Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ammonia as a renewable energy carrier from synthesis to utilization

Abstract

Ammonia has potential to play a key role in large-scale, long-term storage and transport of renewable energy. Renewable energy generation, particularly from solar and wind sources, has increased substantially but faces challenges such as intermittency and decentralization. Energy storage technologies are vital for addressing these issues, with chemical energy storage, especially ammonia, offering long-term (weeks) and large-scale (10–1,000 MW) energy storage. In this Review, we explore the role of ammonia in the energy landscape, focusing on its synthesis and utilization. Ammonia has advantages over hydrogen, such as higher volumetric energy density (12.7 MJ l−1) and simpler storage requirements (readily liquefied at ~10 bar or −33 °C). It can be synthesized using renewable electricity and later decomposed to release hydrogen or used directly in fuel cells, including direct-ammonia fuel cells, indirect-ammonia fuel cells and ammonia solid-oxide fuel cells. We show that although decentralized ammonia synthesis under mild conditions offers potential for localized, low-carbon production, it remains limited by high energy costs and scalability challenges, underscoring the need for breakthroughs in catalyst efficiency and system design. The successful integration of ammonia into renewable energy systems will require coordinated efforts across technology development, policy support and infrastructure expansion.

Key points

  • Ammonia is a promising carbon-free energy carrier with high volumetric energy density and ease of storage, suitable for large-scale and long-duration renewable energy storage and transport.

  • Mild-condition ammonia synthesis, including electrochemical, plasma-catalytic and tandem plasma-electrocatalytic routes, offers potential for decentralized and flexible production using renewable electricity.

  • Metal-mediated electrochemical nitrogen reduction has demonstrated high selectivity and stability, but scaling to industrial current densities and lifetimes remains a key challenge.

  • Plasma-based and tandem plasma-electrocatalytic approaches enable operation under ambient conditions and modular deployment, but energy efficiency and catalyst performance need further improvement.

  • Ammonia can be decomposed to supply hydrogen for fuel cells or combustion, with ongoing efforts focused on lowering the reaction temperature and replacing costly ruthenium-based catalysts.

  • Realizing cost-competitive, sustainable ammonia production and its full potential as a carbon-free energy carrier will require integrated advances in catalysts, reactors and system-level design, supported by policy and infrastructure to drive scalable deployment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Energy storage technologies and the role of ammonia as an energy carrier.
Fig. 2: Ammonia as an energy carrier in energy storage and conversion.
Fig. 3: Ammonia synthesis under mild conditions.
Fig. 4: Catalyst design and economics of ammonia decomposition.
Fig. 5: Mechanisms and operational strategies for ammonia fuel cells.
Fig. 6: Efficiency of ammonia fuel cell technologies.

Similar content being viewed by others

References

  1. Al-Shetwi, A. Q., Abidin, I. Z., Mahafzah, K. A. & Hannan, M. A. Feasibility of future transition to 100% renewable energy: recent progress, policies, challenges, and perspectives. J. Clean. Prod. 478, 143942 (2024).

    Article  Google Scholar 

  2. Valera-Medina, A., Xiao, H., Owen-Jones, M., David, W. I. F. & Bowen, P. J. Ammonia for power. Prog. Energy Combust. Sci. 69, 63–102 (2018).

    Article  Google Scholar 

  3. Gür, T. M. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11, 2696–2767 (2018).

    Article  Google Scholar 

  4. MacFarlane, D. R. et al. A roadmap to the ammonia economy. Joule 4, 1186–1205 (2020).

    Article  CAS  Google Scholar 

  5. Yapicioglu, A. & Dincer, I. A review on clean ammonia as a potential fuel for power generators. Renew. Sustain. Energy Rev. 103, 96–108 (2019).

    Article  CAS  Google Scholar 

  6. Guo, J. P. & Chen, P. Catalyst: NH3 as an energy carrier. Chem 3, 709–712 (2017).

    Article  CAS  Google Scholar 

  7. Spatolisano, E., Pellegrini, L. A., de Angelis, A. R., Cattaneo, S. & Roccaro, E. Ammonia as a carbon-free energy carrier: NH3 cracking to H2. Ind. Eng. Chem. Res. 62, 10813–10827 (2023).

    Article  CAS  Google Scholar 

  8. David, W. I. F. et al. 2023 roadmap on ammonia as a carbon-free fuel. JPhys Energy 6, 021501 (2024).

    Article  Google Scholar 

  9. The Royal Society. Ammonia: Zero-Carbon Fertiliser, Fuel and Energy Store (The Royal Society, 2020).

  10. Kobayashi, H., Hayakawa, A., Somarathne, K. D. K. A. & Okafor, E. C. Science and technology of ammonia combustion. Proc. Combust. Inst. 37, 109–133 (2019).

    Article  CAS  Google Scholar 

  11. Westhead, O. et al. Near ambient N2 fixation on solid electrodes versus enzymes and homogeneous catalysts. Nat. Rev. Chem. 7, 184–201 (2023).

    Article  CAS  Google Scholar 

  12. Iriawan, H. et al. Methods for nitrogen activation by reduction and oxidation. Nat. Rev. Methods Primers 1, 56 (2021).

    Article  CAS  Google Scholar 

  13. Chang, W. S., Jain, A., Rezaie, F. & Manthiram, K. Lithium-mediated nitrogen reduction to ammonia via the catalytic solid-electrolyte interphase. Nat. Catal. 7, 231–241 (2024).

    Article  CAS  Google Scholar 

  14. Li, S., Fu, X., Nørskov, J. K. & Chorkendorff, I. Towards sustainable metal-mediated ammonia electrosynthesis. Nat. Energy 9, 1344–1349 (2024).

    Article  CAS  Google Scholar 

  15. Wang, Y. et al. Shielding protection by mesoporous catalysts for improving plasma-catalytic ambient ammonia synthesis. J. Am. Chem. Soc. 144, 12020–12031 (2022).

    Article  CAS  Google Scholar 

  16. Fu, X. B., Zhang, J. H. & Kang, Y. J. Recent advances and challenges of electrochemical ammonia synthesis. Chem. Catal. 2, 2590–2613 (2022).

    CAS  Google Scholar 

  17. Fu, X. & Chorkendorff, I. Prospects and challenges in electrochemical nitrogen activation for ammonia synthesis. Sci. China Chem. 67, 3510–3514 (2024).

    Article  CAS  Google Scholar 

  18. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    Article  CAS  Google Scholar 

  19. Li, K. et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science 374, 1593–1597 (2021).

    Article  CAS  Google Scholar 

  20. Fernández, C. A., Chapman, O., Brown, M. A., Alvarez-Pugliese, C. E. & Hatzell, M. C. Achieving decentralized, electrified, and decarbonized ammonia production. Environ. Sci. Technol. 58, 6964–6977 (2024).

    Article  Google Scholar 

  21. Ithisuphalap, K. et al. Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis. Small Methods 3, 1800352 (2019).

    Article  Google Scholar 

  22. Gao, W. B. et al. Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers. Nat. Energy 3, 1067–1075 (2018).

    Article  CAS  Google Scholar 

  23. Tanifuji, K. & Ohki, Y. Metal-sulfur compounds in N2 reduction and nitrogenase-related chemistry. Chem. Rev. 120, 5194–5251 (2020).

    Article  CAS  Google Scholar 

  24. Andersen, S. Z. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019).

    Article  CAS  Google Scholar 

  25. Mehta, P. et al. Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nat. Catal. 1, 269–275 (2018).

    Article  Google Scholar 

  26. Han, G.-F. et al. Mechanochemistry for ammonia synthesis under mild conditions. Nat. Nanotechnol. 16, 325–330 (2021).

    Article  CAS  Google Scholar 

  27. Choi, J. et al. Identification and elimination of false positives in electrochemical nitrogen reduction studies. Nat. Commun. 11, 5546 (2020).

    Article  CAS  Google Scholar 

  28. Lazouski, N., Schiffer, Z. J., Williams, K. & Manthiram, K. Understanding continuous lithium-mediated electrochemical nitrogen reduction. Joule 3, 1127–1139 (2019).

    Article  CAS  Google Scholar 

  29. Fu, X. et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 379, 707–712 (2023).

    Article  CAS  Google Scholar 

  30. Westhead, O. et al. The role of ion solvation in lithium mediated nitrogen reduction. J. Mater. Chem. A 11, 12746–12758 (2023).

    Article  CAS  Google Scholar 

  31. Fu, X. B. et al. Calcium-mediated nitrogen reduction for electrochemical ammonia synthesis. Nat. Mater. 23, 101–107 (2024).

    Article  CAS  Google Scholar 

  32. Lazouski, N., Chung, M. J., Williams, K., Gala, M. L. & Manthiram, K. Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nat. Catal. 3, 463–469 (2020).

    Article  CAS  Google Scholar 

  33. Schwalbe, J. A. et al. A combined theory–experiment analysis of the surface species in lithium-mediated NH3 electrosynthesis. ChemElectroChem 7, 1542–1549 (2020).

    Article  CAS  Google Scholar 

  34. Cai, X. Y. et al. Membrane electrode assembly design for lithium-mediated electrochemical nitrogen reduction. Energy Environ. Sci. 16, 3063–3073 (2023).

    Article  CAS  Google Scholar 

  35. Li, S. et al. Electrosynthesis of ammonia with high selectivity and high rates via engineering of the solid-electrolyte interphase. Joule 6, 2083–2101 (2022).

