a refrigeration system with a two-phase CO2-based natural circulation loop for cold storage applications. Therm. Sci. Eng. Prog. 58, 103184 (2025).

    Article  CAS  Google Scholar 

  41. Lösch, M., Fallmann, M., Poks, A. & Kozek, M. Simulation-based sizing of a secondary loop cooling system for a refrigerated vehicle. Energies 16, 6459 (2023).

    Article  Google Scholar 

  42. Barta, R. B., Groll, E. A. & Ziviani, D. Review of stationary and transport CO2 refrigeration and air conditioning technologies. Appl. Therm. Eng. 185, 116422 (2021).

    Article  CAS  Google Scholar 

  43. Fabris, F. et al. A novel R744 multi-temperature cycle for refrigerated transport applications with low-temperature ejector: experimental ejector characterization and thermodynamic cycle assessment. Int. J. Refrig. 152, 26–35 (2023).

    Article  CAS  Google Scholar 

  44. Bahaj, A. S. World’s first solar powered transport refrigeration system. Renew. Energy 15, 572–576 (1998).

    Article  CAS  Google Scholar 

  45. Meneghetti, A., Dal Magro, F. & Romagnoli, A. Renewable energy penetration in food delivery: coupling photovoltaics with transport refrigerated units. Energy 232, 120994 (2021).

    Article  Google Scholar 

  46. Rossetti, A., Marinetti, S., Artuso, P., Fabris, F. & Minetto, S. Implementation of a solar aided refrigration unit for refrigerated trucks employing photovoltaic generators. Energy Rep. 8, 7789–7799 (2022).

    Article  Google Scholar 

  47. Maiorino, A., Petruzziello, F., Cilenti, C., Llopis, R. & Aprea, C. Performance evaluation of a hybrid photovoltaic-vapor compression system serving a refrigerated van. Int. J. Refrig. 168, 720–729 (2024).

    Article  CAS  Google Scholar 

  48. Petruzziello, F., Cilenti, C., Grilletto, A., Maiorino, A. & Aprea, C. Solar-powered refrigeration for sustainable refrigerated transport. J. Phys. Conf. Ser. 2893, 012118 (2024).

    Article  Google Scholar 

  49. Radebe, T. B., Huan, Z. & Baloyi, J. A simulation study of natural convection airflow pattern for a phase change material chamber. SSRN Electron. J. https://doi.org/10.2139/ssrn.3637981 (2019).

    Article  Google Scholar 

  50. Ndanduleni, A. U. C. & Huan, Z. Thermal energy storage technology for application in transport refrigeration. SSRN Electron. J. https://doi.org/10.2139/ssrn.3656548 (2019).

    Article  Google Scholar 

  51. Selvnes, H., Allouche, Y., Manescu, R. I. & Hafner, A. Review on cold thermal energy storage applied to refrigeration systems using phase change materials. Therm. Sci. Eng. Prog. 22, 100807 (2021).

    Article  Google Scholar 

  52. Cirillo, L., Greco, A. & Masselli, C. A transient analysis of latent thermal energy storage using phase change materials in a refrigerated truck. Energies 17, 2665 (2024).

    Article  CAS  Google Scholar 

  53. Ben Taher, M. A., Kousksou, T., Zeraouli, Y., Ahachad, M. & Mahdaoui, M. Thermal performance investigation of door opening and closing processes in a refrigerated truck equipped with different phase change materials. J. Energy Storage 42, 103097 (2021).

    Article  Google Scholar 

  54. Tong, S. et al. A phase change material (PCM) based passively cooled container for integrated road–rail cold chain transportation — an experimental study. Appl. Therm. Eng. 195, 117204 (2021).

    Article  Google Scholar 

  55. Anand, A., Shukla, A., Kumar, A., Buddhi, D. & Sharma, A. Cycle test stability and corrosion evaluation of phase change materials used in thermal energy storage systems. J. Energy Storage 39, 102664 (2021).

    Article  Google Scholar 

  56. Ahmed, S. F. et al. Integration of phase change materials in improving the performance of heating, cooling, and clean energy storage systems: an overview. J. Clean. Prod. 364, 132639 (2022).

    Article  CAS  Google Scholar 

  57. Radebe, T. B., Huan, Z. & Baloyi, J. Simulation of eutectic plates in medium refrigerated transport. J. Eng. Des. Technol. 19, 62–80 (2021).

    Google Scholar 

  58. Jeong, J. et al. Numerical analysis of the thermoaeraulic behavior of air during the opening of the door of a refrigerated truck trailer equipped with cold plates. Appl. Therm. Eng. 206, 118057 (2022).

    Article  Google Scholar 

  59. Oh, S. & Jeong, J. Design and simulation of safe truck–cargo matching system for rollover prevention. Int. J. Mech. 16, 128–133 (2022).

    Article  Google Scholar 

  60. Glouannec, P., Michel, B., Delamarre, G. & Grohens, Y. Experimental and numerical study of heat transfer across insulation wall of a refrigerated integral panel van. Appl. Therm. Eng. 73, 196–204 (2014).

    Article  Google Scholar 

  61. Chatzidakis, S. K. & Chatzidakis, K. S. Refrigerated transport and environment. Int. J. Energy Res. 28, 887–897 (2004).

    Article  Google Scholar 

  62. Tao, W.-H., Chang, C.-C. & Lin, J.-Y. An energy-efficiency performance study of vacuum insulation panels. J. Cell. Plast. 36, 441–450 (2000).

    Article  CAS  Google Scholar 

  63. Hammond, E. C. & Evans, J. A. Application of vacuum insulation panels in the cold chain — analysis of viability. Int. J. Refrig. 47, 58–65 (2014).

    Article  CAS  Google Scholar 

  64. Zdun, K. & Uhl, T. Improvement of properties of an insulated wall for refrigerated trailer — numerical and experimental study. Energies 15, 51 (2021).

    Article  Google Scholar 

  65. Chandran, R., Hasanuzzaman, M., Arıcı, M. & Kumar, L. Energy, economic and environmental impact analysis of phase change materials for cold chain transportation in Malaysia. J. Energy Storage 55, 105481 (2022).

    Article  Google Scholar 

  66. Calati, M. et al. Latent thermal energy storage for refrigerated trucks. Int. J. Refrig. 136, 124–133 (2022).

    Article  CAS  Google Scholar 

  67. Umate, T. B. & Sawarkar, P. D. A review on thermal energy storage using phase change materials for refrigerated trucks: active and passive approaches. J. Energy Storage 75, 109704 (2024).

    Article  Google Scholar 

  68. Yang, Y.-C. & Lin, H.-Y. Cold supply chain of longline tuna and transport choice. Mar. Bus. Rev. 2, 349–366 (2017).

    Article  Google Scholar 

  69. Lukasse, L. J. S. et al. Perspectives on the evolution of reefer containers for transporting fresh produce. Trends Food Sci. Technol. 140, 104147 (2023).

    Article  CAS  Google Scholar 

  70. Behdani, B., Fan, Y. & Bloemhof, J. M. in Sustainable Food Supply Chains (eds Accorsi, R. & Manzini, R.) 167–183 (Elsevier, 2019).

  71. Kan, A., Wang, T., Zhu, W. & Cao, D. The characteristics of cargo temperature rising in reefer container under refrigeration-failure condition. Int. J. Refrig. 123, 1–8 (2021).

    Article  Google Scholar 

  72. Fitzgerald, W. B., Howitt, O. J. A., Smith, I. J. & Hume, A. Energy use of integral refrigerated containers in maritime transportation. Energy Policy 39, 1885–1896 (2011).

    Article  Google Scholar 

  73. Hafner, I. A., Gabrielii, C. H. & Widell, K. Refrigeration units in marine vessels: alternatives to HCFCs and high GWP HFCs. Nordic Co-operation https://doi.org/10.6027/TN2019-527 (2019).

  74. Fourth GHG Study 2020. International Maritime Organization https://www.imo.org/en/ourwork/environment/pages/fourth-imo-greenhouse-gas-study-2020.aspx (2021).

  75. Fisher, R. et al. Innovative waste heat valorisation technologies for zero-carbon ships — a review. Appl. Therm. Eng. 253, 123740 (2024).

    Article  Google Scholar 

  76. Palomba, V., Dino, G. E., Ghirlando, R., Micallef, C. & Frazzica, A. Decarbonising the shipping sector: a critical analysis on the application of waste heat for refrigeration in fishing vessels. Appl. Sci. 9, 5143 (2019).

    Article  CAS  Google Scholar 

  77. Salmi, W., Vanttola, J., Elg, M., Kuosa, M. & Lahdelma, R. Using waste heat of ship as energy source for an absorption refrigeration system. Appl. Therm. Eng. 115, 501–516 (2017).

    Article  CAS  Google Scholar 

  78. Zhang, J., Mei, N. & Yuan, H. Design, analysis, and operation optimisation of a shipborne absorption refrigeration — ice thermal storage system based on waste-heat utilization. Therm. Sci. Eng. Prog. 53, 102720 (2024).

    Article  Google Scholar 

  79. Kazil, J. et al. Deposition and rainwater concentrations of trifluoroacetic acid in the United States from the use of HFO‐1234yf. J. Geophys. Res. Atmos. 119, 14059–14079 (2014).

    Article  CAS  Google Scholar 

  80. Söylemez, E. et al. Overview of the development and status of carbon dioxide (R-744) refrigeration systems onboard fishing vessels. Int. J. Refrig. 140, 198–212 (2022).

    Article  Google Scholar 

  81. Brodal, E., Jackson, S. & Eiksund, O. Transient model of an RSW system with CO2 refrigeration — a study of overall performance. Int. J. Refrig. 86, 344–355 (2018).

    Article  CAS  Google Scholar 

  82. Container refrigeration. Carrier Transicold https://www.carrier.com/container-refrigeration/en/worldwide/products/Container-Units/naturaline/ (2011).

  83. Barta, R. B., Groll, E. A. & Hugenroth, J. J. Modeling and control strategy of a transcritical carbon dioxide cycle for application in multi-temperature refrigerated container systems. In Proc. 13th IIR Gustav Lorentzen Conf. Natural Refrigerants 1116 (International Institute of Refrigeration, 2018).

  84. Lawrence, N., Elbel, S. & Hrnjak, P. S. Design and investigation of a transcritical R744 refrigerated container for military applications. In Proc. 17th Int. Refrigeration and Air Conditioning Conf. Paper 1947 (Purdue Univ., 2018).

  85. Baxter, G. & Kourousis, K. Temperature controlled aircraft unit load devices: the technological response to growing global air cargo cool chain requirements. J. Technol. Manag. Innov. 10, 157–172 (2015).

    Article  Google Scholar 

  86. Ritchie, H. Very little of global food is transported by air; this greatly reduces the climate benefits of eating local. Our World In Data https://ourworldindata.org/food-transport-by-mode (2020).

  87. Our solutions — when patients count on you, you can count on us. Envirotainer https://www.envirotainer.com/our-solutions/ (2024).

  88. Bulk air cargo. CSafe https://csafeglobal.com/bulk-air-cargo/ (2024).

  89. Sales, M. The Air Logistics Handbook: Air Freight and the Global Supply Chain (Routledge, 2013).

  90. Tachajapong, W., Wiratkasem, K., Kammuang-lue, N. & Pattana, S. Preliminary study on specific energy consumption of cold storage room in Thailand’s cold chain. Energy Rep. 8, 336–341 (2022).

    Article  Google Scholar 

  91. Wu, Q., Zhang, X. & Wu, H. Research progress on cold store technology in the context of dual carbon. J. Energy Storage 86, 111291 (2024).

    Article  Google Scholar 

  92. Pearson, A. in Sustainable Retail Refrigeration (eds Evans, J. A. & Foster, A. M.) 179–197 (Wiley, 2015).

  93. Bagarella, G., Lazzarin, R. & Noro, M. Annual energy analysis of a water-loop self-contained refrigeration plant and comparison with multiplex systems in supermarkets. Int. J. Refrig. 45, 55–63 (2014).

    Article  Google Scholar 

  94. Eid, E. et al. Modelling energy consumption in a Paris supermarket to reduce energy use and greenhouse gas emissions using EnergyPlus. Int. J. Refrig. 168, 1–8 (2024).

    Article  CAS  Google Scholar 

  95. Franco, A. & Cillari, G. Energy sustainability of food stores and supermarkets through the installation of PV integrated plants. Energies 14, 5678 (2021).

    Article  Google Scholar 

  96. Evans, J. A., Maidment, G. G., Brown, T., Hammond, E. & Foster, A. M. in Refrigeration Science and Technology (eds Cleland, D. et al.) 316–323 (International Institute of Refrigeration, 2016).

  97. 2018 Ashrae handbook — refrigeration. ASHRAE https://www.ashrae.org/technical-resources/ashrae-handbook/description-2018-ashrae-handbook-refrigeration (2018).

  98. Verma, S. & Singh, H. Vacuum insulation panels for refrigerators. Int. J. Refrig. 112, 215–228 (2020).

    Article  Google Scholar 

  99. Zhang, Y. & Wang, R. Sorption thermal energy storage: concept, process, applications and perspectives. Energy Storage Mater. 27, 352–369 (2020).

    Article  Google Scholar 

  100. Suman, S., Khan, Mohd, K. & Pathak, M. Performance enhancement of solar collectors — a review. Renew. Sustain. Energy Rev. 49, 192–210 (2015).

    Article  Google Scholar 

  101. Gao, P. et al. Solar-driven compression-assisted desorption chemisorption refrigeration/cold energy storage system. Energy Convers. Manag. 258, 115474 (2022).

    Article  CAS  Google Scholar 

  102. Roy, Z. & Halder, G. Replacement of halogenated refrigerants towards sustainable cooling system: a review. Chem. Eng. J. Adv. 3, 100027 (2020).

    Article  CAS  Google Scholar 

  103. ISO 5149-4:2022. Refrigerating systems and heat pumps — safety and environmental requirements. Operation, maintenance, repair and recovery. BSI https://standardsdevelopment.bsigroup.com/projects/2021-00380 (2022).

  104. Domanski, P. A., Brignoli, R., Brown, J. S., Kazakov, A. F. & McLinden, M. O. Low-GWP refrigerants for medium and high-pressure applications. Int. J. Refrig. 84, 198–209 (2017).

    Article  CAS  Google Scholar 

  105. Shanmugam, S. K. G. & Mital, M. An ultra-low ammonia charge system for industrial refrigeration. Int. J. Refrig. 107, 344–354 (2019).

    Article  CAS  Google Scholar 

  106. Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing regulation (EC) No 842/2006. European Environment Agency https://www.eea.europa.eu/policy-documents/regulation-eu-no-517-2014 (2014).

  107. Mota-Babiloni, A. et al. Commercial refrigeration — an overview of current status. Int. J. Refrig. 57, 186–196 (2015).

    Article  CAS  Google Scholar 

  108. Catalán-Gil, J., Sánchez, D., Llopis, R., Nebot-Andrés, L. & Cabello, R. Energy evaluation of multiple stage commercial refrigeration architectures adapted to F-gas regulation. Energies 11, 1915 (2018).

    Article  Google Scholar 

  109. World guide to transcritical CO2 refrigeration. Shecco https://issuu.com/shecco/docs/r744-guide/60 (2020).

  110. Llopis, R. et al. Worldwide performance of CO2 booster systems with auxiliary compressor. In Proc. 14th IIR Gustav Lorentzen Conf. Refrigeration Science and Technology 518–523 (International Institute of Refrigeration, 2020).

  111. Queiroz, M. V. A. et al. Experimental comparison between R134a/R744 and R438A/R744 (drop‐in) cascade refrigeration systems based on energy consumption and greenhouse gases emissions. Energy Sci. Eng. 9, 2281–2297 (2021).

    Article  CAS  Google Scholar 

  112. Messineo, A. R744-R717 cascade refrigeration system: performance evaluation compared with a HFC two-stage system. Energy Proc. 14, 56–65 (2012).

    Article  CAS  Google Scholar 

  113. Aprea, C. & Maiorino, A. An experimental evaluation of the transcritical CO2 refrigerator performances using an internal heat exchanger. Int. J. Refrig. 31, 1006–1011 (2008).

    Article  CAS  Google Scholar 

  114. Sánchez, D. et al. New positions for an internal heat exchanger in a CO2 supercritical refrigeration plant. Experimental analysis and energetic evaluation. Appl. Therm. Eng. 63, 129–139 (2014).

    Article  Google Scholar 

  115. Torrella, E., Sánchez, D., Llopis, R. & Cabello, R. Energetic evaluation of an internal heat exchanger in a CO2 transcritical refrigeration plant using experimental data. Int. J. Refrig. 34, 40–49 (2011).

    Article  CAS  Google Scholar 

  116. Liu, S. et al. Alternative positions of internal heat exchanger for CO2 booster refrigeration system: thermodynamic analysis and annual thermal performance evaluation. Int. J. Refrig. 131, 1016–1028 (2021).

    Article  CAS  Google Scholar 

  117. Deng, J., Jiang, P., Lu, T. & Lu, W. Particular characteristics of transcritical CO2 refrigeration cycle with an ejector. Appl. Therm. Eng. 27, 381–388 (2007).

    Article  CAS  Google Scholar 

  118. Fangtian, S. & Yitai, M. Thermodynamic analysis of transcritical CO2 refrigeration cycle with an ejector. Appl. Therm. Eng. 31, 1184–1189 (2011).

    Article  Google Scholar 

  119. Elbarghthi, A. F. A., Hafner, A., Banasiak, K. & Dvorak, V. An experimental study of an ejector-boosted transcritical R744 refrigeration system including an exergy analysis. Energy Convers. Manag. 238, 114102 (2021).

    Article  CAS  Google Scholar 

  120. Pardiñas, Á. Á., Selvnes, H., Banasiak, K. & Hafner, A. Next generation of ejector-supported R744 booster systems for commercial refrigeration at all climates. Int. J. Refrig. 148, 168–178 (2023).

    Article  Google Scholar 

  121. Chesi, A., Esposito, F., Ferrara, G. & Ferrari, L. Experimental analysis of R744 parallel compression cycle. Appl. Energy 135, 274–285 (2014).

    Article  CAS  Google Scholar 

  122. Gullo, P., Elmegaard, B. & Cortella, G. Advanced exergy analysis of a R744 booster refrigeration system with parallel compression. Energy 107, 562–571 (2016).

    Article  CAS  Google Scholar 

  123. Sacasas, D., Vega, J. & Cuevas, C. An annual energetic evaluation of booster and parallel refrigeration systems with R744 in food retail supermarkets. A Chilean perspective. Int. J. Refrig. 133, 326–336 (2022).

    Article  CAS  Google Scholar 

  124. Llopis, R., Nebot-Andrés, L., Sánchez, D., Catalán-Gil, J. & Cabello, R. Subcooling methods for CO2 refrigeration cycles: a review. Int. J. Refrig. 93, 85–107 (2018).

    Article  CAS  Google Scholar 

  125. Nebot-Andrés, L., Calleja-Anta, D., Sánchez, D., Cabello, R. & Llopis, R. Experimental assessment of dedicated and integrated mechanical subcooling systems vs parallel compression in transcritical CO2 refrigeration plants. Energy Convers. Manag. 252, 115051 (2022).

    Article  Google Scholar 

  126. Llopis, R., Atencia, J., Catalan, J., Nishikawa, T. & Nebot-Andres, L. Thermodynamic optimization and field tests of advanced CO2 booster systems with integrated mechanical subcooling. In Proc. 16th IIR Gustav Lorentzen Conf. Natural Refrigerants (GL2024) (International Institute of Refrigeration, 2024).

  127. Niu, B. & Zhang, Y. Experimental study of the refrigeration cycle performance for the R744/R290 mixtures. Int. J. Refrig. 30, 37–42 (2007).

    Article  Google Scholar 

  128. Tobaly, P., Terrier, M. F. & Bouteiller, P. CO2+ propane mixture as working fluid for refrigeration in hot climates. Experimental results of energy efficiency tests. In Proc. 13th IIR Gustav Lorentzen Conf. Natural Refrigerants (GL2018) (International Institute of Refrigeration, 2018).

  129. Massuchetto, L. H. P., Nascimento, R. B. C., do, Carvalho, S. M. R., de, Araújo, H. Vde & d’Angelo, J. V. H. Thermodynamic performance evaluation of a cascade refrigeration system with mixed refrigerants: R744/R1270, R744/R717 and R744/RE170. Int. J. Refrig. 106, 201–212 (2019).

    Article  CAS  Google Scholar 

  130. Sánchez, D., Vidan-Falomir, F., Nebot-Andrés, L., Llopis, R. & Cabello, R. Alternative blends of CO2 for transcritical refrigeration systems. Experimental approach and energy analysis. Energy Convers. Manag. 279, 116690 (2023).

    Article  Google Scholar 

  131. Martínez-Ángeles, M. et al. Evaluation of CO2-doped blends in single-stage with IHX and parallel compression refrigeration architectures. Int. J. Refrig. 151, 50–62 (2023).

    Article  Google Scholar 

  132. Vaccaro, G., Milazzo, A. & Talluri, L. Thermodynamic assessment of trans-critical refrigeration systems utilizing CO2-based mixtures. Int. J. Refrig. 147, 61–70 (2023).

    Article  CAS  Google Scholar 

  133. Sánchez, D., Vidan-Falomir, F., Larrondo-Sancho, R., Llopis, R. & Cabello, R. Alternative CO2-based blends for transcritical refrigeration systems. Int. J. Refrig. 152, 387–399 (2023).

    Article  Google Scholar 

  134. Sánchez, D., Larrondo, R., Vidan-Falomir, F. & Cabello, R. Experimental evaluation of the CO2-based mixtures CO2/R32, CO2/R1234yf and CO2/R1270 in a transcritical refrigerating plant considering the effect of the internal heat exchanger (IHX). Appl. Therm. Eng. 236, 121473 (2024).

    Article  Google Scholar 

  135. Martínez-Ángeles, M. et al. New phase separation phenomena in refrigeration plants working with CO2-based mixtures. Experimental approach. Int. J. Refrig. 172, 75–86 (2025).

    Article  Google Scholar 

  136. Brendel, L. P. M. et al. High-glide refrigerant blends in high-temperature heat pumps: Part 1 — coefficient of performance. Int. J. Refrig. 165, 84–96 (2024).

    Article  CAS  Google Scholar 

  137. Brendel, L. P. M. et al. Experimental performance comparison of high-glide hydrocarbon and synthetic refrigerant mixtures in a high-temperature heat pump. Energies 17, 1981 (2024).

    Article  CAS  Google Scholar 

  138. Yelishala, S. C. et al. Performance maximization by temperature glide matching in energy exchangers of cooling systems operating with natural hydrocarbon/CO2 refrigerants. Int. J. Refrig. 119, 294–304 (2020).

    Article  CAS  Google Scholar 

  139. Jige, D., Nobunaga, M., Nogami, T. & Inoue, N. Boiling heat transfer of binary and ternary mixtures in multiple rectangular microchannels. Appl. Therm. Eng. 229, 120613 (2023).

    Article  CAS  Google Scholar 

  140. Yan, S., Nie, F., Dong, X. & Gong, M. Experimental investigation on flow condensation heat transfer of methane/ethylene mixture inside a horizontal smooth tube. Heat. Transf. Res. 54, 19–37 (2023).

    Article  Google Scholar 

  141. System considerations for refrigerant blends with temperature glide. Theory and practical retrofit guidance. Parker Hannifin Corporation https://www.parker.com/content/dam/Parker-com/Literature/Sporlan/Sporlan-pdf-files/Sporlan-pdf-Educational/Form-5-492-Refrig-Blends.pdf (2017).

  142. Ullah, K. R., Saidur, R., Ping, H. W., Akikur, R. K. & Shuvo, N. H. A review of solar thermal refrigeration and cooling methods. Renew. Sustain. Energy Rev. 24, 499–513 (2013).

    Article  CAS  Google Scholar 

  143. Del Pero, C. et al. Characterization and monitoring of a self-constructible photovoltaic-based refrigerator. Energies 9, 749 (2016).

    Article  Google Scholar 

  144. Petruzziello, F., Cilenti, C., Grilletto, A., Aprea, C. & Maiorino, A. Sun-powered refrigerator: design, testing, and limitations. Int. J. Heat. Technol. 42, 1598–1604 (2024).

    Article  Google Scholar 

  145. Sabry, A. H. & Ker, P. J. Improvement on energy consumption of a refrigerator within PV system including battery storage. Energy Rep. 7, 430–438 (2021).

    Article  Google Scholar 

  146. Abdelkareem, M. A. et al. Environmental aspects of batteries. Sustain. Horiz. 8, 100074 (2023).

    Article  Google Scholar 

  147. Padhye, M. S. & Agrawal, N. Integration of phase change materials (PCMs) in freezer of a domestic refrigerator: a comparative study. J. Inst. Eng Ser. C 104, 1057–1064 (2023).

    Article  Google Scholar 

  148. Aslam, J. & Santhappan, J. S. Phase change materials (PCMs) for the use of solar energy in cooling applications. AIP Conf. Proc. 3042, 020001 (2024).

    Article  CAS  Google Scholar 

  149. Joseph Sekhar, S., Saif Al Maqbali, F. & Aslam, J. Phase change materials (PCM) for a zero-carbon food preservation technology in remote areas. IOP Conf. Ser. Earth Environ. Sci. 1365, 012009 (2024).

    Article  Google Scholar 

  150. Zhou, D. Y., Shi, C. P. & Yuan, W. H. Applied research of cool storage and energy conservation technology on cold storage. Appl. Mech. Mater. 71–78, 4744–4747 (2011).

    Article  Google Scholar 

  151. Oró, E., Miró, L., Farid, M. M., Martin, V. & Cabeza, L. F. Energy management and CO2 mitigation using phase change materials (PCM) for thermal energy storage (TES) in cold storage and transport. Int. J. Refrig. 42, 26–35 (2014).

    Article  Google Scholar 

  152. Natarajan, B., Chellachi Kathiresan, A. & Subramanium, S. K. Development and performance evaluation of a hybrid portable solar cold storage system for the preservation of vegetables and fruits in remote areas. J. Energy Storage 72, 108292 (2023).

    Article  Google Scholar 

  153. Maiorino, A., Petruzziello, F., Grilletto, A., Cilenti, C. & Aprea, C. Achieving off-grid refrigeration in remote areas: a solar-powered vapor compression refrigerator prototype with PCM integration. Int. J. Refrig. 169, 267–278 (2025).

    Article  Google Scholar 

  154. Ouaouja, Z., Ousegui, A., Toublanc, C., Rouaud, O. & Havet, M. Phase change materials for cold thermal energy storage applications: a critical review of conventional materials and the potential of bio-based alternatives. J. Energy Storage 110, 115339 (2025).

    Article  Google Scholar 

  155. Ben-Abdallah, R. et al. Analysis of phase change material integration in retail display cabinets for energy management. Appl. Therm. Eng. 187, 116459 (2021).

    Article  Google Scholar 

  156. Alzuwaid, F., Ge, Y. T., Tassou, S. A., Raeisi, A. & Gowreesunker, L. The novel use of phase change materials in a refrigerated display cabinet: an experimental investigation. Appl. Therm. Eng. 75, 770–778 (2015).

    Article  Google Scholar 

  157. Yilmaz, D., Mancuhan, E. & Yılmaz, B. Experimental investigation of PCM location in a commercial display cabinet cooled by a transcritical CO2 system. Int. J. Refrig. 120, 396–405 (2020).

    Article  CAS  Google Scholar 

  158. Javeri-Shahreza, I., Fakhroleslam, M. & Sadrameli, S. M. Application of phase change materials for performance enhancement of open-display supermarket refrigerators: numerical simulation and parametric study. J. Energy Storage 66, 107506 (2023).

    Article  Google Scholar 

  159. Ben-Abdallah, R. et al. Experimental investigation of the use of PCM in an open display cabinet for energy management purposes. Energy Convers. Manag. 198, 111909 (2019).

    Article  Google Scholar 

  160. Alzuwaid, F. A., Ge, Y. T., Tassou, S. A. & Sun, J. The novel use of phase change materials in an open type refrigerated display cabinet: a theoretical investigation. Appl. Energy 180, 76–85 (2016).

    Article  Google Scholar 

  161. Lu, Y. L. et al. Experimental study of heat transfer intensification by using a novel combined shelf in food refrigerated display cabinets (experimental study of a novel cabinets). Appl. Therm. Eng. 30, 85–91 (2010).

    Article  CAS  Google Scholar 

  162. Purohit, N. & Dasgupta, M. S. Thermal storage material enhanced refrigerated display cabinet. Mater. Today Proc. 28, 510–514 (2020).

    Article  Google Scholar 

  163. Agreement on the international carriage of perishable foodstuffs and on the special equipment to be used for such carriage (ATP). UNECE https://unece.org/transport/road-transport/text-and-status-agreement (2024).

  164. Guidelines for the International Packaging and Shipping of Vaccines 6th edn (World Health Organization, 2020).

  165. Santos, A. F., Gaspar, P. D. & de Souza, H. J. L. Refrigeration of COVID-19 vaccines: ideal storage characteristics, energy efficiency and environmental impacts of various vaccine options. Energies 14, 1849 (2021).

    Article  CAS  Google Scholar 

  166. ISO 817:2024. Refrigerants — designation and safety classification. International Organization for Standardization (ISO) https://www.iso.org/standard/83452.html (2024).

  167. EN 378-1:2016+A1:2020. Refrigerating systems and heat pumps — safety and environmental requirements — part 1: basic requirements, definitions, classification and selection criteria. European Committee for Standardization (CEN) https://standards.iteh.ai/catalog/standards/cen/f789dd0a-6149-419f-b138-78414b221ea5/en-378-1-2016a1-2020 (2020).

  168. EN 378-2:2016. Refrigerating systems and heat pumps — safety and environmental requirements — part 2: design, construction, testing, marking and documentation. European Committee for Standardization (CEN) https://standards.iteh.ai/catalog/standards/cen/480c2099-de30-4ca7-8b6d-7b1a7d4fc23b/en-378-2-2016 (2016).

  169. LXE10E specifications & options. Daikin https://www.Ref.Daikin.Com/-/Media/Project/Daikin/Ref_daikin_com/Site222/Wp-Content/Uploads/LXE_brochure-Pdf.Pdf (2015).

  170. SG-5000 series — high performance generator set range for marine containers. Thermoking https://www.thermoking.com/content/dam/thermoking/documents/marketing/TK80051_SG5000.pdf (2024).

  171. Envirotainer product manual: RKN E1 and RAP E2. Envirotainer https://www.envirotainer.com/our-solutions/pallets/e-tech/#specificationsblock (2025).

Download references

Acknowledgements

P.G.-P. acknowledges grant CIACIF/2021/182, funded by the Generalitat Valenciana (GV) and the European Social Fund (ESF).

Author information

Authors and Affiliations

Authors

Contributions

F.P., A.G., C.C., A.M. and C.A. contributed equally to all aspects of the article. M.M.-A., P.G.-P., A.D.S., A.M.-B. and R.L. contributed substantially to discussion of the content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Angelo Maiorino.

Ethics declarations

Competing interests

A.D.S. is the General Manager at Idal Group SpA (Salerno, Italy). The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clean Technology thanks Riley Bartar, Cheng Zheng and Alessandro Giampieri for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Barocaloric effect

Change in the temperature of a material, caused by a pressure change.

CO2 equator

Ambient temperature (between 30 °C and 35 °C) limit, above which CO2 refrigeration systems lose efficiency because of transcritical operation.

Coefficient of performance

Ratio measuring the efficiency of a refrigeration system, defined as the cooling effect produced divided by the input energy.

Cold plate

A thermally conductive plate, typically containing phase-change materials, that transfers energy to products.

Elastocaloric effect

Change in temperature of a material caused by the application or removal of mechanical stress and strain.

Electrocaloric effect

Change in temperature of a material caused by the application or removal of an electric field.

Hermetic compressor

A compressor that is fully sealed within the motor housing, preventing refrigerant leaks.

Magnetocaloric effect

Change in temperature of a material caused by the application or removal of a magnetic field.

Open compressor

The compressor and the motor are separated, allowing for maintenance but increasing leakage risks.

Phase-change material

A substance able to absorb or release heat during phase change.

Pull-down time

The time needed for a refrigeration system to cool a refrigerated space from ambient temperature to the setpoint.

Transport refrigeration unit

A refrigeration system designed to operate in vehicles transporting perishable products.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petruzziello, F., Grilletto, A., Cilenti, C. et al. Refrigeration technologies to increase cold chain sustainability. Nat. Rev. Clean Technol. 1, 604–620 (2025). https://doi.org/10.1038/s44359-025-00094-6

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44359-025-00094-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing