Abstract
Commercially available single-junction photovoltaic devices are nearing the theoretical ~29% limit of their power conversion efficiencies (PCEs). By layering multiple materials with complementary bandgaps, multi-junction photovoltaic solar cells could have higher efficiencies than devices with single light-absorbing layers. This Review examines the performance of perovskite–perovskite–silicon triple-junction solar cells (TJSCs), which have reported PCEs of 27.62% and theoretical maximum PCEs of 44.3%. Metal-halide perovskite materials have chemically tunable bandgaps, and can be deposited on top of silicon photovoltaic devices through large-area fabrication techniques. Perovskite materials with bandgaps engineered for multi-junction applications can struggle with poor crystallization during film formation, and can subsequently undergo PCE-limiting phase separation under exposure conditions. Altering composition through the addition of tin and/or doping with a range of ions or ligands can improve individual layer performance and overall device stability. The large maximum energy production of perovskite-based TJSCs under real radiation conditions (895 kWh m–2 per year) underscores the broad application potential of multi-junction solar cells. Decreasing open-circuit voltage losses, improving bandgap matching for the middle layer, and focusing on fabrication repeatability and scalability could advance perovskite-based TJSCs beyond the proof-of-concept stage.
Key points
-
Perovskite solar cell materials are solution-processable, with tunable bandgaps and high photoconversion efficiencies, and can be deposited on top of single-junction devices to make multi-junction photovoltaics.
-
Research into ultra-wide bandgap (UWBG) perovskites, which are suitable for the top layer of multilayer devices, has focused on improving the crystallinity and stability of the materials for these applications.
-
Middle-layer perovskite research has focused on chemical and thermal stability, especially under conditions required to form the top UWBG layers.
-
Bottom-layer cells are primarily made from silicon, but copper–indium–gallium–selenide (CIGS) cells, organic photovoltaics or even other perovskite materials are all used in research devices. A range of contact configurations are also available.
-
Interconnection layers need to optimize charge transport between different light-absorbing materials while minimizing parasitic absorption. Their manufacturing techniques need to be gentle enough to prevent damaging any of the pre-existing layers.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016). This classic paper on perovskite bandgap engineering demonstrates that composition engineering can enhance both photostability and thermal stability.
De Bastiani, M., Larini, V., Montecucco, R. & Grancini, G. The levelized cost of electricity from perovskite photovoltaics. Energy Environ. Sci. 16, 421–429 (2023).
National Renewable Energy Laboratory. Best research-cell efficiency chart. NREL https://www.nrel.gov/pv/cell-efficiency (2025).
Su, Q. et al. Theoretical limiting-efficiency assessment on advanced crystalline silicon solar cells with Auger ideality factor and wafer thickness modifications. Prog. Photovolt. 32, 587–598 (2024).
Szabó, G., Park, N. G., De Angelis, F. & Kamat, P. V. Are perovskite solar cells reaching the efficiency and voltage limits? ACS Energy Lett. 8, 3829–3831 (2023).
Heydarian, M. et al. Recent progress in monolithic two-terminal perovskite-based triple-junction solar cells. Energy Environ. Sci. 17, 1781–1818 (2024).
Peters, I. M., Gallegos, C. D. R., Lüer, L., Hauch, J. A. & Brabec, C. J. Practical limits of multijunction solar cells. Prog. Photovolt. 31, 1006–1015 (2023).
Hu, H., Pan, T. & Paetzold, U. W. A rising era of perovskite-based triple-junction photovoltaics. Joule 8, 1884–1886 (2024).
Jost, M., Kegelmann, L., Korte, L. & Albrecht, S. Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency. Adv. Energy Mater. 10, 1904102 (2020).
France, R. M. et al. Triple-junction solar cells with 39.5% terrestrial and 34.2% space efficiency enabled by thick quantum well superlattices. Joule 6, 1121–1135 (2022).
Martín, P., González, J. R., García, I., Algora, C. & Rey-Stolle, I. Study of the reverse in component subcells of III–V multijunction space solar cells. Prog. Photovolt. 30, 481–489 (2022).
Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014).
Schygulla, P. et al. Two-terminal III–V//Si triple-junction solar cell with power conversion efficiency of 35.9% at AM1.5G. Prog. Photovolt. 30, 869–879 (2022).
Restat, L. et al. Optoelectrical modeling of perovskite/perovskite/silicon triple-junction solar cells: toward the practical efficiency potential. Sol. RRL 8, 2300887 (2024).
Er-raji, O. et al. Loss analysis of fully-textured perovskite silicon tandem solar cells: characterization methods and simulation toward the practical efficiency potential. Sol. RRL 7, 2300659 (2023).
Philipps, S. P. & Bett, A. W. III–V multi-junction solar cells and concentrating photovoltaic (CPV) systems. Adv. Opt. Technol. 3, 469–478 (2014).
Liu, S. C. et al. Triple-junction solar cells with cyanate in ultrawide-bandgap perovskites. Nature 628, 306–312 (2024). This work presents the first perovskite–perovskite–silicon TJSC with PCE surpassing that of single-junction perovskite devices.
Luo, X. & Lim, E. L. A mini-review: the rise of triple-junction silicon–perovskite–perovskite solar cells. Sol. RRL 9, 2400730 (2024).
Nijs, J. F., Szlufcik, J., Poortmans, J., Sivoththaman, S. & Mertens, R. P. Advanced cost-effective crystalline silicon solar cell technologies. Sol. Energy Mater. Sol. Cells 65, 249–259 (2001).
Maycock, P. D. in Practical Handbook of Photovoltaics (eds Markvart, T. & Castañer, L.) 887–912 (Elsevier, 2003).
Resmi, E., Sreejith, K. P. & Kottantharayil, A. Analysis of variation in recombination characteristics due to light and heat in industrial silicon solar cells. Sol. Energy 252, 127–133 (2023).
Werner, J. et al. Perovskite/perovskite/silicon monolithic triple-junction solar cells with a fully textured design. ACS Energy Lett. 3, 2052–2058 (2018).
Li, F. M. et al. Highly efficient monolithic perovskite/perovskite/silicon triple-junction solar cells. Adv. Mater. 36, 2311595 (2024).
Xu, F. Z. et al. Monolithic perovskite/perovskite/silicon triple-junction solar cells with cation double displacement enabled 2.0 eV perovskites. Joule 8, 224–240 (2024).
Heydarian, M. et al. Monolithic two-terminal perovskite/perovskite/silicon triple-junction solar cells with open circuit voltage > 2.8 V. ACS Energy Lett. 8, 4186–4192 (2023).
Horantner, M. T. et al. The potential of multijunction perovskite solar cells. ACS Energy Lett. 2, 2506–2513 (2017).
Caprioglio, P. et al. Nano-emitting heterostructures violate optical reciprocity and enable efficient photoluminescence in halide-segregated methylammonium-free wide bandgap perovskites. ACS Energy Lett. 6, 419–428 (2021).
Brennan, M. C., Draguta, S., Kamat, P. V. & Kuno, M. Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 3, 204–213 (2018).
Gautam, S. K. et al. Reversible photoinduced phase segregation and origin of long carrier lifetime in mixed-halide perovskite films. Adv. Funct. Mater. 30, 2002622 (2020).
Mahesh, S. et al. Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258–267 (2020).
Knight, A. J., Patel, J. B., Snaith, H. J., Johnston, M. B. & Herz, L. M. Trap states, electric fields, and phase segregation in mixed-halide perovskite photovoltaic devices. Adv. Energy Mater. 10, 1903488 (2020).
Ruth, A., Okrepka, H., Kamat, P. & Kuno, M. Thermodynamic band gap model for photoinduced phase segregation in mixed-halide perovskites. J. Phys. Chem. C 127, 18547–18559 (2023).
Chen, Z., Brocks, G., Tao, S. & Bobbert, P. A. Unified theory for light-induced halide segregation in mixed halide perovskites. Nat. Commun. 12, 2687 (2021).
Yoon, S. J., Stamplecoskie, K. G. & Kamat, P. V. How lead halide complex chemistry dictates the composition of mixed halide perovskites. J. Phys. Chem. Lett. 7, 1368–1373 (2016).
Datta, K. et al. Effect of light-induced halide segregation on the performance of mixed-halide perovskite solar cells. ACS Appl. Energy Mater. 4, 6650–6658 (2021).
Draguta, S. et al. Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites. Nat. Commun. 8, 200 (2017).
Mao, W. et al. Light-induced reversal of ion segregation in mixed-halide perovskites. Nat. Mater. 20, 55–61 (2021).
Bischak, C. G. et al. Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Lett. 17, 1028–1033 (2017).
Bischak, C. G. et al. Tunable polaron distortions control the extent of halide demixing in lead halide perovskites. J. Phys. Chem. Lett. 9, 3998–4005 (2018).
Wang, Z. et al. Recent advances and perspectives of photostability for halide perovskite solar cells. Adv. Opt. Mater. 10, 2101822 (2022).
Mali, S. S. et al. Phase-heterojunction all-inorganic perovskite solar cells surpassing 21.5% efficiency. Nat. Energy 8, 989–1001 (2023).
Chu, X. B. et al. Surface in situ reconstruction of inorganic perovskite films enabling long carrier lifetimes and solar cells with 21% efficiency. Nat. Energy 8, 372–380 (2023).
Li, T. T. et al. Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat. Energy 8, 610–620 (2023).
Brinkmann, K. O. et al. Perovskite–organic tandem solar cells. Nat. Rev. Mater. 9, 202–217 (2024).
Jeong, M. et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369, 1615–1620 (2020).
Wang, J. K. et al. Halide homogenization for low energy loss in 2-eV-bandgap perovskites and increased efficiency in all-perovskite triple-junction solar cells. Nat. Energy 9, 70–80 (2023).
Caprioglio, P. et al. Open-circuit and short-circuit loss management in wide-gap perovskite p–i–n solar cells. Nat. Commun. 14, 932 (2023).
Koopmans, M. & Koster, L. J. A. Voltage deficit in wide bandgap perovskite solar cells: the role of traps, band energies, and effective density of states. Sol. RRL 6, 2200560 (2022).
Heo, S. et al. Origins of high performance and degradation in the mixed perovskite solar cells. Adv. Mater. 31, 1805438 (2019).
Huang, T. Y. et al. Performance-limiting formation dynamics in mixed-halide perovskites. Sci. Adv. 7, eabj1799 (2021).
Wang, R. et al. Prospects for metal halide perovskite-based tandem solar cells. Nat. Photonics 15, 411–425 (2021).
Hu, S. F. et al. Narrow bandgap metal halide perovskites for all-perovskite tandem photovoltaics. Chem. Rev. 124, 4079–4123 (2024).
Liu, X. P. et al. Stabilization of photoactive phases for perovskite photovoltaics. Nat. Rev. Chem. 7, 462–479 (2023).
Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).
Chen, H. R. et al. Advances to high-performance black-phase FAPbI3 perovskite for efficient and stable photovoltaics. Small Struct. 2, 2000130 (2021).
Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).
Turren-Cruz, S. H., Hagfeldt, A. & Saliba, M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 362, 449–453 (2018).
Zheng, Z. W. et al. Development of formamidinium lead iodide-based perovskite solar cells: efficiency and stability. Chem. Sci. 13, 2167–2183 (2022).
Hui, W. et al. Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science 371, 1359–1364 (2021). This work shows that the transformation to α-FAPbI3can be achieved under high-humidity and room-temperature conditions, providing an effective strategy for stabilizing the black phase of FAPbI3.
Sidhik, S. et al. Two-dimensional perovskite templates for durable, efficient formamidinium perovskite solar cells. Science 384, 1227–1235 (2024).
Duijnstee, E. A. et al. Understanding the degradation of methylenediammonium and its role in phase-stabilizing formamidinium lead triiodide. J. Am. Chem. Soc. 145, 10275–10284 (2023).
Adjokatse, S., Fang, H. H., Duim, H. & Loi, M. A. Scalable fabrication of high-quality crystalline and stable FAPbI3 thin films by combining doctor-blade coating and the cation exchange reaction. Nanoscale 11, 5989–5997 (2019).
Liang, Y. et al. Toward stabilization of formamidinium lead iodide perovskites by defect control and composition engineering. Nat. Commun. 15, 1707 (2024).
Chen, R. et al. Robust hole transport material with interface anchors enhances the efficiency and stability of inverted formamidinium–cesium perovskite solar cells with a certified efficiency of 22.3%. Energy Environ. Sci. 15, 2567–2580 (2022).
Xiang, W. C. et al. Intermediate phase engineering of halide perovskites for photovoltaics. Joule 6, 315–339 (2022).
McMeekin, D. P. et al. Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells. Nat. Mater. 22, 73–83 (2023).
Liu, D. T. et al. Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 20, 1337–1346 (2021).
Feng, J. A. et al. Resonant perovskite solar cells with extended band edge. Nat. Commun. 14, 5392 (2023).
Luo, C. et al. Engineering bonding sites enables uniform and robust self-assembled monolayer for stable perovskite solar cells. Nat. Mater. 24, 1265–1272 (2025).
Yin, Y. Q. et al. Efficient and stable ideal bandgap perovskite solar cell achieved by a small amount of tin substituted methylammonium lead iodide. Electron. Mater. Lett. 16, 224–230 (2020).
Zhu, Z. H. & Mi, Q. X. Substituted thiourea as versatile ligands for crystallization control and surface passivation of tin-based perovskite. Cell Rep. Phys. Sci. 3, 100690 (2022).
Zhu, Z. H. et al. Smooth and compact FASnI3 films for lead-free perovskite solar cells with over 14% efficiency. ACS Energy Lett. 7, 2079–2083 (2022).
Yu, B. B. et al. Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 33, 2102055 (2021).
Bati, A. S. R. et al. A chemically bonded monolayer interface enables enhanced thermal stability and efficiency in Pb–Sn perovskite solar cells. Joule. 9, 102047 (2025).
Yang, F. J. & Zhu, K. Advances in mixed tin–lead narrow-bandgap perovskites for single-junction and all-perovskite tandem solar cells. Adv. Mater. 36, 2314341 (2024).
Cai, X. et al. Data-driven design of high-performance MASnxPb1–xI3 perovskite materials by machine learning and experimental realization. Light Sci. Appl. 11, 234 (2022).
Liang, Z. et al. A selective targeting anchor strategy affords efficient and stable ideal-bandgap perovskite solar cells. Adv. Mater. 34, e2110241 (2022).
Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy. 5, 870–880 (2020).
Wang, J. K. et al. Understanding the film formation kinetics of sequential deposited narrow-bandgap Pb–Sn hybrid perovskite films. Adv. Energy Mater. 10, 2000566 (2020).
Wang, J. F. et al. Controlling the crystallization kinetics of lead-free tin halide perovskites for high performance green photovoltaics. Adv. Energy Mater. 11, 2102131 (2021).
Pitaro, M., Tekelenburg, E. K., Shao, S. & Loi, M. A. Tin halide perovskites: from fundamental properties to solar cells. Adv. Mater. 34, e2105844 (2022).
Jokar, E. et al. Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy Environ. Sci. 11, 2353–2362 (2018).
Shao, S. Y. et al. Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency. Adv. Energy Mater. 8, 1702019 (2018).
Lin, R. X. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy. 4, 864–873 (2019).
Nakamura, T. et al. Sn(IV)-free tin perovskite films realized by in situ Sn(0) nanoparticle treatment of the precursor solution. Nat. Commun. 11, 3008 (2020).
Zhang, Y. et al. Highly efficient tin perovskite solar cells via suppressing superoxide generation. Sol. RRL 7, 2200997 (2022).
Cao, J. et al. High-performance tin–lead mixed-perovskite solar cells with vertical compositional gradient. Adv. Mater. 34, e2107729 (2022).
Li, Z. H. et al. 4-Hydrazinobenzoic-acid antioxidant for high-efficiency Sn–Pb alloyed perovskite solar cells. Energy Technol. 10, 2200217 (2022).
Liao, W. Q. et al. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 28, 9333–9340 (2016).
Marshall, K. P., Walker, M., Walton, R. I. & Hatton, R. A. Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nat. Energy 1, 16178 (2016).
Liu, J. J. et al. Textured perovskite/silicon tandem solar cells achieving over 30% efficiency promoted by 4-fluorobenzylamine hydroiodide. Nanomicro Lett. 16, 189 (2024).
Liu, Z. L. et al. Strained heterojunction enables high-performance, fully textured perovskite/silicon tandem solar cells. Joule 8, 2834–2850 (2024).
Sahli, F. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018).
Er-raji, O. et al. Toward efficient and industrially compatible fully textured perovskite silicon tandem solar cells: controlled process parameters for reliable perovskite formation. Prog. Photovolt. 33, 86–99 (2025).
Kore, B. P. et al. Efficient fully textured perovskite silicon tandems with thermally evaporated hole transporting materials. Energy Environ. Sci. 18, 354–366 (2025).
Wang, Y. et al. Homogenized contact in all-perovskite tandems using tailored 2D perovskite. Nature 635, 867–873 (2024).
Zhang, M. et al. Hole-selective transparent in situ passivation contacts for efficient and stable n–i–p graded perovskite/silicon tandem solar cells. Adv. Mater. 37, e2416530 (2025).
Xiao, K. et al. Solution-processed monolithic all-perovskite triple-junction solar cells with efficiency exceeding 20%. ACS Energy Lett. 5, 2819–2826 (2020).
Hou, F. H. et al. Monolithic perovskite/silicon tandem solar cells: a review of the present status and solutions toward commercial application. Nano Energy 124, 109476 (2024).
Blakers, A. W., Wang, A., Milne, A. M., Zhao, J. H. & Green, M. A. 22.8-Percent efficient silicon solar-cell. Appl. Phys. Lett. 55, 1363–1365 (1989).
Zhou, Z. X. et al. Optimization strategies and efficiency prediction for silicon solar cells with hybrid route of PERC and SHJ passivation contact. Adv. Sci. 12, 2411965 (2025).
Messmer, C. et al. How to make PERC suitable for perovskite–silicon tandem solar cells: a simulation study. Prog. Photovolt. 30, 1023–1037 (2022).
Razzaq, A., Allen, T. G., Liu, W. Z., Liu, Z. X. & De Wolf, S. Silicon heterojunction solar cells: techno-economic assessment and opportunities. Joule 6, 514–542 (2022).
Li, C. et al. Achieving 32% efficiency in perovskite/silicon tandem solar cells with bidentate-anchored superwetting self-assembled molecular layers. Angew. Chem. Int. Ed. 64, e202502730 (2025).
Yang, L. et al. Modulating binding strength and acidity of benzene-derivative ligands enables efficient and hysteresis-free perovskite/silicon tandem solar cells. Angew. Chem. Int. Ed. 64, e202500350 (2025).
Richter, A. et al. Tunnel oxide passivating electron contacts as full-area rear emitter of high-efficiency p-type silicon solar cells. Prog. Photovolt. 26, 579–586 (2018).
Li, X. et al. Top-down dual-interface carrier management for highly efficient and stable perovskite/silicon tandem solar cells. Nanomicro. Lett. 17, 141 (2025).
Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).
Gota, F., Langenhorst, M., Schmager, R., Lehr, J. & Paetzold, U. W. Energy yield advantages of three-terminal perovskite–silicon tandem photovoltaics. Joule 4, 2387–2403 (2020).
Wagner, P., Tockhorn, P., Hall, S., Albrecht, S. & Korte, L. Performance of monolithic two- and three-terminal perovskite/silicon tandem solar cells under varying illumination conditions. Sol. RRL 7, 2200954 (2023).
Duong, T. et al. Semitransparent perovskite solar cell with sputtered front and rear electrodes for a four-terminal tandem. IEEE J. Photovolt. 6, 679–687 (2016).
Chi, W. G., Banerjee, S. K., Jayawardena, K. G. D. I., Il Seok, S. & Silva, S. R. P. Perovskite/silicon tandem solar cells: choice of bottom devices and recombination layers. ACS Energy Lett. 8, 1535–1550 (2023).
Jia, X. J., Zhou, C. L., Tang, Y. H. & Wang, W. J. Life cycle assessment on PERC solar modules. Sol. Energy Mater. Sol. Cells 227, 111112 (2021).
Shanmugam, V. et al. Impact of the phosphorus emitter doping profile on metal contact recombination of silicon wafer solar cells. Sol. Energy Mater. Sol. Cells 147, 171–176 (2016).
Jia, L. et al. Efficient perovskite/silicon tandem with asymmetric self-assembly molecule. Nature 644, 912–919 (2025).
Green, M. A. et al. Solar cell efficiency tables (version 66). Prog. Photovolt. 33, 795–810 (2025).
Kato, Y. et al. Global prediction of the energy yields for hybrid perovskite/Si tandem and Si heterojunction single solar modules. Prog. Photovolt. 30, 1198–1218 (2022).
Ying, Z. Q. et al. Monolithic perovskite/black-silicon tandems based on tunnel oxide passivated contacts. Joule 6, 2644–2661 (2022).
Jansen, H., Deboer, M., Legtenberg, R. & Elwenspoek, M. The black silicon method—a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control. J. Micromech. Microeng. 5, 115–120 (1995).
Qu, X. L. et al. Identification of embedded nanotwins at c-Si/a-Si:H interface limiting the performance of high-efficiency silicon heterojunction solar cells. Nat. Energy. 6, 194–202 (2021).
Ballif, C., De Wolf, S., Descoeudres, A. & Holman, Z. C. Amorphous silicon/crystalline silicon heterojunction solar cells. Semicon. Semimet. 90, 73–120 (2014).
Nogay, G. et al. 25.1%-Efficient monolithic perovskite/silicon tandem solar cell based on a p-type monocrystalline textured silicon wafer and high-temperature passivating contacts. ACS Energy Lett. 4, 844–845 (2019).
Glunz, S. W. et al. Silicon-based passivating contacts: the TOPCon route. Prog. Photovolt. 31, 341–359 (2021).
Schulte-Huxel, H., Silverman, T. J., Deceglie, M. G., Friedman, D. J. & Tamboli, A. C. Energy yield analysis of multiterminal Si-based tandem solar cells. IEEE J. Photovolt. 8, 1376–1383 (2018).
Aydin, E. et al. Pathways toward commercial perovskite/silicon tandem photovoltaics. Science 383, eadh3849 (2024).
Yang, G. et al. Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells. Nat. Photonics 16, 588–594 (2022).
Kothandaraman, R. K., Jiang, Y., Feurer, T., Tiwari, A. N. & Fu, F. Near-infrared-transparent perovskite solar cells and perovskite-based tandem photovoltaics. Small Methods 4, 2000395 (2020).
Tockhorn, P. et al. Nano-optical designs for high-efficiency monolithic perovskite–silicon tandem solar cells. Nat. Nanotechnol. 17, 1214–1221 (2022).
Albrecht, S. et al. Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 9, 81–88 (2016).
Kohnen, E. et al. 27.9% efficient monolithic perovskite/silicon tandem solar cells on industry compatible bottom cells. Sol. RRL 5, 2100244 (2021).
Mazzarella, L. et al. Infrared photocurrent management in monolithic perovskite/silicon heterojunction tandem solar cells by using a nanocrystalline silicon oxide interlayer. Opt. Express 26, A487–A497 (2018).
Ross, M. et al. Co-evaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells. Adv. Energy Mater. 11, 2101460 (2021).
Luo, X. et al. Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Adv. Mater. 35, 2207883 (2023).
Chin, X. Y. et al. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science 381, 59–62 (2023).
Er-raji, O. et al. Tailoring perovskite crystallization and interfacial passivation in efficient, fully textured perovskite silicon tandem solar cells. Joule 8, 2811–2833 (2024).
Yu, Z. H. et al. Simplified interconnection structure based on C60/SnO2–x for all-perovskite tandem solar cells. Nat. Energy 5, 657–665 (2020).
Eze, M. C. et al. Optimum silver contact sputtering parameters for efficient perovskite solar cell fabrication. Sol. Energy Mater. Sol. Cells 230, 111185 (2021).
Aydin, E. et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623, 732–738 (2023).
Seo, S., Jeong, S., Park, H., Shin, H. & Park, N. G. Atomic layer deposition for efficient and stable perovskite solar cells. Chem. Commun. 55, 2403–2416 (2019).
Gao, D. et al. Long-term stability in perovskite solar cells through atomic layer deposition of tin oxide. Science 386, 187–192 (2024).
Avigad, E. & Etgar, L. Studying the effect of MoO3 in hole-conductor-free perovskite solar cells. ACS Energy Lett. 3, 2240–2245 (2018).
Kosasih, F. U., Erdenebileg, E., Mathews, N., Mhaisalkar, S. G. & Bruno, A. Thermal evaporation and hybrid deposition of perovskite solar cells and mini-modules. Joule 6, 2692–2734 (2022).
Schackmar, F. et al. Perovskite solar cells with all-inkjet-printed absorber and charge transport layers. Adv. Mater. Technol. 6, 2000271 (2020).
Patidar, R., Burkitt, D., Hooper, K., Richards, D. & Watson, T. Slot-die coating of perovskite solar cells: an overview. Mater. Today Commun. 22, 100808 (2020).
Lee, S. W. et al. Perovskites fabricated on textured silicon surfaces for tandem solar cells. Commun. Chem. 3, 37 (2020).
Li, Y. X. et al. Nanocrystalline silicon–oxygen based tunneling recombination junctions in perovskite/silicon heterojunction tandem solar cells. Sol. Energy Mater. Sol. Cells 262, 112539 (2023).
Choi, Y. J., Lim, S. Y., Park, J. H., Ji, S. G. & Kim, J. Y. Atomic layer deposition-free monolithic perovskite/perovskite/silicon triple-junction solar cells. ACS Energy Lett. 8, 3141–3146 (2023).
Hu, H. et al. Triple-junction perovskite–perovskite–silicon solar cells with power conversion efficiency of 24.4%. Energy Environ. Sci. 17, 2800 (2024).
Suo, J. J., Yang, B. W., Bogachuk, D., Boschloo, G. & Hagfeldt, A. The dual use of SAM molecules for efficient and stable perovskite solar cells. Adv. Energy Mater. 15, 2400205 (2024).
Yu, X. Y., Sun, X. L., Zhu, Z. L. & Li, Z. A. Stabilization strategies of buried interface for efficient SAM-based inverted perovskite solar cells. Angew. Chem. Int. Ed. 64, e202419608 (2025).
Wang, X. et al. Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells. Nat. Photonics 18, 1269–1275 (2024).
Zheng, J. H. et al. Monolithic perovskite–perovskite–silicon triple-junction tandem solar cell with an efficiency of over 20%. ACS Energy Lett. 7, 3003–3005 (2022).
Wang, Z. W. et al. Suppressed phase segregation for triple-junction perovskite solar cells. Nature 618, 74–79 (2023).
Zhao, D. W. et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy 3, 1093–1100 (2018).
Bhagwat, S. & Howson, R. P. Use of the magnetron-sputtering technique for the control of the properties of indium tin oxide thin films. Surf. Coat. Technol. 111, 163–171 (1999).
Lamanna, E. et al. Mechanically stacked, two-terminal graphene-based perovskite/silicon tandem solar cell with efficiency over 26%. Joule 4, 865–881 (2020).
Sun, Y. et al. Flexible perovskite/silicon monolithic tandem solar cells approaching 30% efficiency. Nat. Commun. 16, 5733 (2025).
Dong, C. et al. Principle and progress of interconnection layers in monolithic perovskite-based tandem photovoltaics. Adv. Energy Mater. 15, 2404628 (2024).
Hu, S. Y. et al. Flexible perovskite-based multiple-junction photovoltaics. Joule 9, 101870 (2025).
Hu, S. F. et al. Steering perovskite precursor solutions for multijunction photovoltaics. Nature 639, 93–101 (2025). This work shows that precursor engineering achieves 28.7% and 27.9% efficiency in all-perovskite TJSCs and quadruple-junction solar cells, respectively.
Yang, T. C. J., Fiala, P., Jeangros, Q. & Ballif, C. High-bandgap perovskite materials for multijunction solar cells. Joule 2, 1421–1436 (2018).
Jaysankar, M. et al. Toward scalable perovskite-based multijunction solar modules. Prog. Photovolt. 27, 733–738 (2019).
Song, T., Mack, C., Williams, R., Friedman, D. J. & Kopidakis, N. How should researchers measure perovskite-based monolithic multijunction solar cells’ performance? A calibration lab’s perspective. Sol. RRL 6, 2200800 (2022).
Lang, F. et al. Proton-radiation tolerant all-perovskite multijunction solar cells. Adv. Energy Mater. 11, 2102246 (2021).
Hou, G. J., Sanchez-Perez, C. & Rey-Stolle, I. Double layer and high-low refractive index stacks antireflecting coatings for multijunction perovskite-on-silicon solar cells. IEEE J. Photovolt. 14, 93–98 (2024).
Blom, Y. et al. Exploring the potential of perovskite/perovskite/silicon triple-junction Pv modules in two- and four-terminal configuration. Sol. RRL 9, e2400613 (2025).
Rodríguez-Gallegos, C. D. et al. Global techno-economic performance of bifacial and tracking photovoltaic systems. Joule 4, 1514–1541 (2020). This work presents a practical assessment of power generation potential and cost-effectiveness for photovoltaic power stations.
Peters, I. M. & Buonassisi, T. Energy yield limits for single-junction solar cells. Joule 2, 1160–1170 (2018).
Rehman, W. et al. Charge-carrier dynamics and mobilities in formamidinium lead mixed-halide perovskites. Adv. Mater. 27, 7938–7944 (2015).
Tao, L. et al. Stability of mixed-halide wide bandgap perovskite solar cells: strategies and progress. J. Energy Chem. 61, 395–415 (2021).
Yoon, S. J. et al. Tracking iodide and bromide ion segregation in mixed halide lead perovskites during photoirradiation. ACS Energy Lett. 1, 290–296 (2016).
Yu, Y., Liu, X., Zhang, S. & Chen, J. Photoinduced phase segregation in wide-bandgap mixed-halide perovskite solar cells. Energy Mater. Devices 2, 9370037 (2024).
Li, Z. X. et al. In situ epitaxial growth of blocking structure in mixed-halide wide-band-gap perovskites for efficient photovoltaics. Joule 7, 1363–1381 (2023).
Verkhogliadov, G., Haroldson, R., Gets, D., Zakhidov, A. A. & Makarov, S. V. Temperature dependence of photoinduced phase segregation in bromide-rich mixed halide perovskites. J. Phys. Chem. C 127, 24339–24349 (2023).
Motti, S. G. et al. Phase segregation in mixed-halide perovskites affects charge-carrier dynamics while preserving mobility. Nat. Commun. 12, 6955 (2021).
Duan, L. P. et al. Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 8, 261–281 (2023).
Tanko, K. T. et al. Stability and reliability of perovskite photovoltaics: are we there yet? MRS Bull. 50, 512–525 (2025).
Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).
Yang, Q., Zhang, H. Z., Jiang, Z. J., Shen, H. & Gong, X. Mobile oxygen capture enhances photothermal stability of perovskite solar cells under ISOS protocols. Adv. Mater. 37, 2500268 (2025).
Li, X. D. et al. Iodine-trapping strategy for light-heat stable inverted perovskite solar cells under ISOS protocols. Energy Environ. Sci. 16, 6071–6077 (2023).
Khenkin, M. arkV. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020). This work presents standardized stability testing protocols for PSCs established to enhance research reproducibility and enable large-scale data set analysis.
Zhao, K. et al. Peri-fused polyaromatic molecular contacts for perovskite solar cells. Nature 632, 301–306 (2024).
Wu, L. Y. et al. Resilience pathways for halide perovskite photovoltaics under temperature cycling. Nat. Rev. Mater. 10, 536–549 (2025).
Li, H. S. & Liu, S. C. Revolutionary SAMs: transforming inverted perovskite solar cells. J. Mater. Chem. A 12, 9929–9932 (2024).
Suo, J. et al. Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests. Nat. Energy 9, 172–183 (2024).
Xiong, Y. C. et al. Recent advances in perovskite/Cu(In,Ga)Se2 tandem solar cells. Mater. Today Electron. 7, 100086 (2024).
Wu, S. F., Liu, M. & Jen, A. K. Y. Prospects and challenges for perovskite–organic tandem solar cells. Joule 7, 484–502 (2023).
Lim, J., Park, N. G., Seok, S. I. & Saliba, M. All-perovskite tandem solar cells: from fundamentals to technological progress. Energy Environ. Sci. 17, 4390–4425 (2024).
Wang, Y. et al. Oxidation-resistant all-perovskite tandem solar cells in substrate configuration. Nat. Commun. 14, 1819 (2023).
Han, Q. F. et al. High-performance perovskite/Cu(In,Ga)Se monolithic tandem solar cells. Science 361, 904–908 (2018).
McMeekin, D. P. et al. Solution-processed all-perovskite multi-junction solar cells. Joule 3, 387–401 (2019).
Bush, K. A. et al. Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. 3, 428–435 (2018).
Lee, H., Kang, S. B., Lee, S., Zhu, K. & Kim, D. H. Progress and outlook of Sn–Pb mixed perovskite solar cells. Nano. Converg. 10, 27 (2023).
Mei, J. & Yan, F. Recent advances in wide-bandgap perovskite solar cells. Adv. Mater. 1, e2418622 (2025).
Zhao, Y. et al. Strain-activated light-induced halide segregation in mixed-halide perovskite solids. Nat. Commun. 11, 6328 (2020).
Isikgor, F. H. et al. Monolithic perovskite–perovskite–organic triple-junction solar cells with a voltage output exceeding 3 V. ACS Energy Lett. 7, 4469–4471 (2022).
Jia, Z. et al. Efficient near-infrared harvesting in perovskite–organic tandem solar cells. Nature 643, 104–110 (2025).
Wang, Y. D. et al. Regulating wide-bandgap perovskite face-on stacking in hybrid-deposited perovskite/organic tandem solar cells. Nat. Commun. 16, 6142 (2025).
Morales-Acevedo, A. A simple model of graded band-gap CuInGaSe2 solar cells. Energy Procedia 2, 169–176 (2010).
Zeng, L. et al. A review of perovskite/copper indium gallium selenide tandem solar cells. Sol. RRL 8, 2301059 (2024).
Yakushev, M. V. et al. Influence of growth conditions on the structural quality of Cu(InGa)Se2 and CuInSe2 thin films. Thin Solid Films 451–452, 133–136 (2004).
Kutsarov, D. I. et al. Progress in flexible perovskite solar cells: paving the way for scalable manufacturing. Adv. Mater. Technol. https://doi.org/10.1002/admt.202401834 (2025).
Pei, F. T. et al. Inhibiting defect passivation failure in perovskite for perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells with certified efficiency 27.35%. Nat. Energy. 10, 824–835 (2025).
Tang, L. et al. Record-efficient flexible monolithic perovskite–CIGS tandem solar cell with VOC exceeding 1.8 V on polymer substrate. Adv. Energy Mater. 15, 2403682 (2025).
Lim, S. Y., Choi, Y. J., Park, S. J., Hong, G. P. & Kim, J. Y. Rational design of medium-bandgap perovskite solar cells for triple-junction Si tandems. ACS Appl. Mater. Interfaces 17, 23885–23891 (2025).
Wang, Y. T. et al. Encapsulation and stability testing of perovskite solar cells for real life applications. ACS Mater. Au 2, 215–236 (2022).
Cherif, F. E. & Sammouda, H. Prediction of the power conversion efficiency of perovskite-on-CIGS tandem and triple junctions thin-film cells under solar concentration irradiations by optimization of structural and optoelectronic materials characteristic. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 280, 115712 (2022).
Yan, J., Savenije, T. J., Mazzarella, L. & Isabella, O. Progress and challenges on scaling up of perovskite solar cell technology. Sustain. Energy Fuels 6, 243–266 (2022).
Wang, H. F., Qin, Z. X., Miao, Y. F. & Zhao, Y. X. Recent progress in large-area perovskite photovoltaic modules. Trans. Tianjin Univ. 28, 323–340 (2022).
Yan, G. H., Yuan, Y., Kaba, M. & Kirchartz, T. Visualizing performances losses of perovskite solar cells and modules: from laboratory to industrial scales. Adv. Energy Mater. 15, 2403706 (2025).
Jacobsson, T. J. et al. An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nat. Energy 7, 107–115 (2022).
Hou, Y. et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020). This work is the first demonstration of solution-processed micron-thick perovskite–full-texture silicon tandems.
Acknowledgements
Y.H. acknowledges support from the Agency for Science, Technology and Research (A*STAR) under its MTC IRG Grant (M23M6c0108). The authors of this Review are affiliated with the Solar Energy Research Institute of Singapore (SERIS), a research institute at the National University of Singapore. SERIS is supported by the National University of Singapore, the National Research Foundation Singapore, the Energy Market Authority of Singapore and the Singapore Economic Development Board. The data used for the simulation shown in Fig. 5 were provided by SERIS.
Author information
Authors and Affiliations
Contributions
Y.Y. and S.L. contributed equally to this work. Y.Y. and S.L. wrote the first manuscript, and Z.W. and Y.H. revised the manuscript and supervised the project. Y.Y. and S.L. drew the figures. C.D.R.-G and C.A.R.-G completed the calculations. Z.W. and Y.H. contributed to manuscript editing and comments.
Corresponding authors
Ethics declarations
Competing interests
Y.H. is the founder of Singfilm Solar, a company focused on the commercialization of perovskite photovoltaic technologies. The other authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Clean Technology thanks Junke Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- III–V semiconductors
-
Materials made from group III and group V elements of the periodic table, widely used in high-efficiency solar cells and electronic devices.
- Double-bounce effect
-
Refers to light reflecting twice within a material or structure, thereby enhancing absorption or increasing the optical path length.
- FA
-
(Formamidinium). The FA ion is an organic cation frequently used in perovskite solar cells to improve stability and efficiency.
- Interdigitated back contact
-
(IBC). A solar cell design in which both positive and negative contacts are located on the back side of the cell to improve efficiency and reduce shading.
- Lewis adducts
-
Compounds formed by the chemical reaction and combination of a Lewis acid and a Lewis base.
- MA
-
(Methylammonium). The MA ion is an organic cation commonly used as a component in perovskite solar cell materials.
- Shockley–Queisser limit
-
The maximum theoretical efficiency that a single-junction solar cell can achieve under standard illumination conditions.
- Silicon heterojunctions
-
(SHJs). Interfaces between different silicon-based materials that improve solar cell efficiency by reducing recombination losses.
- Tunnel oxide passivated contacts
-
(TOPCons). Ultra-thin oxide layers that enable efficient charge-carrier transport while minimizing surface recombination in solar cells.
- Ultra-wide bandgap
-
(UWBG). A bandgap greater than 1.85 eV.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yao, Y., Liu, S., Rodríguez-Gallegos, C.D. et al. Perovskite-based multi-junction solar cells. Nat. Rev. Clean Technol. (2025). https://doi.org/10.1038/s44359-025-00103-8
Accepted:
Published:
DOI: https://doi.org/10.1038/s44359-025-00103-8