    Article  CAS  Google Scholar 

  36. Du, H. L. et al. Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency. Nature 609, 722–727 (2022).

    Article  CAS  Google Scholar 

  37. Fu, X. Lithium-mediated nitrogen reduction for electrochemical ammonia synthesis: from batch to flow reactor. Mater. Today Catal. 3, 100031 (2023).

    Google Scholar 

  38. Fu, X. B. et al. Phenol as proton shuttle and buffer for lithium-mediated ammonia electrosynthesis. Nat. Commun. 15, 2417 (2024).

    Article  CAS  Google Scholar 

  39. Cai, X. Y. et al. Lithium-mediated electrochemical nitrogen reduction: mechanistic insights to enhance performance. iScience 24, 103105 (2021).

    Article  CAS  Google Scholar 

  40. Li, K. et al. Increasing current density of Li-mediated ammonia synthesis with high surface area copper electrodes. ACS Energy Lett. 7, 36–41 (2022).

    Article  CAS  Google Scholar 

  41. Gao, L. F. et al. Domino effect: gold electrocatalyzing lithium reduction to accelerate nitrogen fixation. Angew. Chem. Int. Ed. 60, 5257–5261 (2021).

    Article  CAS  Google Scholar 

  42. Li, S. F. et al. Long-term continuous ammonia electrosynthesis. Nature 629, 92–97 (2024).

    Article  CAS  Google Scholar 

  43. Suryanto, B. H. R. et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science 372, 1187–1191 (2021).

    Article  CAS  Google Scholar 

  44. Tsuneto, A., Kudo, A. & Sakata, T. Efficient electrochemical reduction of N2 to NH3 catalyzed by lithium. Chem. Lett. 22, 851–854 (1993).

    Article  Google Scholar 

  45. Hyung et al. Utilizing water as a proton source for sustainable Li-mediated electrochemical ammonia synthesis. Chem. Eng. J. 497, 154644 (2024).

    Article  Google Scholar 

  46. Farghali, M. et al. Strategies for ammonia recovery from wastewater: a review. Environ. Chem. Lett. 22, 2699–2751 (2024).

    Article  CAS  Google Scholar 

  47. Lee, G., Kim, K., Chung, J. & Han, J.-I. Electrochemical ammonia accumulation and recovery from ammonia-rich livestock wastewater. Chemosphere 270, 128631 (2021).

    Article  CAS  Google Scholar 

  48. Lee, G., Kim, D. & Han, J.-I. Gas-diffusion-electrode based direct electro-stripping system for gaseous ammonia recovery from livestock wastewater. Water Res. 196, 117012 (2021).

    Article  CAS  Google Scholar 

  49. Iddya, A. et al. Efficient ammonia recovery from wastewater using electrically conducting gas stripping membranes. Environ. Sci. Nano 7, 1759–1771 (2020).

    Article  CAS  Google Scholar 

  50. Fu, X. What insights can we learn from dimensionally stable anodes (DSAs)? Carbon Future 1, 9200027 (2024).

    Article  Google Scholar 

  51. Wang, Y. et al. Engineering Ni–Co bimetallic interfaces for ambient plasma-catalytic CO2 hydrogenation to methanol. Chem 10, 2590–2606 (2024).

    Article  CAS  Google Scholar 

  52. Chen, J. G. et al. Beyond fossil fuel-driven nitrogen transformations. Science 360, eaar6611 (2018).

    Article  Google Scholar 

  53. Kim, H.-H., Teramoto, Y., Ogata, A., Takagi, H. & Nanba, T. Atmospheric-pressure nonthermal plasma synthesis of ammonia over ruthenium catalysts. Plasma Process. Polym. 14, 1600157 (2017).

    Article  Google Scholar 

  54. Akay, G. & Zhang, K. Process intensification in ammonia synthesis using novel coassembled supported microporous catalysts promoted by nonthermal plasma. Ind. Eng. Chem. Res. 56, 457–468 (2017).

    Article  CAS  Google Scholar 

  55. Rouwenhorst, K. H. R., Mani, S. & Lefferts, L. Improving the energy yield of plasma-based ammonia synthesis with in situ adsorption. ACS Sustain. Chem. Eng. 10, 1994–2000 (2022).

    Article  CAS  Google Scholar 

  56. Peng, P. et al. Atmospheric plasma-assisted ammonia synthesis enhanced via synergistic catalytic absorption. ACS Sustain. Chem. Eng. 7, 100–104 (2018).

    Article  Google Scholar 

  57. Winter, L. R. & Chen, J. G. N2 fixation by plasma-activated processes. Joule 5, 300–315 (2021).

    Article  CAS  Google Scholar 

  58. Abdelaziz, A. A., Teramoto, Y., Nozaki, T. & Kim, H.-H. Performance of high-frequency spark discharge for efficient NO production with tunable selectivity. Chem. Eng. J. 470, 144182 (2023).

    Article  CAS  Google Scholar 

  59. Liu, H. et al. Low-coordination rhodium catalysts for an efficient electrochemical nitrate reduction to ammonia. ACS Catal. 13, 1513–1521 (2023).

    Article  CAS  Google Scholar 

  60. Liu, W. et al. Efficient ammonia synthesis from the air using tandem non-thermal plasma and electrocatalysis at ambient conditions. Nat. Commun. 15, 3524 (2024).

    Article  CAS  Google Scholar 

  61. Guo, X. et al. Highly stable perovskite oxides for electrocatalytic acidic NOx reduction streamlining ammonia synthesis from air. Angew. Chem. Int. Ed. 63, e202410517 (2024).

    Article  CAS  Google Scholar 

  62. Liu, H., Bai, L., Bergmann, A., Cuenya, B. R. & Luo, J. Electrocatalytic reduction of nitrogen oxide species to ammonia. Chem 10, 2963–2986 (2024).

    Article  CAS  Google Scholar 

  63. Hermawan, A., Alviani, V. N., Wibisono & Seh, Z. W. Fundamentals, rational catalyst design, and remaining challenges in electrochemical NOx reduction reaction. iScience 26, 107410 (2023).

    Article  CAS  Google Scholar 

  64. Smith, C., Hill, A. K. & Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13, 331–344 (2020).

    Article  Google Scholar 

  65. Rafiqul, I., Weber, C., Lehmann, B. & Voss, A. Energy efficiency improvements in ammonia production—perspectives and uncertainties. Energy 30, 2487–2504 (2005).

    Article  CAS  Google Scholar 

  66. Erfani, N., Baharudin, L. & Watson, M. Recent advances and intensifications in Haber–Bosch ammonia synthesis process. Chem. Eng. Process. 204, 109962 (2024).

    Article  CAS  Google Scholar 

  67. Jin, D. L., Chen, A. Q. & Lin, B. L. What metals should be used to mediate electrosynthesis of ammonia from nitrogen and hydrogen from a thermodynamic standpoint? J. Am. Chem. Soc. 146, 12320–12323 (2024).

    Article  CAS  Google Scholar 

  68. Kim, K. et al. Electrochemical synthesis of ammonia from water and nitrogen: a lithium-mediated approach using lithium-ion conducting glass ceramics. ChemSusChem 11, 120–124 (2018).

    Article  CAS  Google Scholar 

  69. Murphy, E. et al. Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites. Nat. Commun. 14, 4554 (2023).

    Article  CAS  Google Scholar 

  70. Ge, X. et al. Controlling the reaction pathways of mixed NOxHy reactants in plasma-electrochemical ammonia synthesis. J. Am. Chem. Soc. 146, 35305–35312 (2024).

    Article  CAS  Google Scholar 

  71. Buchner, G. A., Zimmermann, A. W., Hohgräve, A. E. & Schomäcker, R. Techno-economic assessment framework for the chemical industry—based on technology readiness levels. Ind. Eng. Chem. Res. 57, 8502–8517 (2018).

    Article  CAS  Google Scholar 

  72. Rezaie, F., Læsaa, S., Sahin, N. E., Catalano, J. & Dražević, E. Low-temperature electrochemical ammonia synthesis: measurement reliability and comparison to Haber–Bosch in terms of energy efficiency. Energy Technol. 11, 2300410 (2023).

    Article  CAS  Google Scholar 

  73. Li, X. et al. Synergistic catalysis of the synthesis of ammonia with Co-based catalysts and plasma: from nanoparticles to a single atom. ACS Appl. Mater. Interfaces 13, 52498–52507 (2021).

    Article  CAS  Google Scholar 

  74. Li, L. et al. Efficient nitrogen fixation to ammonia through integration of plasma oxidation with electrocatalytic reduction. Angew. Chem. Int. Ed. 60, 14131–14137 (2021).

    Article  CAS  Google Scholar 

  75. Wu, A. et al. Direct ammonia synthesis from the air via gliding arc plasma integrated with single atom electrocatalysis. Appl. Catal. B 299, 120667 (2021).

    Article  CAS  Google Scholar 

  76. Sun, J. et al. A hybrid plasma electrocatalytic process for sustainable ammonia production. Energy Environ. Sci. 14, 865–872 (2021).

    Article  CAS  Google Scholar 

  77. Zheng, J. et al. Enhanced NH3 synthesis from air in a plasma tandem-electrocatalysis system using plasma-engraved N-doped defective MoS2. JACS Au 3, 1328–1336 (2023).

    Article  CAS  Google Scholar 

  78. Fernandez, C. A. & Hatzell, M. C. Economic considerations for low-temperature electrochemical ammonia production: achieving Haber–Bosch parity. J. Electrochem. Soc. 167, 143504 (2020).

    Article  CAS  Google Scholar 

  79. Gomez, J. R. & Garzon, F. Preliminary economics for green ammonia synthesis via lithium mediated pathway. Int. J. Energy Res. 45, 13461–13470 (2021).

    Article  CAS  Google Scholar 

  80. Lazouski, N. et al. Cost and performance targets for fully electrochemical ammonia production under flexible operation. ACS Energy Lett. 7, 2627–2633 (2022).

    Article  CAS  Google Scholar 

  81. Chen, X. et al. Technical and economic analysis of renewable energy systems with hydrogen–ammonia energy storage: a comparison of different ammonia synthesis methods. J. Energy Storage 113, 115549 (2025).

    Article  Google Scholar 

  82. Wang, W., Wang, Y. & Tu, X. Tandem plasma electrocatalysis: an emerging pathway for sustainable ammonia production. Curr. Opin. Green Sustain. Chem. 51, 100986 (2025).

    Article  CAS  Google Scholar 

  83. Ganley, J. C., Thomas, F. S., Seebauer, E. G. & Masel, R. I. A priori catalytic activity correlations: the difficult case of hydrogen production from ammonia. Catal. Lett. 96, 117–122 (2004).

    Article  CAS  Google Scholar 

  84. Choudhary, T. V., Sivadinarayana, C. & Goodman, D. W. Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications. Catal. Lett. 72, 197–201 (2001).

    Article  CAS  Google Scholar 

  85. Yin, S. F. et al. Investigation on the catalysis of CO-free hydrogen generation from ammonia. J. Catal. 224, 384–396 (2004).

    Article  CAS  Google Scholar 

  86. Wijayanta, A. T., Oda, T., Purnomo, C. W., Kashiwagi, T. & Aziz, M. Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: comparison review. Int. J. Hydrog. Energy 44, 15026–15044 (2019).

    Article  CAS  Google Scholar 

  87. Lucentini, I., Garcia, X., Vendrell, X. & Llorca, J. Review of the decomposition of ammonia to generate hydrogen. Ind. Eng. Chem. Res. 60, 18560–18611 (2021).

    Article  CAS  Google Scholar 

  88. Lee, J. E., Lee, J., Jeong, H., Park, Y.-K. & Kim, B.-S. Catalytic ammonia decomposition to produce hydrogen: a mini-review. Chem. Eng. J. 475, 146108 (2023).

    Article  CAS  Google Scholar 

  89. Babar, P. & Botte, G. G. Recent advances in ammonia electrolysis for sustainable hydrogen generation. ACS Sustain. Chem. Eng. 12, 13030–13047 (2024).

    Article  CAS  Google Scholar 

  90. Zecher-Freeman, N., Zong, H., Xie, P. & Wang, C. Catalytic cracking of ammonia toward carbon-neutral liquid fuel. Curr. Opin. Green Sustain. Chem. 44, 100860 (2023).

    Article  CAS  Google Scholar 

  91. Trangwachirachai, K., Rouwenhorst, K., Lefferts, L. & Faria Albanese, J. A. Recent progress on ammonia cracking technologies for scalable hydrogen production. Curr. Opin. Green Sustain. Chem. 49, 100945 (2024).

    Article  CAS  Google Scholar 

  92. Andriani, D. & Bicer, Y. A review of hydrogen production from onboard ammonia decomposition: maritime applications of concentrated solar energy and boil-off gas recovery. Fuel 352, 128900 (2023).

    Article  CAS  Google Scholar 

  93. Cao, C.-F. et al. Electronic metal–support interaction enhanced ammonia decomposition efficiency of perovskite oxide supported ruthenium. Chem. Eng. Sci. 257, 117719 (2022).

    Article  CAS  Google Scholar 

  94. Mukherjee, S., Devaguptapu, S. V., Sviripa, A., Lund, C. R. F. & Wu, G. Low-temperature ammonia decomposition catalysts for hydrogen generation. Appl. Catal., B 226, 162–181 (2018).

    Article  CAS  Google Scholar 

  95. Schüth, F., Palkovits, R., Schlögl, R. & Su, D. S. Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition. Energy Environ. Sci. 5, 6278–6289 (2012).

    Article  Google Scholar 

  96. Boisen, A., Dahl, S., Norskov, J. & Christensen, C. Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst. J. Catal. 230, 309–312 (2005).

    Article  CAS  Google Scholar 

  97. Yin, S. F., Xu, B. Q., Wang, S. J., Ng, C. F. & Au, C. T. Magnesia–carbon nanotubes (MgO–CNTs) nanocomposite: novel support of Ru catalyst for the generation of COx-free hydrogen from ammonia. Catal. Lett. 96, 113–116 (2004).

    Article  CAS  Google Scholar 

  98. David, W. I. F. et al. Hydrogen production from ammonia using sodium amide. J. Am. Chem. Soc. 136, 13082–13085 (2014).

    Article  CAS  Google Scholar 

  99. Guo, J. et al. Electronic promoter or reacting species? The role of LiNH2 on Ru in catalyzing NH3 decomposition. Chem. Commun. 51, 15161–15164 (2015).

    Article  CAS  Google Scholar 

  100. Wu, Z.-W. et al. Ammonia decomposition over SiO2-supported Ni–Co bimetallic catalyst for COx-free hydrogen generation. Int. J. Hydrog. Energy 45, 15263–15269 (2020).

    Article  CAS  Google Scholar 

  101. Duan, X., Qian, G., Zhou, X., Chen, D. & Yuan, W. MCM-41 supported CoMo bimetallic catalysts for enhanced hydrogen production by ammonia decomposition. Chem. Eng. J. 207–208, 103–108 (2012).

    Article  Google Scholar 

  102. Fu, E. et al. Enhanced NH3 decomposition for H2 production over bimetallic M(M = Co, Fe, Cu)Ni/Al2O3. Fuel Process. Technol. 221, 106945 (2021).

    Article  CAS  Google Scholar 

  103. Guo, J. et al. Lithium imide synergy with 3d transition-metal nitrides leading to unprecedented catalytic activities for ammonia decomposition. Angew. Chem. Int. Ed. 54, 2950–2954 (2015).

    Article  CAS  Google Scholar 

  104. Xie, P. et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 10, 4011 (2019).

    Article  Google Scholar 

  105. Boisen, A., Dahl, S. & Jacobsen, C. J. H. Promotion of binary nitride catalysts: isothermal N2 adsorption, microkinetic model, and catalytic ammonia synthesis activity. J. Catal. 208, 180–186 (2002).

    Article  CAS  Google Scholar 

  106. Ogasawara, K. et al. Ammonia decomposition over CaNH-supported Ni catalysts via an NH2–-vacancy-mediated Mars–van Krevelen mechanism. ACS Catal. 11, 11005–11015 (2021).

    Article  CAS  Google Scholar 

  107. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

    Article  CAS  Google Scholar 

  108. Sayas, S. et al. High pressure ammonia decomposition on Ru–K/CaO catalysts. Catal. Sci. Technol. 10, 5027–5035 (2020).

    Article  CAS  Google Scholar 

  109. Zhai, L., Liu, S. & Xiang, Z. Ammonia as a carbon-free hydrogen carrier for fuel cells: a perspective. Ind. Chem. Mater. 1, 332–342 (2023).

    Article  CAS  Google Scholar 

  110. Kanaan, R., Nóbrega, P. H. A., Achard, P. & Beauger, C. Economical assessment comparison for hydrogen reconversion from ammonia using thermal decomposition and electrolysis. Renew. Sustain. Energy Rev. 188, 113784 (2023).

    Article  CAS  Google Scholar 

  111. Mehta, P., Barboun, P., Go, D. B., Hicks, J. C. & Schneider, W. F. Catalysis enabled by plasma activation of strong chemical bonds: a review. ACS Energy Lett. 4, 1115–1133 (2019).

    Article  CAS  Google Scholar 

  112. Zeng, X. et al. Energy-efficient pathways for pulsed-plasma-activated sustainable ammonia synthesis. ACS Sustain. Chem. Eng. 11, 1110–1120 (2023).

    Article  CAS  Google Scholar 

  113. Li, J. et al. Utilizing full-spectrum sunlight for ammonia decomposition to hydrogen over GaN nanowires-supported Ru nanoparticles on silicon. Nat. Commun. 15, 7393 (2024).

    Article  CAS  Google Scholar 

  114. Zhang, K. et al. Energy-efficient and cost-effective ammonia electrolysis for converting ammonia to green hydrogen. Cell Rep. Phys. Sci. 5, 102171 (2024).

    Article  CAS  Google Scholar 

  115. Hatton, L., Bañares-Alcántara, R., Sparrow, S., Lott, F. & Salmon, N. Assessing the impact of climate change on the cost of production of green ammonia from offshore wind. Int. J. Hydrog. Energy 49, 635–643 (2024).

    Article  CAS  Google Scholar 

  116. Zhang, H., Wang, L., van Herle, J., Maréchal, F. & Desideri, U. Techno-economic comparison of green ammonia production processes. Appl. Energy 259, 114135 (2020).

    Article  CAS  Google Scholar 

  117. Oh, S., Mun, H., Park, J. & Lee, I. Techno-economic comparison of ammonia production processes under various carbon tax scenarios for the economic transition from grey to blue ammonia. J. Clean. Prod. 434, 139909 (2024).

    Article  CAS  Google Scholar 

  118. Lee, B. et al. Pathways to a green ammonia future. ACS Energy Lett. 7, 3032–3038 (2022).

    Article  CAS  Google Scholar 

  119. Cloete, S., Khan, M. N., Nazir, S. M. & Amini, S. Cost-effective clean ammonia production using membrane-assisted autothermal reforming. Chem. Eng. J. 404, 126550 (2021).

    Article  CAS  Google Scholar 

  120. Devkota, S. et al. Techno-economic and environmental assessment of hydrogen production through ammonia decomposition. Appl. Energy 358, 122605 (2024).

    Article  CAS  Google Scholar 

  121. Sen, R. & Bhattacharyya, S. C. Off-grid electricity generation with renewable energy technologies in India: an application of HOMER. Renew. Energy 62, 388–398 (2014).

    Article  Google Scholar 

  122. Sørensen, R. Z. et al. Promoted Ru on high-surface area graphite for efficient miniaturized production of hydrogen from ammonia. Catal. Lett. 112, 77–81 (2006).

    Article  Google Scholar 

  123. Gyak, K.-W. et al. 3D-printed monolithic SiCN ceramic microreactors from a photocurable preceramic resin for the high temperature ammonia cracking process. React. Chem. Eng. 4, 1393–1399 (2019).

    Article  CAS  Google Scholar 

  124. Badakhsh, A. et al. A compact catalytic foam reactor for decomposition of ammonia by the Joule-heating mechanism. Chem. Eng. J. 426, 130802 (2021).

    Article  CAS  Google Scholar 

  125. Liu, W. et al. Innovative internal Joule-heated reactor design: toward enhanced efficiency in hydrogen production via ammonia decomposition. Chem. Eng. Sci. 315, 121906 (2025).

    Article  CAS  Google Scholar 

  126. Lutz, A. E., Larson, R. S. & Keller, J. O. Thermodynamic comparison of fuel cells to the Carnot cycle. Int. J. Hydrog. Energy 27, 1103–1111 (2002).

    Article  CAS  Google Scholar 

  127. Chan, Y. T., Siddharth, K. & Shao, M. Investigation of cubic Pt alloys for ammonia oxidation reaction. Nano Res. 13, 1920–1927 (2020).

    Article  CAS  Google Scholar 

  128. Jiao, F. & Xu, B. Electrochemical ammonia synthesis and ammonia fuel cells. Adv. Mater. 31, 1805173 (2019).

    Article  Google Scholar 

  129. Bunce, N. J. & Bejan, D. Mechanism of electrochemical oxidation of ammonia. Electrochim. Acta 56, 8085–8093 (2011).

    Article  CAS  Google Scholar 

  130. Lee, S. A., Lee, M. G. & Jang, H. W. Catalysts for electrochemical ammonia oxidation: trend, challenge, and promise. Sci. China Mater. 65, 3334–3352 (2022).

    Article  Google Scholar 

  131. Novell-Leruth, G., Valcárcel, A., Pérez-Ramírez, J. & Ricart, J. M. Ammonia dehydrogenation over platinum-group metal surfaces. Structure, stability, and reactivity of adsorbed NHx species. J. Phys. Chem. C 111, 860–868 (2007).

    Article  CAS  Google Scholar 

  132. Daramola, D. A. & Botte, G. G. Theoretical study of ammonia oxidation on platinum clusters—adsorption of ammonia and water fragments. Comput. Theor. Chem. 989, 7–17 (2012).

    Article  CAS  Google Scholar 

  133. Katsounaros, I. et al. On the mechanism of the electrochemical conversion of ammonia to dinitrogen on Pt(100) in alkaline environment. J. Catal. 359, 82–91 (2018).

    Article  CAS  Google Scholar 

  134. Rouwenhorst, K. H. R., Van der Ham, A. G. J., Mul, G. & Kersten, S. R. A. Islanded ammonia power systems: technology review & conceptual process design. Renew. Sustain. Energy Rev. 114, 109339 (2019).

    Article  CAS  Google Scholar 

  135. Cai, A. & Rozario, Z. Direct ammonia fuel cells: a general overview, current technologies and future directions. Johns. Matthey Technol. Rev. 66, 479–489 (2022).

    Article  CAS  Google Scholar 

  136. Halseid, R., Vie, P. J. S. & Tunold, R. Effect of ammonia on the performance of polymer electrolyte membrane fuel cells. J. Power Sources 154, 343–350 (2006).

    Article  CAS  Google Scholar 

  137. Li, J. et al. Ammonia and hydrogen blending effects on combustion stabilities in optical SI engines. Energy Convers. Manage. 280, 116827 (2023).

    Article  CAS  Google Scholar 

  138. Jeerh, G., Zhang, M. & Tao, S. Recent progress in ammonia fuel cells and their potential applications. J. Mater. Chem. A 9, 727–752 (2021).

    Article  CAS  Google Scholar 

  139. Yang, J. et al. A stability study of Ni/yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells. ACS Appl. Mater. Interfaces 7, 28701–28707 (2015).

    Article  CAS  Google Scholar 

  140. Akimoto, W. et al. Ni–Fe/Sm-doped CeO2 anode for ammonia-fueled solid oxide fuel cells. Solid State Ion. 256, 1–4 (2014).

    Article  CAS  Google Scholar 

  141. Song, Y. et al. Infiltrated NiCo alloy nanoparticle decorated perovskite oxide: a highly active, stable, and antisintering anode for direct-ammonia solid oxide fuel cells. Small 16, 2001859 (2020).

    Article  CAS  Google Scholar 

  142. Meng, G., Jiang, C., Ma, J., Ma, Q. & Liu, X. Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen. J. Power Sources 173, 189–193 (2007).

    Article  CAS  Google Scholar 

  143. Hashinokuchi, M., Zhang, M., Doi, T. & Inaba, M. Enhancement of anode activity and stability by Cr addition at Ni/Sm-doped CeO2 cermet anodes in NH3-fueled solid oxide fuel cells. Solid State Ion. 319, 180–185 (2018).

    Article  CAS  Google Scholar 

  144. Wan, Z., Tao, Y., Shao, J., Zhang, Y. & You, H. Ammonia as an effective hydrogen carrier and a clean fuel for solid oxide fuel cells. Energy Convers. Manage. 228, 113729 (2021).

    Article  CAS  Google Scholar 

  145. Zhu, L. et al. Ammonia-fed reversible protonic ceramic fuel cells with Ru-based catalyst. Commun. Chem. 4, 121 (2021).

    Article  CAS  Google Scholar 

  146. Müller, M., Pfeifer, M., Holtz, D. & Müller, K. Comparison of green ammonia and green hydrogen pathways in terms of energy efficiency. Fuel 357, 129843 (2024).

    Article  Google Scholar 

  147. Wen, D. & Aziz, M. Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario. Appl. Energy 319, 119272 (2022).

    Article  CAS  Google Scholar 

  148. Lin, Z., Li, D. & Zou, Y. Energy efficiency of lithium-ion batteries: influential factors and long-term degradation. J. Energy Storage 74, 109386 (2023).

    Article  Google Scholar 

  149. Xie, Q. et al. Non-thermal atmospheric plasma synthesis of ammonia in a DBD reactor packed with various catalysts. J. Phys. D 53, 064002 (2020).

    Article  CAS  Google Scholar 

  150. Li, S., van Raak, T. & Gallucci, F. Investigating the operation parameters for ammonia synthesis in dielectric barrier discharge reactors. J. Phys. D 53, 014008 (2020).

    Article  CAS  Google Scholar 

  151. Hu, X., Zhu, X., Wu, X., Cai, Y. & Tu, X. Plasma-enhanced NH3 synthesis over activated carbon-based catalysts: effect of active metal phase. Plasma Process. Polym. 17, 2000072 (2020).

    Article  CAS  Google Scholar 

  152. Wang, Y. et al. Plasma-enhanced catalytic synthesis of ammonia over a Ni/Al2O3 catalyst at near-room temperature: insights into the importance of the catalyst surface on the reaction mechanism. ACS Catal. 9, 10780–10793 (2019).

    Article  CAS  Google Scholar 

  153. Liu, Y. et al. Synergistic effect of Co–Ni bimetal on plasma catalytic ammonia synthesis. Plasma Chem. Plasma Process. 42, 267–282 (2022).

    Article  CAS  Google Scholar 

  154. Zhu, X. et al. Plasma-catalytic synthesis of ammonia over Ru-based catalysts: insights into the support effect. J. Energy Inst. 102, 240–246 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X.F. acknowledges support from the National University of Singapore start-up grant. P.X. acknowledges funding from National Key Research and Development Program of China (2023YFA1508103) and the National Natural Science Foundation of China (22278365). X.T. acknowledges funding from the European Union’s Horizon Europe Research and Innovation Programme under grant agreement no. 101083905 and the UK Research and Innovation Horizon Europe Guarantee Fund (no. 10055396).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (X.F. and Z.W.); Ammonia as an energy carrier (X.F. and Z.W.); Ammonia synthesis under mild conditions (X.F., X.T., Z.W. and Y.W.); Ammonia decomposition for hydrogen production (P.X., K.W. and X.F.); Ammonia fuel cells (P.X., B.H. and X.F.); Overview of the review (X.F., P.X. and X.T.). All authors discussed and edited the full manuscript.

Corresponding authors

Correspondence to Xin Tu  (屠昕), Pengfei Xie  (谢鹏飞) or Xianbiao Fu  (付先彪).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clean Technology thanks Hoang-Long Du, Kwiyong Kim, Chenglin Yan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Z., Huang, B., Wang, Y. et al. Ammonia as a renewable energy carrier from synthesis to utilization. Nat. Rev. Clean Technol. (2025). https://doi.org/10.1038/s44359-025-00102-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44359-025-00102-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing