Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The promises and reality of metal–CO2 batteries

Abstract

By integrating energy storage with carbon dioxide (CO2) utilization, metal–CO2 batteries can contribute to net-zero energy storage and carbon management. However, challenges related to performance, cost and safety continue to hinder their commercial deployment. In this Review, we discuss two types of metal–CO2 battery — aqueous and non-aqueous — and examine their fundamental mechanisms, key component features and potential applications. In both systems, bifunctional catalysts and gas-diffusion layers are critical for efficient cathode reactions. Electrolyte design in non-aqueous systems must enable robust formation of the solid electrolyte interphase and broaden the operating temperature range (–120 °C to 50 °C). Aqueous systems need to suppress hydrogen evolution and carbonate formation effectively to ensure efficient CO2 reduction. Improving anode and separator stability, as well as optimizing cell configuration to ensure safe operation, are essential for long-term battery performance. Environmental and economic assessments reveal that most of the CO2 emissions and costs stem from cell components, requiring cost-efficient fabrication methods and recycling strategies to achieve sustainable and scalability targets. Future research should focus on integrated design principles that combine advanced materials, cell engineering and sustainability evaluation to unlock the full potential of metal–CO2 batteries as next-generation energy-storage and CO2-utilization technologies.

Key points

  • Metal–CO2 batteries offer both efficient energy storage and CO2 utilization, directly contributing to net-zero emissions goals.

  • The efficiency and stability of metal–CO2 batteries are influenced by electrode architecture, electrolyte formulation, anode engineering, separator optimization and gas purity.

  • Non-aqueous metal–CO2 batteries prioritize high energy storage, whereas aqueous systems offer a distinct advantage by converting CO2 into value-added chemicals during discharge.

  • Addressing safety issues, such as gas management, thermal runaway and electrolyte corrosion, is critical to enabling the large-scale deployment of metal-CO2 batteries.

  • The performance of metal–CO2 batteries is highly dependent on CO2 purity. Integration with CO2 capture systems and/or cathodes with enhanced impurity tolerance are needed.

  • Holistic development of metal–CO2 batteries, focusing on reducing CO2 emissions and costs in manufacturing, operating and recycling, could ensure long-term sustainability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metal–CO2 battery configurations.
Fig. 2: Cathode design challenges and solutions.
Fig. 3: Electrolyte design challenges and solutions.
Fig. 4: Anode and separator design challenges and solutions.
Fig. 5: Gas management, safety concerns and mitigation strategies.
Fig. 6: Sustainability and economic feasibility.

Similar content being viewed by others

References

  1. Jacobson, T. A. et al. Direct human health risks of increased atmospheric carbon dioxide. Nat. Sustain. 2, 691–701 (2019).

    Article  Google Scholar 

  2. International Energy Agency. Global Energy Review 2021: Assessing the Effects of Economic Recoveries on Global Energy Demand and CO2 Emissions in 2021 (IEA, 2021).

  3. Xie, Z., Zhang, X., Zhang, Z. & Zhou, Z. Metal–CO2 batteries on the road: CO2 from contamination gas to energy source. Adv. Mater. 29, 1605891 (2017).

    Article  Google Scholar 

  4. Wang, F. et al. Metal–CO2 electrochemistry: from CO2 recycling to energy storage. Adv. Energy Mater. 11, 2100667 (2021).

    Article  CAS  Google Scholar 

  5. Zhang, F. et al. Catalytic role of in-situ formed CN species for enhanced Li2CO3 decomposition. Nat. Commun. 15, 3393 (2024).

    Article  CAS  Google Scholar 

  6. Zou, J. et al. Revisiting the role of discharge products in Li–CO2 batteries. Adv. Mater. 35, 2210671 (2023).

    Article  CAS  Google Scholar 

  7. Gupta, D., Mao, J. & Guo, Z. Bifunctional catalysts for CO2 reduction and O2 evolution: a pivotal for aqueous rechargeable Zn–CO2 batteries. Adv. Mater. 36, 2407099 (2024).

    Article  CAS  Google Scholar 

  8. Gupta, D., Zou, J., Mao, J. & Guo, Z. Concurrent energy storage and decarbonization by metal–CO2 batteries: aqueous or non-aqueous? Energy Environ. Sci. 18, 5215–5249 (2025).

    Article  CAS  Google Scholar 

  9. Aslam, M. K., Wang, H., Chen, S., Li, Q. & Duan, J. Progress and perspectives of metal (Li, Na, Al, Zn and K)–CO2 batteries. Mater. Today Energy 31, 101196 (2023).

    Article  CAS  Google Scholar 

  10. Li, W. et al. Boosting a practical Li–CO2 battery through dimerization reaction based on solid redox mediator. Nat. Commun. 15, 803 (2024).

    Article  CAS  Google Scholar 

  11. Pathak, A. D., Adhikari, P. R. & Choi, W. Lithium–CO2 batteries and beyond. Front. Energy Res. 11, 1150737 (2023).

    Article  Google Scholar 

  12. Burtt, D. G. et al. Highly enriched carbon and oxygen isotopes in carbonate-derived CO2 at Gale crater, Mars. Proc. Natl Acad. Sci. USA 121, e2321342121 (2024).

    Article  CAS  Google Scholar 

  13. Ganesh, I. Electrochemical conversion of carbon dioxide into renewable fuel chemicals — the role of nanomaterials and the commercialization. Renew. Sustain. Energy Rev. 59, 1269–1297 (2016).

    Article  CAS  Google Scholar 

  14. Lee, C.-Y., Zou, J. & Wallace, G. G. Electrochemical CO2 reduction and mineralisation in calcium containing electrolytes. Mater. Today Chem. 38, 102117 (2024).

    Article  CAS  Google Scholar 

  15. Zou, J., Liang, G., Lee, C.-Y. & Wallace, G. G. Progress and perspectives for electrochemical CO2 reduction to formate. Mater. Today Energy 38, 101433 (2023).

    Article  CAS  Google Scholar 

  16. Mu, X., He, P. & Zhou, H. Toward practical Li–CO2 batteries: mechanisms, catalysts, and perspectives. Acc. Mater. Res. 5, 467–478 (2024).

    Article  CAS  Google Scholar 

  17. Xie, J. & Wang, Y. Recent development of CO2 electrochemistry from Li–CO2 batteries to Zn–CO2 batteries. Acc. Chem. Res. 52, 1721–1729 (2019).

    Article  CAS  Google Scholar 

  18. Liu, W. et al. Advancements in metal–CO2 battery technology: a comprehensive overview. Nano Energy 129, 109998 (2024).

    Article  CAS  Google Scholar 

  19. Suo, L. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  CAS  Google Scholar 

  20. Bharti, A., Deb, D., Achutharao, G. & Bhattacharyya, A. J. CO2 crossover to the Li anode and its implications on the solid electrolyte interphase composition in a rechargeable Li–CO2 battery. J. Phys. Chem. C 128, 11543–11551 (2024).

    Article  CAS  Google Scholar 

  21. Wang, Y. et al. Minireview on achieving low charge overpotential in Li–CO2 batteries with advancing cathode materials and electrolytes. Energy Fuels 38, 2743–2758 (2024).

    Article  CAS  Google Scholar 

  22. Lu, Z. et al. A rechargeable Li–CO2 battery based on the preservation of dimethyl sulfoxide. J. Mater. Chem. A 10, 13821–13828 (2022).

    Article  CAS  Google Scholar 

  23. Wang, L., Uosaki, K. & Noguchi, H. Effect of electrolyte concentration on the solvation structure of gold/LiTFSI–DMSO solution interface. J. Phys. Chem. C 124, 12381–12389 (2020).

    Article  CAS  Google Scholar 

  24. Zhang, S. et al. Challenges and prospects of lithium–CO2 batteries. Nano Res. Energy 1, 9120001 (2022).

    Article  Google Scholar 

  25. Lian, Z. et al. An integrated strategy for upgrading Li–CO2 batteries: redox mediator and separator modification. J. Chem. Eng. 450, 138400 (2022).

    Article  CAS  Google Scholar 

  26. Jian, T. et al. From Ru to RuAl intermetallic/Ru heterojunction: enabling high reversibility of the CO2 redox reaction in Li–CO2 battery based on lowered interface thermodynamic energy barrier. Nano Energy 118, 108998 (2023).

    Article  CAS  Google Scholar 

  27. Zhang, X. et al. Breaking the stable triangle of carbonate via W–O bonds for Li–CO2 batteries with low polarization. ACS Energy Lett. 6, 3503–3510 (2021).

    Article  CAS  Google Scholar 

  28. Yang, S. et al. A reversible lithium–CO2 battery with Ru nanoparticles as a cathode catalyst. Energy Environ. Sci. 10, 972–978 (2017).

    Article  CAS  Google Scholar 

  29. Wang, Y.-F., Ji, G.-J., Song, L.-N., Wang, X.-X. & Xu, J.-J. A highly reversible lithium–carbon dioxide battery based on soluble oxalate. ACS Energy Lett. 8, 1026–1034 (2023).

    Article  CAS  Google Scholar 

  30. Pan, Q. et al. Approaching splendid catalysts for Li–CO2 battery from the theory to practical designing: a review. Adv. Mater. 36, 2406905 (2024).

    Article  CAS  Google Scholar 

  31. Chourasia, A. K. et al. In situ/operando characterization techniques: the guiding tool for the development of Li–CO2 battery. Small Methods 6, 2200930 (2022).

    Article  CAS  Google Scholar 

  32. Xie, J., Liu, Q., Huang, Y., Wu, M. & Wang, Y. A porous Zn cathode for Li–CO2 batteries generating fuel-gas CO. J. Mater. Chem. A 6, 13952–13958 (2018).

    Article  CAS  Google Scholar 

  33. Zhang, W., Hu, C., Guo, Z. & Dai, L. High-performance K–CO2 batteries based on metal-free carbon electrocatalysts. Angew. Chem. Int. Ed. 59, 3470–3474 (2020).

    Article  CAS  Google Scholar 

  34. Lin, J. et al. A comprehensive overview of the electrochemical mechanisms in emerging alkali metal-carbon dioxide batteries. Carbon Energy 5, e313 (2023).

    Article  CAS  Google Scholar 

  35. Fetrow, C., Carugati, C., Yu, X., Zhou, X.-D. & Wei, S. A secondary Al–CO2 battery enabled by aluminum iodide as a homogeneous redox mediator. ACS Appl. Mater. Interfaces 15, 12908–12914 (2023).

    Article  CAS  Google Scholar 

  36. Ma, W. et al. Rechargeable Al–CO2 batteries for reversible utilization of CO2. Adv. Mater. 30, 1801152 (2018).

    Article  Google Scholar 

  37. Liu, W. et al. A nonaqueous Mg–CO2 battery with low overpotential. Adv. Energy Mater. 12, 2201675 (2022).

    Article  CAS  Google Scholar 

  38. Kim, C. et al. Highly efficient CO2 utilization via aqueous zinc– or aluminum–CO2 systems for hydrogen gas evolution and electricity production. Angew. Chem. Int. Ed. 131, 9606–9611 (2019).

    Article  Google Scholar 

  39. Deng, Y.-P. et al. The current state of aqueous Zn-based rechargeable batteries. ACS Energy Lett. 5, 1665–1675 (2020).

    Article  CAS  Google Scholar 

  40. Ding, P. et al. Simultaneous power generation and CO2 valorization by aqueous Al–CO2 batteries using nanostructured Bi2S3 as the cathode electrocatalyst. J. Mater. Chem. A 8, 12385–12390 (2020).

    Article  CAS  Google Scholar 

  41. Xie, J. et al. Reversible aqueous zinc–CO2 batteries based on CO2–HCOOH interconversion. Angew. Chem. Int. Ed. 57, 16996–17001 (2018).

    Article  CAS  Google Scholar 

  42. Wang, Y. et al. Electron accumulation enables Bi efficient CO2 reduction for formate production to boost clean Zn–CO2 batteries. Nano Energy 92, 106780 (2022).

    Article  CAS  Google Scholar 

  43. Noya, S., Uchida, M. & Yoshino, M. Double fluid cell. Japanese patent JPH04101358A (1990).

  44. Thaller, L. H. Electrically rechargeable redox flow cell. US patent US3996064A (1976).

  45. Sun, X. et al. A rechargeable “rocking chair” type Zn–CO2 battery. Angew. Chem. Int. Ed. 63, e202409977 (2024).

    Article  CAS  Google Scholar 

  46. Sarkar, A. et al. Recent advances in rechargeable metal–CO2 batteries with nonaqueous electrolytes. Chem. Rev. 123, 9497–9564 (2023).

    Article  CAS  Google Scholar 

  47. Kim, J. et al. Indirect surpassing CO2 utilization in membrane-free CO2 battery. Nano Energy 82, 105741 (2021).

    Article  CAS  Google Scholar 

  48. Pathak, A. D., Adhikari, P. R. & Choi, W. High-efficiency rechargeable Fe–CO2 battery: a route for effective CO2 conversion and energy storage. ACS Appl. Mater. Interfaces 16, 21799–21806 (2024).

    Article  CAS  Google Scholar 

  49. Xu, C., Dong, Y., Zhao, H. & Lei, Y. CO2 conversion toward real-world applications: electrocatalysis versus CO2 batteries. Adv. Funct. Mater. 33, 2300926 (2023).

    Article  CAS  Google Scholar 

  50. van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).

    Article  Google Scholar 

  51. Lees, E. W., Mowbray, B. A., Parlane, F. G. & Berlinguette, C. P. Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat. Rev. Mater. 7, 55–64 (2022).

    Article  CAS  Google Scholar 

  52. Fetrow, C. J., Carugati, C., Zhou, X.-D. & Wei, S. Electrochemistry of metal–CO2 batteries: opportunities and challenges. Energy Storage Mater. 45, 911–933 (2022).

    Article  Google Scholar 

  53. Lu, B. et al. Energy band engineering guided design of bidirectional catalyst for reversible Li–CO2 batteries. Adv. Mater. 36, 2308889 (2024).

    Article  CAS  Google Scholar 

  54. Ooka, H., Huang, J. & Exner, K. S. The Sabatier principle in electrocatalysis: basics, limitations, and extensions. Front. Energy Res. 9, 654460 (2021).

    Article  Google Scholar 

  55. Sun, L. et al. High entropy alloys enable durable and efficient lithium-mediated CO2 redox reactions. Adv. Mater. 36, 2401288 (2024).

    Article  CAS  Google Scholar 

  56. Tseng, C.-M., Huang, C.-C., Pai, J.-Y. & Li, Y.-Y. Co single atom–FeCo alloy–carbon nanotube catalysts on graphene for lithium-oxygen and lithium-carbon dioxide batteries. ACS Sustain. Chem. Eng. 11, 8120–8130 (2023).

    Article  CAS  Google Scholar 

  57. Wang, Z. et al. Dual catalytic sites of alloying effect bloom CO2 catalytic conversion for highly stable Li–CO2 battery. Adv. Funct. Mater. 33, 2213931 (2023).

    Article  CAS  Google Scholar 

  58. Wang, X. et al. Rechargeable Zn–CO2 electrochemical cells mimicking two-step photosynthesis. Adv. Mater. 31, 1807807 (2019).

    Article  Google Scholar 

  59. Giannakakis, G., Flytzani-Stephanopoulos, M. & Sykes, E. C. H. Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts. Acc. Chem. Res. 52, 237–247 (2018).

    Article  Google Scholar 

  60. Darby, M. T., Stamatakis, M., Michaelides, A. & Sykes, E. C. H. Lonely atoms with special gifts: breaking linear scaling relationships in heterogeneous catalysis with single-atom alloys. J. Phys. Chem. Lett. 9, 5636–5646 (2018).

    Article  CAS  Google Scholar 

  61. Hannagan, R. T. et al. Investigating spillover energy as a descriptor for single-atom alloy catalyst design. J. Phys. Chem. Lett. 14, 10561–10569 (2023).

    Article  CAS  Google Scholar 

  62. Zeng, Z. et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 12, 4088 (2021).

    Article  CAS  Google Scholar 

  63. Chang, S.-Q., Cheng, C.-C., Cheng, P.-Y., Huang, C.-L. & Lu, S.-Y. Pulse electrodeposited FeCoNiMnW high entropy alloys as efficient and stable bifunctional electrocatalysts for acidic water splitting. J. Chem. Eng. 446, 137452 (2022).

    Article  CAS  Google Scholar 

  64. Liu, S. et al. Defect-rich AuCu@Ag nanowires with exclusive strain effect accelerate nitrate reduction to ammonia. Appl. Catal. B 350, 123919 (2024).

    Article  CAS  Google Scholar 

  65. Dąbrowa, J. et al. Demystifying the sluggish diffusion effect in high entropy alloys. J. Alloys Compd. 783, 193–207 (2019).

    Article  Google Scholar 

  66. Lei, Y. et al. Carbon-supported high-entropy Co–Zn–Cd–Cu–Mn sulfide nanoarrays promise high-performance overall water splitting. Nano Res. 15, 6054–6061 (2022).

    Article  CAS  Google Scholar 

  67. Li, H. et al. High-entropy alloy aerogels: a new platform for carbon dioxide reduction. Adv. Mater. 35, 2209242 (2023).

    Article  CAS  Google Scholar 

  68. Zhang, T. et al. High-entropy alloy enables multi-path electron synergism and lattice oxygen activation for enhanced oxygen evolution activity. Nat. Commun. 16, 3327 (2025).

    Article  CAS  Google Scholar 

  69. Zhu, K. et al. Single-atom cadmium-N4 sites for rechargeable Li–CO2 batteries with high capacity and ultra-long lifetime. Adv. Funct. Mater. 33, 2213841 (2023).

    Article  CAS  Google Scholar 

  70. Han, L. et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 142, 12563–12567 (2020).

    Article  CAS  Google Scholar 

  71. Yang, R. et al. A trifunctional Ni–N/P–O-codoped graphene electrocatalyst enables dual-model rechargeable Zn–CO2/Zn–O2 batteries. J. Mater. Chem. A 7, 2575–2580 (2019).

    Article  CAS  Google Scholar 

  72. Xu, C. et al. Multiscale defective interfaces for realizing Na–CO2 batteries with ultralong lifespan. Adv. Mater. 36, 2409533 (2024).

    Article  CAS  Google Scholar 

  73. Chen, B. et al. Designing electrophilic and nucleophilic dual centers in the ReS2 plane toward efficient bifunctional catalysts for Li–CO2 batteries. J. Am. Chem. Soc. 144, 3106–3116 (2022).

    Article  CAS  Google Scholar 

  74. Deng, H. et al. Substituent tuning of Cu coordination polymers enables carbon-efficient CO2 electroreduction to multi-carbon products. Nat. Commun. 15, 9706 (2024).

    Article  CAS  Google Scholar 

  75. Yang, Y. et al. Ligand-tuning copper in coordination polymers for efficient electrochemical C–C coupling. Nat. Commun. 15, 6316 (2024).

    Article  CAS  Google Scholar 

  76. Zheng, H. et al. Dispersed nickel phthalocyanine molecules on carbon nanotubes as cathode catalysts for Li–CO2 batteries. Small 19, 2302768 (2023).

    Article  CAS  Google Scholar 

  77. Matsuda, S. et al. Cobalt phthalocyanine analogs as soluble catalysts that improve the charging performance of Li–O2 batteries. Chem. Phys. Lett. 620, 78–81 (2015).

    Article  CAS  Google Scholar 

  78. Xu, S. et al. Immobilization of iron phthalocyanine on pyridine-functionalized carbon nanotubes for efficient nitrogen reduction reaction. ACS Catal. 12, 5502–5509 (2022).

    Article  CAS  Google Scholar 

  79. Zou, J. et al. Size-dependent effects of Ru nanoparticles on Li–CO2 batteries. ACS Energy Lett. 9, 5145–5155 (2024).

    Article  CAS  Google Scholar 

  80. Li, J. et al. High-efficiency and stable Li–CO2 battery enabled by carbon nanotube/carbon nitride heterostructured photocathode. Angew. Chem. Int. Ed. 134, e202114612 (2022).

    Article  Google Scholar 

  81. Zhou, J. et al. A quasi-solid-state flexible fiber-shaped Li–CO2 battery with low overpotential and high energy efficiency. Adv. Mater. 31, 1804439 (2019).

    Article  Google Scholar 

  82. Wu, C., Qi, G., Zhang, J., Cheng, J. & Wang, B. Porous Mo3P/Mo nanorods as efficient Mott–Schottky cathode catalysts for low polarization Li–CO2 battery. Small 19, 2302078 (2023).

    Article  CAS  Google Scholar 

  83. Yang, C., Guo, K., Yuan, D., Cheng, J. & Wang, B. Unraveling reaction mechanisms of Mo2C as cathode catalyst in a Li–CO2 battery. J. Am. Chem. Soc. 142, 6983–6990 (2020).

    Article  CAS  Google Scholar 

  84. Goodarzi, M., Nazari, F. & Illas, F. Assessing the performance of cobalt phthalocyanine nanoflakes as molecular catalysts for Li-promoted oxalate formation in Li–CO2–oxalate batteries. J. Phys. Chem. C 122, 25776–25784 (2018).

    Article  CAS  Google Scholar 

  85. Sun, X. et al. Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V. Nat. Commun. 14, 536 (2023).

    Article  CAS  Google Scholar 

  86. Wang, A. et al. Imidazolium bromide based dual-functional redox mediator for the construction of dendrite-free Li-CO2 batteries. Chin. Chem. Lett. 36, 110186 (2024).

    Article  Google Scholar 

  87. Wu, Y., Zhao, Z. & Peng, Z. Tailoring Li-CO2 electrochemistry based on 4,4′-bipyridine redox cycle. ACS Energy Lett. 8, 3430–3436 (2023).

    Article  CAS  Google Scholar 

  88. Wang, L. et al. Optimizing CO2 reduction and evolution reaction mediated by o-phenylenediamine toward high performance Li–CO2 battery. Electrochim. Acta 419, 140424 (2022).

    Article  CAS  Google Scholar 

  89. Xiao, X. et al. Achieving a high-specific-energy lithium-carbon dioxide battery by implementing a bi-side-diffusion structure. Appl. Energy 328, 120186 (2022).

    Article  CAS  Google Scholar 

  90. Henckel, D. A. et al. Potential dependence of the local pH in a CO2 reduction electrolyzer. ACS Catal. 11, 255–263 (2020).

    Article  Google Scholar 

  91. Dong, Y. & Komarneni, S. Strategies to develop Earth-abundant heterogeneous oxygen evolution reaction catalysts for pH-neutral or pH-near-neutral electrolytes. Small Methods 5, 2000719 (2021).

    Article  CAS  Google Scholar 

  92. Nishimoto, T., Shinagawa, T., Naito, T. & Takanabe, K. Delivering the full potential of oxygen evolving electrocatalyst by conditioning electrolytes at near-neutral pH. ChemSusChem 14, 1554–1564 (2021).

    Article  CAS  Google Scholar 

  93. Han, B. et al. Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH. Phys. Chem. Chem. Phys. 17, 22576–22580 (2015).

    Article  CAS  Google Scholar 

  94. Celorrio, V. N. et al. Strain effects on the oxidation of CO and HCOOH on Au–Pd core-shell nanoparticles. ACS Catal. 7, 1673–1680 (2017).

    Article  CAS  Google Scholar 

  95. Gao, D. et al. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res. 10, 2181–2191 (2017).

    Article  CAS  Google Scholar 

  96. Zhang, J., Wang, Y. & Li, Y. Not one, not two, but at least three: activity origin of copper single-atom catalysts toward CO2/CO electroreduction to C2+ products. J. Am. Chem. Soc. 146, 14954–14958 (2024).

    Article  CAS  Google Scholar 

  97. Xie, G. et al. Dual-metal sites drive tandem electrocatalytic CO2 to C2+ products. Angew. Chem. Int. Ed. 63, e202412568 (2024).

    Article  CAS  Google Scholar 

  98. Chen, Y. et al. Efficient multicarbon formation in acidic CO2 reduction via tandem electrocatalysis. Nat. Nanotech. 19, 311–318 (2024).

    Article  CAS  Google Scholar 

  99. Zou, J., Lee, C. Y. & Wallace, G. G. Boosting formate production from CO2 at high current densities over a wide electrochemical potential window on a SnS catalyst. Adv. Sci. 8, 2004521 (2021).

    Article  CAS  Google Scholar 

  100. Mani, F., Peruzzini, M. & Stoppioni, P. Combined process of CO2 capture by potassium carbonate and production of basic zinc (II) carbonates: CO2 release from bicarbonate solutions at room temperature and pressure. Energy Fuels 22, 1714–1719 (2008).

    Article  CAS  Google Scholar 

  101. Xing, Z., Hu, L., Ripatti, D. S., Hu, X. & Feng, X. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat. Commun. 12, 136 (2021).

    Article  CAS  Google Scholar 

  102. Li, A. et al. Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on a hydrophobic surface. Angew. Chem. Int. Ed. 58, 14549–14555 (2019).

    Article  CAS  Google Scholar 

  103. Monteiro, M. C. et al. Time-resolved local pH measurements during CO2 reduction using scanning electrochemical microscopy: buffering and tip effects. JACS Au 1, 1915–1924 (2021).

    Article  CAS  Google Scholar 

  104. Li, L. et al. Hydrophobicity graded gas diffusion layer for stable electrochemical reduction of CO2. Angew. Chem. Int. Ed. 61, e202208534 (2022).

    Article  CAS  Google Scholar 

  105. McKee, M. et al. Hydrophobic assembly of molecular catalysts at the gas–liquid–solid interface drives highly selective CO2 electromethanation. Nat. Chem. 17, 92–100 (2025).

    Article  CAS  Google Scholar 

  106. Wu, Y. et al. Mitigating electrolyte flooding for electrochemical CO2 reduction via infiltration of hydrophobic particles in a gas diffusion layer. ACS Energy Lett. 7, 2884–2892 (2022).

    Article  CAS  Google Scholar 

  107. Song, H. et al. Overcoming chemical and mechanical instabilities in lithium metal anodes with sustainable and eco-friendly artificial SEI layer. Adv. Mater. 36, 2407381 (2024).

    Article  CAS  Google Scholar 

  108. Moorthy, M. et al. A series of hybrid multifunctional interfaces as artificial SEI layer for realizing dendrite free, and long-life sodium metal anodes. Adv. Funct. Mater. 33, 2300135 (2023).

    Article  CAS  Google Scholar 

  109. Hu, T. et al. Impact of the local environment on Li ion transport in inorganic components of solid electrolyte interphases. J. Am. Chem. Soc. 145, 1327–1333 (2022).

    Article  Google Scholar 

  110. Zhang, L. et al. Solvent-derived inorganic F and N-rich solid electrolyte interface for stable lithium metal batteries. Electrochim. Acta 503, 144909 (2024).

    Article  CAS  Google Scholar 

  111. Samdani, J. S. et al. The identification of specific N-configuration responsible for Li-ion storage in N-doped porous carbon nanofibers: an ex-situ study. J. Power Sources 483, 229174 (2021).

    Article  CAS  Google Scholar 

  112. Xue, H. et al. Aqueous formate-based Li–CO2 battery with low charge overpotential and high working voltage. Adv. Energy Mater. 11, 2101630 (2021).

    Article  CAS  Google Scholar 

  113. Im, E., Ryu, J. H., Baek, K., Moon, G. D. & Kang, S. J. “Water-in-salt” and NASICON electrolyte-based Na–CO2 battery. Energy Storage Mater. 37, 424–432 (2021).

    Article  Google Scholar 

  114. Kim, C. et al. Efficient CO2 utilization via a hybrid Na–CO2 system based on CO2 dissolution. iScience 9, 278–285 (2018).

    Article  CAS  Google Scholar 

  115. Yang, X. et al. Upgrading cycling stability and capability of hybrid Na–CO2 batteries via tailoring reaction environment for efficient conversion CO2 to HCOOH. Adv. Energy Mater. 14, 2304365 (2024).

    Article  CAS  Google Scholar 

  116. Li, J. et al. Li–CO2 batteries efficiently working at ultra-low temperatures. Adv. Funct. Mater. 30, 2001619 (2020).

    Article  CAS  Google Scholar 

  117. Xue, T. et al. Quasi-solid-state electrolytes: bridging the gap between solid and liquid electrolytes for zinc-ion batteries. J. Chem. Eng. 514, 162994 (2025).

    Article  CAS  Google Scholar 

  118. Na, D. et al. Li1.4Al0.4Ti1.6(PO4)3 inorganic solid electrolyte for all-solid-state Li–CO2 batteries with MWCNT and Ru nanoparticle catalysts. Mater. Today Energy 38, 101418 (2023).

    Article  CAS  Google Scholar 

  119. Yoon, B. et al. Li1.4Al0.4Ge0.1Ti1.5(PO4)3: a stable solid electrolyte for Li–CO2 batteries. Mater. Chem. Phys. 322, 129583 (2024).

    Article  CAS  Google Scholar 

  120. Lu, X. et al. Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries — review. Adv. Energy Mater. 13, 2301746 (2023).

    Article  CAS  Google Scholar 

  121. Guan, D.-H. et al. All-solid-state photo-assisted Li–CO2 battery working at an ultra-wide operation temperature. ACS Nano 16, 12364–12376 (2022).

    Article  CAS  Google Scholar 

  122. Li, Z. et al. Tailoring polymer electrolyte ionic conductivity for production of low-temperature operating quasi-all-solid-state lithium metal batteries. Nat. Commun. 14, 482 (2023).

    Article  Google Scholar 

  123. Du, Y. et al. A rechargeable all-solid-state Li–CO2 battery using a Li1.5Al0.5Ge1.5(PO4)3 ceramic electrolyte and nanoscale RuO2 catalyst. J. Mater. Chem. A 9, 9581–9585 (2021).

    Article  CAS  Google Scholar 

  124. Pasta, M., Wessells, C. D., Huggins, R. A. & Cui, Y. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 3, 1149 (2012).

    Article  Google Scholar 

  125. Goyal, A., Marcandalli, G., Mints, V. A. & Koper, M. T. Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. J. Am. Chem. Soc. 142, 4154–4161 (2020).

    Article  CAS  Google Scholar 

  126. Sui, Y. & Ji, X. Anticatalytic strategies to suppress water electrolysis in aqueous batteries. Chem. Rev. 121, 6654–6695 (2021).

    Article  CAS  Google Scholar 

  127. Wang, M. et al. Salting-out effect promoting highly efficient ambient ammonia synthesis. Nat. Commun. 12, 3198 (2021).

    Article  CAS  Google Scholar 

  128. Singh, M. et al. Boosted capacity and stability of aqueous iron-sulfur battery using DMSO as an electrolyte additive. Energy Storage Mater. 75, 103965 (2025).

    Article  Google Scholar 

  129. Liu, Y. et al. Integrated energy storage and CO2 conversion using an aqueous battery with tamed asymmetric reactions. Nat. Commun. 15, 977 (2024).

    Article  CAS  Google Scholar 

  130. Wang, T. et al. Inhibiting anodic parasitic reaction for high-performance Al–air batteries via a multi-functional hybrid additive. J. Power Sources 579, 233294 (2023).

    Article  CAS  Google Scholar 

  131. Wu, M. et al. Aqueous Zn-based rechargeable batteries: recent progress and future perspectives. InfoMat 4, e12265 (2022).

    Article  CAS  Google Scholar 

  132. Gao, S. et al. Metal-free bifunctional ordered mesoporous carbon for reversible Zn–CO2 batteries. Small Methods 5, 2001039 (2021).

    Article  CAS  Google Scholar 

  133. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  CAS  Google Scholar 

  134. Ma, Z. et al. CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment. Nat. Commun. 13, 7596 (2022).

    Article  CAS  Google Scholar 

  135. Chen, T. et al. Enabling solid-electrolyte interphase formation prior to water reduction in aqueous zinc batteries by mild protic chemistry. Angew. Chem. Int. Ed. 64, e202424642 (2025).

    Article  CAS  Google Scholar 

  136. Yang, M. et al. Li2CO3/LiF-rich solid electrolyte interface stabilized lithium metal anodes for durable Li–CO2 batteries. Energy Storage Mater. 73, 103843 (2024).

    Article  Google Scholar 

  137. Wu, W. et al. Addressing the carbonate issue: electrocatalysts for acidic CO2 reduction reaction. Adv. Mater. 37, 2312894 (2025).

    Article  CAS  Google Scholar 

  138. Lu, J. et al. Synergistic effect of CO2 in accelerating the galvanic corrosion of lithium/sodium anodes in alkali metal–carbon dioxide batteries. ACS Nano 18, 10930–10945 (2024).

    Article  CAS  Google Scholar 

  139. Qiu, F. et al. Towards a stable Li–CO2 battery: the effects of CO2 to the Li metal anode. Energy Storage Mater. 26, 443–447 (2020).

    Article  Google Scholar 

  140. Hu, C. et al. High-performance, long-life, rechargeable Li–CO2 batteries based on a 3D holey graphene cathode implanted with single iron atoms. Adv. Mater. 32, 1907436 (2020).

    Article  CAS  Google Scholar 

  141. Chen, C.-J. et al. Improvement of lithium anode deterioration for ameliorating cyclabilities of non-aqueous Li–CO2 batteries. Nanoscale 12, 8385–8396 (2020).

    Article  CAS  Google Scholar 

  142. Li, J. et al. Strategies to anode protection in lithium metal battery: a review. InfoMat 3, 1333–1363 (2021).

    Article  CAS  Google Scholar 

  143. Zhang, S. et al. Protecting Li-metal anode with ethylenediamine-based layer and in-situ formed gel polymer electrolyte to construct the high-performance Li–CO2 battery. J. Power Sources 506, 230226 (2021).

    Article  CAS  Google Scholar 

  144. Qi, G. et al. Flexible Li–CO2 batteries with boosted reaction kinetics and cyclelife enabled by heterostructured Mo3N2@TiN cathode and interface-protected Li anode. Small 20, 2309064 (2024).

    Article  CAS  Google Scholar 

  145. Song, Y. et al. An atmosphere-responsive protective strategy based on deciphering the anode degradation mechanism in Li–CO2 batteries. Angew. Chem. Int. Ed. 64, e202507865 (2025).

    Article  CAS  Google Scholar 

  146. Cheng, X.-B., Zhang, R., Zhao, C.-Z. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).

    Article  CAS  Google Scholar 

  147. Ma, Y. et al. Electrochemically dealloyed 3D porous copper nanostructure as anode current collector of Li–metal batteries. Small 19, 2301731 (2023).

    Article  CAS  Google Scholar 

  148. Lu, Y. et al. Rechargeable K–CO2 batteries with a KSn anode and a carboxyl-containing carbon nanotube cathode catalyst. Angew. Chem. Int. Ed. 60, 9540–9545 (2021).

    Article  CAS  Google Scholar 

  149. Hu, X. et al. Quasi-solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes. Sci. Adv. 3, e1602396 (2017).

    Article  Google Scholar 

  150. Khezri, R., Motlagh, S. R., Etesami, M., Mohamad, A. A. & Kheawhom, S. in Corrosion and Degradation in Fuel Cells, Supercapacitors and Batteries (ed. Saji, V. S.) 425–442 (Springer, 2024).

  151. Guo, Y., Zhang, R., Zhang, S. & Zhi, C. Recent advances in Zn–CO2 batteries for the co-production of electricity and carbonaceous fuels. Nano Mater. Sci. https://doi.org/10.1016/j.nanoms.2022.09.004 (2022).

    Article  Google Scholar 

  152. Wang, H. et al. Stabilization perspective on metal anodes for aqueous batteries. Adv. Energy Mater. 11, 2000962 (2021).

    Article  CAS  Google Scholar 

  153. Zheng, J. et al. Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes. Sci. Adv. 6, eabb1122 (2020).

    Article  CAS  Google Scholar 

  154. Liu, J. et al. A Cu–Ag double-layer coating strategy for stable and reversible Zn metal anodes. J. Colloid Interface Sci. 665, 163–171 (2024).

    Article  CAS  Google Scholar 

  155. Zhang, Q. et al. Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11, 3961 (2020).

    Article  CAS  Google Scholar 

  156. Wang, K., Pickering, H. & Weil, K. Corrosion inhibition of zinc by benzotriazole with an electrochemical quartz crystal microbalance. J. Electrochem. Soc. 150, B176 (2003).

    Article  CAS  Google Scholar 

  157. Liang, Y. & Yao, Y. Designing modern aqueous batteries. Nat. Rev. Mater. 8, 109–122 (2023).

    Article  Google Scholar 

  158. Li, L. et al. Gas concentration-driven LiOH chemistry in Li–CO2 batteries. Electrochem. Commun. 160, 107669 (2024).

    Article  CAS  Google Scholar 

  159. Hu, Y. et al. Suppressing local dendrite hotspots via current density redistribution using a superlithiophilic membrane for stable lithium metal anode. Adv. Sci. 10, 2206995 (2023).

    Article  CAS  Google Scholar 

  160. Nemani, V. P. & Smith, K. C. Analysis of crossover-induced capacity fade in redox flow batteries with non-selective separators. J. Electrochem. Soc. 165, A3144 (2018).

    Article  CAS  Google Scholar 

  161. Yin, W., Grimaud, A., Azcarate, I., Yang, C. & Tarascon, J.-M. Electrochemical reduction of CO2 mediated by quinone derivatives: implication for Li–CO2 battery. J. Phys. Chem. C 122, 6546–6554 (2018).

    Article  CAS  Google Scholar 

  162. Zhang, X., Zhu, J. & Sahraei, E. Degradation of battery separators under charge-discharge cycles. RSC Adv. 7, 56099–56107 (2017).

    Article  CAS  Google Scholar 

  163. Gogia, A. et al. Binder-free, thin-film ceramic-coated separators for improved safety of lithium-ion batteries. ACS Omega 6, 4204–4211 (2021).

    Article  CAS  Google Scholar 

  164. Li, H. et al. Engineering and construction of multi-functional Janus separator for high-stability Li–CO2 battery. J. Colloid Interface Sci. 683, 335–346 (2025).

    Article  CAS  Google Scholar 

  165. Liu, Y. et al. Anion-repulsive polyoxometalate@MOF-modified separators for dendrite-free and high-rate lithium batteries. Interdisc. Mater. 4, 190–200 (2025).

    CAS  Google Scholar 

  166. Li, M. et al. Tin asymmetric membranes for high capacity sodium ion battery anodes. Mater. Today Commun. 24, 100998 (2020).

    Article  CAS  Google Scholar 

  167. Wu, S., Li, G., Liu, H. & Duan, H. Porous polymer membrane with uniform lithium-ion transport via phase separation for stable lithium metal batteries. J. Power Sources 547, 232018 (2022).

    Article  CAS  Google Scholar 

  168. Klose, C. et al. All-hydrocarbon MEA for PEM water electrolysis combining low hydrogen crossover and high efficiency. Adv. Energy Mater. 10, 1903995 (2020).

    Article  CAS  Google Scholar 

  169. Tschinder, T., Schaffer, T., Fraser, S. & Hacker, V. Electro-osmotic drag of methanol in proton exchange membranes. J. Appl. Electrochem. 37, 711–716 (2007).

    Article  CAS  Google Scholar 

  170. Habibzadeh, F. et al. Ion exchange membranes in electrochemical CO2 reduction processes. Electrochem. Energy Rev. 6, 26 (2023).

    Article  CAS  Google Scholar 

  171. Yan, Z., Hitt, J. L., Zeng, Z., Hickner, M. A. & Mallouk, T. E. Improving the efficiency of CO2 electrolysis by using a bipolar membrane with a weak-acid cation exchange layer. Nat. Chem. 13, 33–40 (2021).

    Article  CAS  Google Scholar 

  172. Willdorf-Cohen, S. et al. Alkaline stability of anion-exchange membranes. ACS Appl. Energy Mater. 6, 1085–1092 (2023).

    Article  CAS  Google Scholar 

  173. Riemer, M., Duval-Dachary, S. & Bachmann, T. M. Environmental implications of reducing the platinum group metal loading in fuel cells and electrolysers: anion exchange membrane versus proton exchange membrane cells. Sustain. Energy Technol. Assess. 56, 103086 (2023).

    Google Scholar 

  174. Giesbrecht, P. K. & Freund, M. S. Influence of the pH gradient on bipolar membrane operation. ACS Electrochem. 1, 667–677 (2024).

    Article  Google Scholar 

  175. Tufa, R. A. et al. Bipolar membrane and interface materials for electrochemical energy systems. ACS Appl. Energy Mater. 4, 7419–7439 (2021).

    Article  CAS  Google Scholar 

  176. Strathmann, H., Krol, J., Rapp, H.-J. & Eigenberger, G. Limiting current density and water dissociation in bipolar membranes. J. Membr. Sci. 125, 123–142 (1997).

    Article  CAS  Google Scholar 

  177. Li, Y. et al. Strong electronic interactions of the abundant Cu/Ce interfaces stabilized Cu2O for efficient CO2 electroreduction to C2+ products under large current density. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202509899 (2025).

  178. Sharon, D. et al. Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen. J. Phys. Chem. Lett. 4, 3115–3119 (2013).

    Article  CAS  Google Scholar 

  179. Zhang, P.-F. et al. Li–CO2/O2 battery operating at ultra-low overpotential and low O2 content on Pt/CNT catalyst. J. Chem. Eng. 448, 137541 (2022).

    Article  CAS  Google Scholar 

  180. Liu, L.-Y. et al. Boosting oxygen-resistant CO2 electroreduction reaction in acidic media over conjugated frameworks. J. Mater. Chem. A 12, 9486–9493 (2024).

    Article  CAS  Google Scholar 

  181. Liu, W. et al. The impact of a trace amount of water in an electrolyte on the performance of Li-ion batteries — an empirical kinetic model approach. Int. J. Energy Res. 46, 7988–7995 (2022).

    Article  CAS  Google Scholar 

  182. Zhou, H. et al. The influence of water in electrodes on the solid electrolyte interphase film of micro lithium-ion batteries for the wireless headphone. J. Colloid Interface Sci. 606, 1729–1736 (2022).

    Article  CAS  Google Scholar 

  183. Jeanmonod, G., Diethelm, S. & Van Herle, J. The effect of SO2 on the Ni–YSZ electrode of a solid oxide electrolyzer cell operated in co-electrolysis. J. Phys. Energy 2, 034002 (2020).

    Article  CAS  Google Scholar 

  184. Hernik, B., Brudziana, P., Klon, R. & Pronobis, M. Numerical studies of the influence of flue gas recirculation into primary air on NOx formation, CO emission, and low-NOx waterwall corrosion in the OP 650 boiler. Energies 17, 2227 (2024).

    Article  CAS  Google Scholar 

  185. Khurram, A., He, M. & Gallant, B. M. Tailoring the discharge reaction in Li–CO2 batteries through incorporation of CO2 capture chemistry. Joule 2, 2649–2666 (2018).

    Article  CAS  Google Scholar 

  186. Li, M., Yang, K., Abdinejad, M., Zhao, C. & Burdyny, T. Advancing integrated CO2 electrochemical conversion with amine-based CO2 capture: a review. Nanoscale 14, 11892–11908 (2022).

    Article  CAS  Google Scholar 

  187. Franz, H. B. et al. Initial SAM calibration gas experiments on Mars: quadrupole mass spectrometer results and implications. Planet. Space Sci. 138, 44–54 (2017).

    Article  CAS  Google Scholar 

  188. Yang, M., Chen, L., Li, H. & Wu, F. Air/water stability problems and solutions for lithium batteries. Energy Mater. Adv. 2022, 9842651 (2022).

    Article  Google Scholar 

  189. Wang, K., Wu, Y., Cao, X., Gu, L. & Hu, J. A Zn–CO2 flow battery generating electricity and methane. Adv. Funct. Mater. 30, 1908965 (2020).

    Article  CAS  Google Scholar 

  190. Sedighi, M., Usefi, M. M. B., Ismail, A. F. & Ghasemi, M. Environmental sustainability and ions removal through electrodialysis desalination: operating conditions and process parameters. Desalination 549, 116319 (2023).

    Article  CAS  Google Scholar 

  191. Abanades, J. C., Criado, Y. A. & White, H. I. Direct capture of carbon dioxide from the atmosphere using bricks of calcium hydroxide. Cell Rep. Phys. Sci. 4, 101339 (2023).

    Article  CAS  Google Scholar 

  192. Kumai, K., Miyashiro, H., Kobayashi, Y., Takei, K. & Ishikawa, R. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell. J. Power Sources 81, 715–719 (1999).

    Article  Google Scholar 

  193. Xue, Z., Qin, L., Jiang, J., Mu, T. & Gao, G. Thermal, electrochemical and radiolytic stabilities of ionic liquids. Phys. Chem. Chem. Phys. 20, 8382–8402 (2018).

    Article  CAS  Google Scholar 

  194. Wang, X. et al. Investigation on the combustion and explosion characteristics of lithium iron phosphate battery thermal runaway gas: effects of initial pressure and ignition energy. Fuel 399, 135605 (2025).

    Article  CAS  Google Scholar 

  195. Chen, X., Granda-Marulanda, L. P., McCrum, I. T. & Koper, M. T. How palladium inhibits CO poisoning during electrocatalytic formic acid oxidation and carbon dioxide reduction. Nat. Commun. 13, 38 (2022).

    Article  CAS  Google Scholar 

  196. Lee, S.-M. et al. Improvement in self-discharge of Zn anode by applying surface modification for Zn–air batteries with high energy density. J. Power Sources 227, 177–184 (2013).

    Article  CAS  Google Scholar 

  197. Sun, J., Ling, Y., Zhang, Q., Yu, X. & Yang, Z. Simultaneous enhancements in stability and CO tolerance of Pt electrocatalyst by double poly (vinyl pyrrolidone) coatings. RSC Adv. 7, 29839–29843 (2017).

    Article  CAS  Google Scholar 

  198. Yang, Z., Berber, M. R. & Nakashima, N. A polymer-coated carbon black-based fuel cell electrocatalyst with high CO-tolerance and durability in direct methanol oxidation. J. Mater. Chem. A 2, 18875–18880 (2014).

    Article  CAS  Google Scholar 

  199. Yang, Q. et al. Efficient and stable PtFe alloy catalyst for electrocatalytic methanol oxidation with high resistance to CO. J. Energy Chem. 90, 327–336 (2024).

    Article  CAS  Google Scholar 

  200. Yang, L. et al. Energy-efficient separation alternatives: metal–organic frameworks and membranes for hydrocarbon separation. Chem. Soc. Rev. 49, 5359–5406 (2020).

    Article  CAS  Google Scholar 

  201. Feng, X. et al. A coupled electrochemical-thermal failure model for predicting the thermal runaway behavior of lithium-ion batteries. J. Electrochem. Soc. 165, A3748–A3765 (2018).

    Article  CAS  Google Scholar 

  202. Song, L., Zheng, Y., Xiao, Z., Wang, C. & Long, T. Review on thermal runaway of lithium-ion batteries for electric vehicles. J. Electron. Mater. 51, 30–46 (2022).

    Article  CAS  Google Scholar 

  203. Chavan, S. et al. Thermal runaway and mitigation strategies for electric vehicle lithium-ion batteries using battery cooling approach: a review of the current status and challenges. J. Energy Storage 72, 108569 (2023).

    Article  Google Scholar 

  204. Luo, P., Gao, K., Hu, L., Chen, B. & Zhang, Y. Adaptive hybrid cooling strategy to mitigate battery thermal runaway considering natural convection in phase change material. Appl. Energy 361, 122920 (2024).

    Article  Google Scholar 

  205. Richard, M. & Dahn, J. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. Experimental. J. Electrochem. Soc. 146, 2068 (1999).

    Article  CAS  Google Scholar 

  206. Li, Y. et al. Early warning method for thermal runaway of lithium-ion batteries under thermal abuse condition based on online electrochemical impedance monitoring. J. Energy Chem. 92, 74–86 (2024).

    Article  CAS  Google Scholar 

  207. Kim, S. W., Kwak, E., Kim, J.-H., Oh, K.-Y. & Lee, S. Modeling and prediction of lithium-ion battery thermal runaway via multiphysics-informed neural network. J. Energy Storage 60, 106654 (2023).

    Article  Google Scholar 

  208. Wang, Y. et al. Investigation on calendar experiment and failure mechanism of lithium-ion battery electrolyte leakage. J. Energy Storage 54, 105286 (2022).

    Article  Google Scholar 

  209. Liu, Y. K. et al. Research progresses of liquid electrolytes in lithium-ion batteries. Small 19, 2205315 (2023).

    Article  CAS  Google Scholar 

  210. Chang, Z. et al. A stable high-voltage lithium-ion battery realized by an in-built water scavenger. Energy Environ. Sci. 13, 1197–1204 (2020).

    Article  CAS  Google Scholar 

  211. Miao, K., Qin, J., Yang, J. & Kang, X. Synergy of Ni nanoclusters and single atom site: size effect on the performance of electrochemical CO2 reduction reaction and rechargeable Zn–CO2 batteries. Adv. Funct. Mater. 34, 2316824 (2024).

    Article  CAS  Google Scholar 

  212. Liu, X. et al. Mapping the design of electrolyte materials for electrically rechargeable zinc–air batteries. Adv. Mater. 33, 2006461 (2021).

    Article  CAS  Google Scholar 

  213. Xie, J., Zhou, Z. & Wang, Y. Metal–CO2 batteries at the crossroad to practical energy storage and CO2 recycle. Adv. Funct. Mater. 30, 1908285 (2020).

    Article  CAS  Google Scholar 

  214. Innocenti, A., Bresser, D., Garche, J. & Passerini, S. A critical discussion of the current availability of lithium and zinc for use in batteries. Nat. Commun. 15, 4068 (2024).

    Article  CAS  Google Scholar 

  215. Sun, K. E. et al. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries. ACS Appl. Mater. Interfaces 9, 9681–9687 (2017).

    Article  CAS  Google Scholar 

  216. Hu, X., An, A. K. & Chopra, S. S. Life cycle assessment of the polyvinylidene fluoride polymer with applications in various emerging technologies. ACS Sustain. Chem. Eng. 10, 5708–5718 (2022).

    Article  CAS  Google Scholar 

  217. Greitzer, M. in Powerfuels (eds Bullerdiek, N. et al.) 257–279 (Springer, 2025).

  218. Morris, M. I. R. & Hicks, A. Life cycle assessment of stainless-steel reusable speculums versus disposable acrylic speculums in a university clinic setting: a case study. Environ. Res. Commun. 4, 025002 (2022).

    Article  Google Scholar 

  219. Wang, J. et al. Green recycling of spent Li-ion battery cathodes via deep-eutectic solvents. Energy Environ. Sci. 17, 867884 (2024).

    Google Scholar 

  220. Lu, B. et al. High-efficiency leaching of valuable metals from waste Li-ion batteries using deep eutectic solvents. Environ. Res. 212, 113286 (2022).

    Article  CAS  Google Scholar 

  221. Norgate, T. E., Jahanshahi, S. & Rankin, W. J. Assessing the environmental impact of metal production processes. J. Clean. Prod. 15, 838–848 (2007).

    Article  Google Scholar 

  222. Sharma, R., Gyergyek, S., Lund, P. B. & Andersen, S. M. Recovery of Pt and Ru from spent low-temperature polymer electrolyte membrane fuel cell electrodes and recycling of Pt by direct redeposition of the dissolved precursor on carbon. ACS Appl. Energy Mater. 4, 6842–6852 (2021).

    Article  CAS  Google Scholar 

  223. Otgonbayar, U., Sandig-Predzymirska, L., Thiere, A. & Charitos, A. Solvent extraction of Pt, Ru, and Ir using Cyanex 923 in chloride media to develop a recycling route for spent polymer electrolyte membrane (PEM) electrolyzers. Hydrometallurgy 226, 106303 (2024).

    Article  CAS  Google Scholar 

  224. Li, X. et al. Bamboo-like nitrogen-doped carbon nanotube forests as durable metal-free catalysts for self-powered flexible Li–CO2 batteries. Adv. Mater. 31, 1903852 (2019).

    Article  Google Scholar 

  225. Joo, S.-H., Shin, D., Oh, C., Wang, J.-P. & Shin, S. M. Extraction of manganese by alkyl monocarboxylic acid in a mixed extractant from a leaching solution of spent lithium-ion battery ternary cathodic material. J. Power Sources 305, 175–181 (2016).

    Article  CAS  Google Scholar 

  226. Rothermel, S. et al. Graphite recycling from spent lithium-ion batteries. ChemSusChem 9, 3473–3484 (2016).

    Article  CAS  Google Scholar 

  227. He, K., Zhang, Z.-Y., Alai, L. & Zhang, F.-S. A green process for exfoliating electrode materials and simultaneously extracting electrolyte from spent lithium-ion batteries. J. Hazard. Mater. 375, 43–51 (2019).

    Article  CAS  Google Scholar 

  228. Wang, P. et al. Integrated system for electrolyte recovery, product separation, and CO2 capture in CO2 reduction. Nat. Commun. 16, 731 (2025).

    Article  CAS  Google Scholar 

  229. Kołodziejczak-Radzimska, A., Jesionowski, T. & Krysztafkiewicz, A. Obtaining zinc oxide from aqueous solutions of KOH and Zn(CH3COO)2. Physicochem. Probl. Miner. Process. 44, 93–102 (2010).

    Google Scholar 

  230. Lu, B. et al. Recycled tandem catalysts promising ultralow overpotential Li–CO2 batteries. Adv. Mater. 36, 2309264 (2024).

    Article  CAS  Google Scholar 

  231. Wang, Y., Lv, H., Sun, L. & Liu, B. Mesoporous noble metal-metalloid/nonmetal alloy nanomaterials: designing highly efficient catalysts. ACS Nano 15, 18661–18670 (2021).

    Article  CAS  Google Scholar 

  232. Wu, T., Sun, M.-Z. & Huang, B.-L. Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Met. 41, 2169–2183 (2022).

    Article  CAS  Google Scholar 

  233. Fardood, S. T. et al. Green synthesis of ZnO nanoparticles via sol–gel method and investigation of its application in solvent-free synthesis of 12-aryl-tetrahydrobenzo [α] xanthene-11-one derivatives under microwave irradiation. Chem. Methodol. 3, 632–642 (2019).

    Google Scholar 

  234. Huang, H. et al. Polyanionic cathode materials: a comparison between Na-ion and K-ion batteries. Adv. Energy Mater. 14, 2304251 (2024).

    Article  CAS  Google Scholar 

  235. Ziegler, M. S. & Trancik, J. E. Re-examining rates of lithium-ion battery technology improvement and cost decline. Energy Environ. Sci. 14, 1635–1651 (2021).

    Article  Google Scholar 

  236. Deckenbach, D. & Schneider, J. J. A long-overlooked pitfall in rechargeable zinc-air batteries: proper electrode balancing. Adv. Mater. Interfaces 10, 2202494 (2023).

    Article  CAS  Google Scholar 

  237. Chen, P. et al. Recent progress in electrolytes for Zn–air batteries. Front. Chem. 8, 372 (2020).

    Article  CAS  Google Scholar 

  238. Xia, Q. et al. Integration of CO2 capture and electrochemical conversion: focus review. ACS Energy Lett. 8, 2840–2857 (2023).

    Article  CAS  Google Scholar 

  239. Sullivan, I. et al. Coupling electrochemical CO2 conversion with CO2 capture. Nat. Catal. 4, 952–958 (2021).

    Article  CAS  Google Scholar 

  240. Shen, C., Wycisk, R. & Pintauro, P. N. High performance electrospun bipolar membrane with a 3D junction. Energy Environ. Sci. 10, 1435–1442 (2017).

    Article  CAS  Google Scholar 

  241. Oener, S. Z., Foster, M. J. & Boettcher, S. W. Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science 369, 1099–1103 (2020).

    Article  CAS  Google Scholar 

  242. Ge, Z. et al. Beneficial use of a coordination complex as the junction catalyst in a bipolar membrane. ACS Appl. Energy Mater. 3, 5765–5773 (2020).

    Article  CAS  Google Scholar 

  243. Zeng, M. et al. Reaction environment regulation for electrocatalytic CO2 reduction in acids. Angew. Chem. Int. Ed. 63, e202404574 (2024).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Australian Research Council (ARC) for support (grants CE230100017, FL210100050, DP210101486, DE240100159, DE250101071 and DP250102252). J.Z. acknowledges support from Sandland Bequest_Zou and an AINSE Early Career Researcher Grant (ECRG).

Author information

Authors and Affiliations

Authors

Contributions

J.Z., D.G. and J.A.Y. researched data for the article. All authors contributed substantially to discussion of the content. J.A.Y. performed the life cycle assessment and techno-economic analyses. J.Z. and D.G. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Shilin Zhang  (张仕林) or Zaiping Guo  (郭再萍).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clean Technology thanks Chandra S. Sharma, who co-reviewed with Ankit Chourasia; Shuya Wei; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Cathode–electrolyte interface

Both Faradaic and non-Faradaic processes occur at the cathode–electrolyte interface. When the cathode and electrolyte come into ohmic contact, charge-transfer processes (oxidation and reduction) occur (Faradaic). Changes due to adsorption and desorption result in the flow of transient external currents (non-Faradaic) at the interface.

Dendrite growth

Dendrites are tiny, branch-like crystal structures extending from metal anodes because of metal diffusion and plating. Dendrites can penetrate the separator, causing a short circuit in the battery.

Faradaic efficiency

A metric for product selectivity in electrochemical reactions, defined as the fraction of electrical charge consumed during the reaction for selective product generation (Qprod) divided by the total charge (Qtotal) passed, expressed in per cent.

Gutmann number

The Gutmann donor number describes electron-donating and H-bond-acceptor ability. It helps to determine the hydrogen-bonding environment and influences the rate of the hydrogen evolution reaction (HER) in aqueous electrolytes.

Linear scaling relationships

Theoretical tools providing constraints in catalyst design by relating the binding energy of catalyst intermediates and adsorbates across a wide range of catalysts.

Rocking chair

The rocking chair battery mechanism involves shuttling of metal ions between the cathode and anode.

Sabatier principle

The Sabatier principle states that optimal catalytic activity occurs when the interaction between a catalyst and a reactant is neither too strong nor too weak to facilitate both adsorption and desorption.

Solid electrolyte interphase

(SEI). A layer formed at the electrode–electrolyte interface that passivates the electrode surface. It should be stable during battery cycling and accelerate metal-ion transfer.

Spillover effects

Spillover energy determines the stability of intermediates at the dopant or host metal sites, which induce the spillover effect in single-atom alloys. The spillover effect in single-atom alloys involves the migration of adsorbed species from a secondary single-atom active site (dopant) towards the primary single atom.

Synergistic optimization

Refers to the introduction of multiple active sites in a catalyst to improve the reaction kinetics, in which the combined catalytic activity of different active sites is greater compared to their individual activities thanks to cooperative interactions.

Tandem reactions

A tandem reaction in electrochemical CO2 reduction is a sequential process in which CO2 is first converted into intermediates such as CO and then further reduced to final products (C2+ products).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Gupta, D., Yuwono, J.A. et al. The promises and reality of metal–CO2 batteries. Nat. Rev. Clean Technol. (2025). https://doi.org/10.1038/s44359-025-00099-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44359-025-00099-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing