Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Perovskite-based multi-junction solar cells

Subjects

Abstract

Commercially available single-junction photovoltaic devices are nearing the theoretical ~29% limit of their power conversion efficiencies (PCEs). By layering multiple materials with complementary bandgaps, multi-junction photovoltaic solar cells could have higher efficiencies than devices with single light-absorbing layers. This Review examines the performance of perovskite–perovskite–silicon triple-junction solar cells (TJSCs), which have reported PCEs of 27.62% and theoretical maximum PCEs of 44.3%. Metal-halide perovskite materials have chemically tunable bandgaps, and can be deposited on top of silicon photovoltaic devices through large-area fabrication techniques. Perovskite materials with bandgaps engineered for multi-junction applications can struggle with poor crystallization during film formation, and can subsequently undergo PCE-limiting phase separation under exposure conditions. Altering composition through the addition of tin and/or doping with a range of ions or ligands can improve individual layer performance and overall device stability. The large maximum energy production of perovskite-based TJSCs under real radiation conditions (895 kWh m–2 per year) underscores the broad application potential of multi-junction solar cells. Decreasing open-circuit voltage losses, improving bandgap matching for the middle layer, and focusing on fabrication repeatability and scalability could advance perovskite-based TJSCs beyond the proof-of-concept stage.

Key points

  • Perovskite solar cell materials are solution-processable, with tunable bandgaps and high photoconversion efficiencies, and can be deposited on top of single-junction devices to make multi-junction photovoltaics.

  • Research into ultra-wide bandgap (UWBG) perovskites, which are suitable for the top layer of multilayer devices, has focused on improving the crystallinity and stability of the materials for these applications.

  • Middle-layer perovskite research has focused on chemical and thermal stability, especially under conditions required to form the top UWBG layers.

  • Bottom-layer cells are primarily made from silicon, but copper–indium–gallium–selenide (CIGS) cells, organic photovoltaics or even other perovskite materials are all used in research devices. A range of contact configurations are also available.

  • Interconnection layers need to optimize charge transport between different light-absorbing materials while minimizing parasitic absorption. Their manufacturing techniques need to be gentle enough to prevent damaging any of the pre-existing layers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The evolution and working principle of perovskite–silicon multi-junction solar cells.
Fig. 2: Some issues associated with wide-bandgap perovskites.
Fig. 3: Ideal-bandgap middle cell.
Fig. 4: Silicon bottom solar cells.
Fig. 5: Energy yield evaluation of perovskite-based multi-junction solar cells.

Similar content being viewed by others

References

  1. McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016). This classic paper on perovskite bandgap engineering demonstrates that composition engineering can enhance both photostability and thermal stability.

    Article  CAS  Google Scholar 

  2. De Bastiani, M., Larini, V., Montecucco, R. & Grancini, G. The levelized cost of electricity from perovskite photovoltaics. Energy Environ. Sci. 16, 421–429 (2023).

    Article  Google Scholar 

  3. National Renewable Energy Laboratory. Best research-cell efficiency chart. NREL https://www.nrel.gov/pv/cell-efficiency (2025).

  4. Su, Q. et al. Theoretical limiting-efficiency assessment on advanced crystalline silicon solar cells with Auger ideality factor and wafer thickness modifications. Prog. Photovolt. 32, 587–598 (2024).

    Article  CAS  Google Scholar 

  5. Szabó, G., Park, N. G., De Angelis, F. & Kamat, P. V. Are perovskite solar cells reaching the efficiency and voltage limits? ACS Energy Lett. 8, 3829–3831 (2023).

    Article  Google Scholar 

  6. Heydarian, M. et al. Recent progress in monolithic two-terminal perovskite-based triple-junction solar cells. Energy Environ. Sci. 17, 1781–1818 (2024).

    Article  CAS  Google Scholar 

  7. Peters, I. M., Gallegos, C. D. R., Lüer, L., Hauch, J. A. & Brabec, C. J. Practical limits of multijunction solar cells. Prog. Photovolt. 31, 1006–1015 (2023).

    Article  CAS  Google Scholar 

  8. Hu, H., Pan, T. & Paetzold, U. W. A rising era of perovskite-based triple-junction photovoltaics. Joule 8, 1884–1886 (2024).

    Article  Google Scholar 

  9. Jost, M., Kegelmann, L., Korte, L. & Albrecht, S. Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency. Adv. Energy Mater. 10, 1904102 (2020).

    Article  CAS  Google Scholar 

  10. France, R. M. et al. Triple-junction solar cells with 39.5% terrestrial and 34.2% space efficiency enabled by thick quantum well superlattices. Joule 6, 1121–1135 (2022).

    Article  CAS  Google Scholar 

  11. Martín, P., González, J. R., García, I., Algora, C. & Rey-Stolle, I. Study of the reverse in component subcells of III–V multijunction space solar cells. Prog. Photovolt. 30, 481–489 (2022).

    Article  Google Scholar 

  12. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014).

    Article  CAS  Google Scholar 

  13. Schygulla, P. et al. Two-terminal III–V//Si triple-junction solar cell with power conversion efficiency of 35.9% at AM1.5G. Prog. Photovolt. 30, 869–879 (2022).

    Article  CAS  Google Scholar 

  14. Restat, L. et al. Optoelectrical modeling of perovskite/perovskite/silicon triple-junction solar cells: toward the practical efficiency potential. Sol. RRL 8, 2300887 (2024).

    Article  CAS  Google Scholar 

  15. Er-raji, O. et al. Loss analysis of fully-textured perovskite silicon tandem solar cells: characterization methods and simulation toward the practical efficiency potential. Sol. RRL 7, 2300659 (2023).

    Article  CAS  Google Scholar 

  16. Philipps, S. P. & Bett, A. W. III–V multi-junction solar cells and concentrating photovoltaic (CPV) systems. Adv. Opt. Technol. 3, 469–478 (2014).

    Article  CAS  Google Scholar 

  17. Liu, S. C. et al. Triple-junction solar cells with cyanate in ultrawide-bandgap perovskites. Nature 628, 306–312 (2024). This work presents the first perovskite–perovskite–silicon TJSC with PCE surpassing that of single-junction perovskite devices.

    Article  CAS  Google Scholar 

  18. Luo, X. & Lim, E. L. A mini-review: the rise of triple-junction silicon–perovskite–perovskite solar cells. Sol. RRL 9, 2400730 (2024).

    Article  Google Scholar 

  19. Nijs, J. F., Szlufcik, J., Poortmans, J., Sivoththaman, S. & Mertens, R. P. Advanced cost-effective crystalline silicon solar cell technologies. Sol. Energy Mater. Sol. Cells 65, 249–259 (2001).

    Article  CAS  Google Scholar 

  20. Maycock, P. D. in Practical Handbook of Photovoltaics (eds Markvart, T. & Castañer, L.) 887–912 (Elsevier, 2003).

  21. Resmi, E., Sreejith, K. P. & Kottantharayil, A. Analysis of variation in recombination characteristics due to light and heat in industrial silicon solar cells. Sol. Energy 252, 127–133 (2023).

    Article  CAS  Google Scholar 

  22. Werner, J. et al. Perovskite/perovskite/silicon monolithic triple-junction solar cells with a fully textured design. ACS Energy Lett. 3, 2052–2058 (2018).

    Article  CAS  Google Scholar 

  23. Li, F. M. et al. Highly efficient monolithic perovskite/perovskite/silicon triple-junction solar cells. Adv. Mater. 36, 2311595 (2024).

    Article  CAS  Google Scholar 

  24. Xu, F. Z. et al. Monolithic perovskite/perovskite/silicon triple-junction solar cells with cation double displacement enabled 2.0 eV perovskites. Joule 8, 224–240 (2024).

    Article  CAS  Google Scholar 

  25. Heydarian, M. et al. Monolithic two-terminal perovskite/perovskite/silicon triple-junction solar cells with open circuit voltage > 2.8 V. ACS Energy Lett. 8, 4186–4192 (2023).

    Article  CAS  Google Scholar 

  26. Horantner, M. T. et al. The potential of multijunction perovskite solar cells. ACS Energy Lett. 2, 2506–2513 (2017).

    Article  CAS  Google Scholar 

  27. Caprioglio, P. et al. Nano-emitting heterostructures violate optical reciprocity and enable efficient photoluminescence in halide-segregated methylammonium-free wide bandgap perovskites. ACS Energy Lett. 6, 419–428 (2021).

    Article  CAS  Google Scholar 

  28. Brennan, M. C., Draguta, S., Kamat, P. V. & Kuno, M. Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 3, 204–213 (2018).

    Article  CAS  Google Scholar 

  29. Gautam, S. K. et al. Reversible photoinduced phase segregation and origin of long carrier lifetime in mixed-halide perovskite films. Adv. Funct. Mater. 30, 2002622 (2020).

    Article  CAS  Google Scholar 

  30. Mahesh, S. et al. Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258–267 (2020).

    Article  CAS  Google Scholar 

  31. Knight, A. J., Patel, J. B., Snaith, H. J., Johnston, M. B. & Herz, L. M. Trap states, electric fields, and phase segregation in mixed-halide perovskite photovoltaic devices. Adv. Energy Mater. 10, 1903488 (2020).

    Article  CAS  Google Scholar 

  32. Ruth, A., Okrepka, H., Kamat, P. & Kuno, M. Thermodynamic band gap model for photoinduced phase segregation in mixed-halide perovskites. J. Phys. Chem. C 127, 18547–18559 (2023).

    Article  CAS  Google Scholar 

  33. Chen, Z., Brocks, G., Tao, S. & Bobbert, P. A. Unified theory for light-induced halide segregation in mixed halide perovskites. Nat. Commun. 12, 2687 (2021).

    Article  CAS  Google Scholar 

  34. Yoon, S. J., Stamplecoskie, K. G. & Kamat, P. V. How lead halide complex chemistry dictates the composition of mixed halide perovskites. J. Phys. Chem. Lett. 7, 1368–1373 (2016).

    Article  CAS  Google Scholar 

  35. Datta, K. et al. Effect of light-induced halide segregation on the performance of mixed-halide perovskite solar cells. ACS Appl. Energy Mater. 4, 6650–6658 (2021).

    Article  CAS  Google Scholar 

  36. Draguta, S. et al. Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites. Nat. Commun. 8, 200 (2017).

    Article  Google Scholar 

  37. Mao, W. et al. Light-induced reversal of ion segregation in mixed-halide perovskites. Nat. Mater. 20, 55–61 (2021).

    Article  CAS  Google Scholar 

  38. Bischak, C. G. et al. Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Lett. 17, 1028–1033 (2017).

    Article  CAS  Google Scholar 

  39. Bischak, C. G. et al. Tunable polaron distortions control the extent of halide demixing in lead halide perovskites. J. Phys. Chem. Lett. 9, 3998–4005 (2018).

    Article  CAS  Google Scholar 

  40. Wang, Z. et al. Recent advances and perspectives of photostability for halide perovskite solar cells. Adv. Opt. Mater. 10, 2101822 (2022).

    Article  CAS  Google Scholar 

  41. Mali, S. S. et al. Phase-heterojunction all-inorganic perovskite solar cells surpassing 21.5% efficiency. Nat. Energy 8, 989–1001 (2023).

    Article  CAS  Google Scholar 

  42. Chu, X. B. et al. Surface in situ reconstruction of inorganic perovskite films enabling long carrier lifetimes and solar cells with 21% efficiency. Nat. Energy 8, 372–380 (2023).

    Article  CAS  Google Scholar 

  43. Li, T. T. et al. Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat. Energy 8, 610–620 (2023).

    Article  CAS  Google Scholar 

  44. Brinkmann, K. O. et al. Perovskite–organic tandem solar cells. Nat. Rev. Mater. 9, 202–217 (2024).

    Article  CAS  Google Scholar 

  45. Jeong, M. et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369, 1615–1620 (2020).

    Article  CAS  Google Scholar 

  46. Wang, J. K. et al. Halide homogenization for low energy loss in 2-eV-bandgap perovskites and increased efficiency in all-perovskite triple-junction solar cells. Nat. Energy 9, 70–80 (2023).

    Article  Google Scholar 

  47. Caprioglio, P. et al. Open-circuit and short-circuit loss management in wide-gap perovskite p–i–n solar cells. Nat. Commun. 14, 932 (2023).

    Article  CAS  Google Scholar 

  48. Koopmans, M. & Koster, L. J. A. Voltage deficit in wide bandgap perovskite solar cells: the role of traps, band energies, and effective density of states. Sol. RRL 6, 2200560 (2022).

    Article  CAS  Google Scholar 

  49. Heo, S. et al. Origins of high performance and degradation in the mixed perovskite solar cells. Adv. Mater. 31, 1805438 (2019).

    Article  Google Scholar 

  50. Huang, T. Y. et al. Performance-limiting formation dynamics in mixed-halide perovskites. Sci. Adv. 7, eabj1799 (2021).

    Article  CAS  Google Scholar 

  51. Wang, R. et al. Prospects for metal halide perovskite-based tandem solar cells. Nat. Photonics 15, 411–425 (2021).

    Article  CAS  Google Scholar 

  52. Hu, S. F. et al. Narrow bandgap metal halide perovskites for all-perovskite tandem photovoltaics. Chem. Rev. 124, 4079–4123 (2024).

    Article  CAS  Google Scholar 

  53. Liu, X. P. et al. Stabilization of photoactive phases for perovskite photovoltaics. Nat. Rev. Chem. 7, 462–479 (2023).

    Article  CAS  Google Scholar 

  54. Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).

    Article  CAS  Google Scholar 

  55. Chen, H. R. et al. Advances to high-performance black-phase FAPbI3 perovskite for efficient and stable photovoltaics. Small Struct. 2, 2000130 (2021).

    Article  CAS  Google Scholar 

  56. Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

    Article  CAS  Google Scholar 

  57. Turren-Cruz, S. H., Hagfeldt, A. & Saliba, M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 362, 449–453 (2018).

    Article  CAS  Google Scholar 

  58. Zheng, Z. W. et al. Development of formamidinium lead iodide-based perovskite solar cells: efficiency and stability. Chem. Sci. 13, 2167–2183 (2022).

    Article  CAS  Google Scholar 

  59. Hui, W. et al. Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science 371, 1359–1364 (2021). This work shows that the transformation to α-FAPbI3can be achieved under high-humidity and room-temperature conditions, providing an effective strategy for stabilizing the black phase of FAPbI3.

    Article  CAS  Google Scholar 

  60. Sidhik, S. et al. Two-dimensional perovskite templates for durable, efficient formamidinium perovskite solar cells. Science 384, 1227–1235 (2024).

    Article  CAS  Google Scholar 

  61. Duijnstee, E. A. et al. Understanding the degradation of methylenediammonium and its role in phase-stabilizing formamidinium lead triiodide. J. Am. Chem. Soc. 145, 10275–10284 (2023).

    Article  CAS  Google Scholar 

  62. Adjokatse, S., Fang, H. H., Duim, H. & Loi, M. A. Scalable fabrication of high-quality crystalline and stable FAPbI3 thin films by combining doctor-blade coating and the cation exchange reaction. Nanoscale 11, 5989–5997 (2019).

    Article  CAS  Google Scholar 

  63. Liang, Y. et al. Toward stabilization of formamidinium lead iodide perovskites by defect control and composition engineering. Nat. Commun. 15, 1707 (2024).

    Article  CAS  Google Scholar 

  64. Chen, R. et al. Robust hole transport material with interface anchors enhances the efficiency and stability of inverted formamidinium–cesium perovskite solar cells with a certified efficiency of 22.3%. Energy Environ. Sci. 15, 2567–2580 (2022).

    Article  CAS  Google Scholar 

  65. Xiang, W. C. et al. Intermediate phase engineering of halide perovskites for photovoltaics. Joule 6, 315–339 (2022).

    Article  CAS  Google Scholar 

  66. McMeekin, D. P. et al. Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells. Nat. Mater. 22, 73–83 (2023).

    Article  CAS  Google Scholar 

  67. Liu, D. T. et al. Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 20, 1337–1346 (2021).

    Article  CAS  Google Scholar 

  68. Feng, J. A. et al. Resonant perovskite solar cells with extended band edge. Nat. Commun. 14, 5392 (2023).

    Article  CAS  Google Scholar 

  69. Luo, C. et al. Engineering bonding sites enables uniform and robust self-assembled monolayer for stable perovskite solar cells. Nat. Mater. 24, 1265–1272 (2025).

    Article  CAS  Google Scholar 

  70. Yin, Y. Q. et al. Efficient and stable ideal bandgap perovskite solar cell achieved by a small amount of tin substituted methylammonium lead iodide. Electron. Mater. Lett. 16, 224–230 (2020).

    Article  CAS  Google Scholar 

  71. Zhu, Z. H. & Mi, Q. X. Substituted thiourea as versatile ligands for crystallization control and surface passivation of tin-based perovskite. Cell Rep. Phys. Sci. 3, 100690 (2022).

    Article  CAS  Google Scholar 

  72. Zhu, Z. H. et al. Smooth and compact FASnI3 films for lead-free perovskite solar cells with over 14% efficiency. ACS Energy Lett. 7, 2079–2083 (2022).

    Article  CAS  Google Scholar 

  73. Yu, B. B. et al. Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 33, 2102055 (2021).

    Article  CAS  Google Scholar 

  74. Bati, A. S. R. et al. A chemically bonded monolayer interface enables enhanced thermal stability and efficiency in Pb–Sn perovskite solar cells. Joule. 9, 102047 (2025).

    Article  Google Scholar 

  75. Yang, F. J. & Zhu, K. Advances in mixed tin–lead narrow-bandgap perovskites for single-junction and all-perovskite tandem solar cells. Adv. Mater. 36, 2314341 (2024).

    Article  CAS  Google Scholar 

  76. Cai, X. et al. Data-driven design of high-performance MASnxPb1–xI3 perovskite materials by machine learning and experimental realization. Light Sci. Appl. 11, 234 (2022).

    Article  CAS  Google Scholar 

  77. Liang, Z. et al. A selective targeting anchor strategy affords efficient and stable ideal-bandgap perovskite solar cells. Adv. Mater. 34, e2110241 (2022).

    Article  Google Scholar 

  78. Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy. 5, 870–880 (2020).

    Article  Google Scholar 

  79. Wang, J. K. et al. Understanding the film formation kinetics of sequential deposited narrow-bandgap Pb–Sn hybrid perovskite films. Adv. Energy Mater. 10, 2000566 (2020).

    Article  CAS  Google Scholar 

  80. Wang, J. F. et al. Controlling the crystallization kinetics of lead-free tin halide perovskites for high performance green photovoltaics. Adv. Energy Mater. 11, 2102131 (2021).

    Article  CAS  Google Scholar 

  81. Pitaro, M., Tekelenburg, E. K., Shao, S. & Loi, M. A. Tin halide perovskites: from fundamental properties to solar cells. Adv. Mater. 34, e2105844 (2022).

    Article  Google Scholar 

  82. Jokar, E. et al. Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy Environ. Sci. 11, 2353–2362 (2018).

    Article  CAS  Google Scholar 

  83. Shao, S. Y. et al. Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency. Adv. Energy Mater. 8, 1702019 (2018).

    Article  Google Scholar 

  84. Lin, R. X. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy. 4, 864–873 (2019).

    Article  CAS  Google Scholar 

  85. Nakamura, T. et al. Sn(IV)-free tin perovskite films realized by in situ Sn(0) nanoparticle treatment of the precursor solution. Nat. Commun. 11, 3008 (2020).

    Article  CAS  Google Scholar 

  86. Zhang, Y. et al. Highly efficient tin perovskite solar cells via suppressing superoxide generation. Sol. RRL 7, 2200997 (2022).

    Article  Google Scholar 

  87. Cao, J. et al. High-performance tin–lead mixed-perovskite solar cells with vertical compositional gradient. Adv. Mater. 34, e2107729 (2022).

    Article  Google Scholar 

  88. Li, Z. H. et al. 4-Hydrazinobenzoic-acid antioxidant for high-efficiency Sn–Pb alloyed perovskite solar cells. Energy Technol. 10, 2200217 (2022).

    Article  CAS  Google Scholar 

  89. Liao, W. Q. et al. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 28, 9333–9340 (2016).

    Article  CAS  Google Scholar 

  90. Marshall, K. P., Walker, M., Walton, R. I. & Hatton, R. A. Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nat. Energy 1, 16178 (2016).

    Article  CAS  Google Scholar 

  91. Liu, J. J. et al. Textured perovskite/silicon tandem solar cells achieving over 30% efficiency promoted by 4-fluorobenzylamine hydroiodide. Nanomicro Lett. 16, 189 (2024).

    CAS  Google Scholar 

  92. Liu, Z. L. et al. Strained heterojunction enables high-performance, fully textured perovskite/silicon tandem solar cells. Joule 8, 2834–2850 (2024).

    Article  CAS  Google Scholar 

  93. Sahli, F. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018).

    Article  CAS  Google Scholar 

  94. Er-raji, O. et al. Toward efficient and industrially compatible fully textured perovskite silicon tandem solar cells: controlled process parameters for reliable perovskite formation. Prog. Photovolt. 33, 86–99 (2025).

    Article  CAS  Google Scholar 

  95. Kore, B. P. et al. Efficient fully textured perovskite silicon tandems with thermally evaporated hole transporting materials. Energy Environ. Sci. 18, 354–366 (2025).

    Article  CAS  Google Scholar 

  96. Wang, Y. et al. Homogenized contact in all-perovskite tandems using tailored 2D perovskite. Nature 635, 867–873 (2024).

    Article  Google Scholar 

  97. Zhang, M. et al. Hole-selective transparent in situ passivation contacts for efficient and stable n–i–p graded perovskite/silicon tandem solar cells. Adv. Mater. 37, e2416530 (2025).

    Article  Google Scholar 

  98. Xiao, K. et al. Solution-processed monolithic all-perovskite triple-junction solar cells with efficiency exceeding 20%. ACS Energy Lett. 5, 2819–2826 (2020).

    Article  CAS  Google Scholar 

  99. Hou, F. H. et al. Monolithic perovskite/silicon tandem solar cells: a review of the present status and solutions toward commercial application. Nano Energy 124, 109476 (2024).

    Article  CAS  Google Scholar 

  100. Blakers, A. W., Wang, A., Milne, A. M., Zhao, J. H. & Green, M. A. 22.8-Percent efficient silicon solar-cell. Appl. Phys. Lett. 55, 1363–1365 (1989).

    Article  CAS  Google Scholar 

  101. Zhou, Z. X. et al. Optimization strategies and efficiency prediction for silicon solar cells with hybrid route of PERC and SHJ passivation contact. Adv. Sci. 12, 2411965 (2025).

    Article  CAS  Google Scholar 

  102. Messmer, C. et al. How to make PERC suitable for perovskite–silicon tandem solar cells: a simulation study. Prog. Photovolt. 30, 1023–1037 (2022).

    Article  CAS  Google Scholar 

  103. Razzaq, A., Allen, T. G., Liu, W. Z., Liu, Z. X. & De Wolf, S. Silicon heterojunction solar cells: techno-economic assessment and opportunities. Joule 6, 514–542 (2022).

    Article  CAS  Google Scholar 

  104. Li, C. et al. Achieving 32% efficiency in perovskite/silicon tandem solar cells with bidentate-anchored superwetting self-assembled molecular layers. Angew. Chem. Int. Ed. 64, e202502730 (2025).

    Article  CAS  Google Scholar 

  105. Yang, L. et al. Modulating binding strength and acidity of benzene-derivative ligands enables efficient and hysteresis-free perovskite/silicon tandem solar cells. Angew. Chem. Int. Ed. 64, e202500350 (2025).

    Article  CAS  Google Scholar 

  106. Richter, A. et al. Tunnel oxide passivating electron contacts as full-area rear emitter of high-efficiency p-type silicon solar cells. Prog. Photovolt. 26, 579–586 (2018).

    Article  CAS  Google Scholar 

  107. Li, X. et al. Top-down dual-interface carrier management for highly efficient and stable perovskite/silicon tandem solar cells. Nanomicro. Lett. 17, 141 (2025).

    CAS  Google Scholar 

  108. Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).

    Article  CAS  Google Scholar 

  109. Gota, F., Langenhorst, M., Schmager, R., Lehr, J. & Paetzold, U. W. Energy yield advantages of three-terminal perovskite–silicon tandem photovoltaics. Joule 4, 2387–2403 (2020).

    Article  CAS  Google Scholar 

  110. Wagner, P., Tockhorn, P., Hall, S., Albrecht, S. & Korte, L. Performance of monolithic two- and three-terminal perovskite/silicon tandem solar cells under varying illumination conditions. Sol. RRL 7, 2200954 (2023).

    Article  CAS  Google Scholar 

  111. Duong, T. et al. Semitransparent perovskite solar cell with sputtered front and rear electrodes for a four-terminal tandem. IEEE J. Photovolt. 6, 679–687 (2016).

    Article  Google Scholar 

  112. Chi, W. G., Banerjee, S. K., Jayawardena, K. G. D. I., Il Seok, S. & Silva, S. R. P. Perovskite/silicon tandem solar cells: choice of bottom devices and recombination layers. ACS Energy Lett. 8, 1535–1550 (2023).

    Article  CAS  Google Scholar 

  113. Jia, X. J., Zhou, C. L., Tang, Y. H. & Wang, W. J. Life cycle assessment on PERC solar modules. Sol. Energy Mater. Sol. Cells 227, 111112 (2021).

    Article  CAS  Google Scholar 

  114. Shanmugam, V. et al. Impact of the phosphorus emitter doping profile on metal contact recombination of silicon wafer solar cells. Sol. Energy Mater. Sol. Cells 147, 171–176 (2016).

    Article  CAS  Google Scholar 

  115. Jia, L. et al. Efficient perovskite/silicon tandem with asymmetric self-assembly molecule. Nature 644, 912–919 (2025).

    Article  CAS  Google Scholar 

  116. Green, M. A. et al. Solar cell efficiency tables (version 66). Prog. Photovolt. 33, 795–810 (2025).

    Article  Google Scholar 

  117. Kato, Y. et al. Global prediction of the energy yields for hybrid perovskite/Si tandem and Si heterojunction single solar modules. Prog. Photovolt. 30, 1198–1218 (2022).

    Article  CAS  Google Scholar 

  118. Ying, Z. Q. et al. Monolithic perovskite/black-silicon tandems based on tunnel oxide passivated contacts. Joule 6, 2644–2661 (2022).

    Article  CAS  Google Scholar 

  119. Jansen, H., Deboer, M., Legtenberg, R. & Elwenspoek, M. The black silicon method—a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control. J. Micromech. Microeng. 5, 115–120 (1995).

    Article  CAS  Google Scholar 

  120. Qu, X. L. et al. Identification of embedded nanotwins at c-Si/a-Si:H interface limiting the performance of high-efficiency silicon heterojunction solar cells. Nat. Energy. 6, 194–202 (2021).

    Article  CAS  Google Scholar 

  121. Ballif, C., De Wolf, S., Descoeudres, A. & Holman, Z. C. Amorphous silicon/crystalline silicon heterojunction solar cells. Semicon. Semimet. 90, 73–120 (2014).

    Article  Google Scholar 

  122. Nogay, G. et al. 25.1%-Efficient monolithic perovskite/silicon tandem solar cell based on a p-type monocrystalline textured silicon wafer and high-temperature passivating contacts. ACS Energy Lett. 4, 844–845 (2019).

    Article  CAS  Google Scholar 

  123. Glunz, S. W. et al. Silicon-based passivating contacts: the TOPCon route. Prog. Photovolt. 31, 341–359 (2021).

    Article  Google Scholar 

  124. Schulte-Huxel, H., Silverman, T. J., Deceglie, M. G., Friedman, D. J. & Tamboli, A. C. Energy yield analysis of multiterminal Si-based tandem solar cells. IEEE J. Photovolt. 8, 1376–1383 (2018).

    Article  Google Scholar 

  125. Aydin, E. et al. Pathways toward commercial perovskite/silicon tandem photovoltaics. Science 383, eadh3849 (2024).

    Article  CAS  Google Scholar 

  126. Yang, G. et al. Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells. Nat. Photonics 16, 588–594 (2022).

    Article  CAS  Google Scholar 

  127. Kothandaraman, R. K., Jiang, Y., Feurer, T., Tiwari, A. N. & Fu, F. Near-infrared-transparent perovskite solar cells and perovskite-based tandem photovoltaics. Small Methods 4, 2000395 (2020).

    Article  CAS  Google Scholar 

  128. Tockhorn, P. et al. Nano-optical designs for high-efficiency monolithic perovskite–silicon tandem solar cells. Nat. Nanotechnol. 17, 1214–1221 (2022).

    Article  CAS  Google Scholar 

  129. Albrecht, S. et al. Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 9, 81–88 (2016).

    Article  CAS  Google Scholar 

  130. Kohnen, E. et al. 27.9% efficient monolithic perovskite/silicon tandem solar cells on industry compatible bottom cells. Sol. RRL 5, 2100244 (2021).

    Article  CAS  Google Scholar 

  131. Mazzarella, L. et al. Infrared photocurrent management in monolithic perovskite/silicon heterojunction tandem solar cells by using a nanocrystalline silicon oxide interlayer. Opt. Express 26, A487–A497 (2018).

    Article  CAS  Google Scholar 

  132. Ross, M. et al. Co-evaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells. Adv. Energy Mater. 11, 2101460 (2021).

    Article  CAS  Google Scholar 

  133. Luo, X. et al. Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Adv. Mater. 35, 2207883 (2023).

    Article  CAS  Google Scholar 

  134. Chin, X. Y. et al. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science 381, 59–62 (2023).

    Article  CAS  Google Scholar 

  135. Er-raji, O. et al. Tailoring perovskite crystallization and interfacial passivation in efficient, fully textured perovskite silicon tandem solar cells. Joule 8, 2811–2833 (2024).

    Article  CAS  Google Scholar 

  136. Yu, Z. H. et al. Simplified interconnection structure based on C60/SnO2–x for all-perovskite tandem solar cells. Nat. Energy 5, 657–665 (2020).

    Article  CAS  Google Scholar 

  137. Eze, M. C. et al. Optimum silver contact sputtering parameters for efficient perovskite solar cell fabrication. Sol. Energy Mater. Sol. Cells 230, 111185 (2021).

    Article  CAS  Google Scholar 

  138. Aydin, E. et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623, 732–738 (2023).

    Article  CAS  Google Scholar 

  139. Seo, S., Jeong, S., Park, H., Shin, H. & Park, N. G. Atomic layer deposition for efficient and stable perovskite solar cells. Chem. Commun. 55, 2403–2416 (2019).

    Article  CAS  Google Scholar 

  140. Gao, D. et al. Long-term stability in perovskite solar cells through atomic layer deposition of tin oxide. Science 386, 187–192 (2024).

    Article  CAS  Google Scholar 

  141. Avigad, E. & Etgar, L. Studying the effect of MoO3 in hole-conductor-free perovskite solar cells. ACS Energy Lett. 3, 2240–2245 (2018).

    Article  CAS  Google Scholar 

  142. Kosasih, F. U., Erdenebileg, E., Mathews, N., Mhaisalkar, S. G. & Bruno, A. Thermal evaporation and hybrid deposition of perovskite solar cells and mini-modules. Joule 6, 2692–2734 (2022).

    Article  CAS  Google Scholar 

  143. Schackmar, F. et al. Perovskite solar cells with all-inkjet-printed absorber and charge transport layers. Adv. Mater. Technol. 6, 2000271 (2020).

    Article  Google Scholar 

  144. Patidar, R., Burkitt, D., Hooper, K., Richards, D. & Watson, T. Slot-die coating of perovskite solar cells: an overview. Mater. Today Commun. 22, 100808 (2020).

    Article  CAS  Google Scholar 

  145. Lee, S. W. et al. Perovskites fabricated on textured silicon surfaces for tandem solar cells. Commun. Chem. 3, 37 (2020).

    Article  CAS  Google Scholar 

  146. Li, Y. X. et al. Nanocrystalline silicon–oxygen based tunneling recombination junctions in perovskite/silicon heterojunction tandem solar cells. Sol. Energy Mater. Sol. Cells 262, 112539 (2023).

    Article  CAS  Google Scholar 

  147. Choi, Y. J., Lim, S. Y., Park, J. H., Ji, S. G. & Kim, J. Y. Atomic layer deposition-free monolithic perovskite/perovskite/silicon triple-junction solar cells. ACS Energy Lett. 8, 3141–3146 (2023).

    Article  CAS  Google Scholar 

  148. Hu, H. et al. Triple-junction perovskite–perovskite–silicon solar cells with power conversion efficiency of 24.4%. Energy Environ. Sci. 17, 2800 (2024).

    Article  CAS  Google Scholar 

  149. Suo, J. J., Yang, B. W., Bogachuk, D., Boschloo, G. & Hagfeldt, A. The dual use of SAM molecules for efficient and stable perovskite solar cells. Adv. Energy Mater. 15, 2400205 (2024).

    Article  Google Scholar 

  150. Yu, X. Y., Sun, X. L., Zhu, Z. L. & Li, Z. A. Stabilization strategies of buried interface for efficient SAM-based inverted perovskite solar cells. Angew. Chem. Int. Ed. 64, e202419608 (2025).

    Article  CAS  Google Scholar 

  151. Wang, X. et al. Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells. Nat. Photonics 18, 1269–1275 (2024).

    Article  CAS  Google Scholar 

  152. Zheng, J. H. et al. Monolithic perovskite–perovskite–silicon triple-junction tandem solar cell with an efficiency of over 20%. ACS Energy Lett. 7, 3003–3005 (2022).

    Article  CAS  Google Scholar 

  153. Wang, Z. W. et al. Suppressed phase segregation for triple-junction perovskite solar cells. Nature 618, 74–79 (2023).

    Article  CAS  Google Scholar 

  154. Zhao, D. W. et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy 3, 1093–1100 (2018).

    Article  CAS  Google Scholar 

  155. Bhagwat, S. & Howson, R. P. Use of the magnetron-sputtering technique for the control of the properties of indium tin oxide thin films. Surf. Coat. Technol. 111, 163–171 (1999).

    Article  CAS  Google Scholar 

  156. Lamanna, E. et al. Mechanically stacked, two-terminal graphene-based perovskite/silicon tandem solar cell with efficiency over 26%. Joule 4, 865–881 (2020).

    Article  CAS  Google Scholar 

  157. Sun, Y. et al. Flexible perovskite/silicon monolithic tandem solar cells approaching 30% efficiency. Nat. Commun. 16, 5733 (2025).

    Article  Google Scholar 

  158. Dong, C. et al. Principle and progress of interconnection layers in monolithic perovskite-based tandem photovoltaics. Adv. Energy Mater. 15, 2404628 (2024).

    Article  Google Scholar 

  159. Hu, S. Y. et al. Flexible perovskite-based multiple-junction photovoltaics. Joule 9, 101870 (2025).

    Article  CAS  Google Scholar 

  160. Hu, S. F. et al. Steering perovskite precursor solutions for multijunction photovoltaics. Nature 639, 93–101 (2025). This work shows that precursor engineering achieves 28.7% and 27.9% efficiency in all-perovskite TJSCs and quadruple-junction solar cells, respectively.

    Article  CAS  Google Scholar 

  161. Yang, T. C. J., Fiala, P., Jeangros, Q. & Ballif, C. High-bandgap perovskite materials for multijunction solar cells. Joule 2, 1421–1436 (2018).

    Article  CAS  Google Scholar 

  162. Jaysankar, M. et al. Toward scalable perovskite-based multijunction solar modules. Prog. Photovolt. 27, 733–738 (2019).

    Article  CAS  Google Scholar 

  163. Song, T., Mack, C., Williams, R., Friedman, D. J. & Kopidakis, N. How should researchers measure perovskite-based monolithic multijunction solar cells’ performance? A calibration lab’s perspective. Sol. RRL 6, 2200800 (2022).

    Article  Google Scholar 

  164. Lang, F. et al. Proton-radiation tolerant all-perovskite multijunction solar cells. Adv. Energy Mater. 11, 2102246 (2021).

    Article  CAS  Google Scholar 

  165. Hou, G. J., Sanchez-Perez, C. & Rey-Stolle, I. Double layer and high-low refractive index stacks antireflecting coatings for multijunction perovskite-on-silicon solar cells. IEEE J. Photovolt. 14, 93–98 (2024).

    Article  CAS  Google Scholar 

  166. Blom, Y. et al. Exploring the potential of perovskite/perovskite/silicon triple-junction Pv modules in two- and four-terminal configuration. Sol. RRL 9, e2400613 (2025).

    Article  Google Scholar 

  167. Rodríguez-Gallegos, C. D. et al. Global techno-economic performance of bifacial and tracking photovoltaic systems. Joule 4, 1514–1541 (2020). This work presents a practical assessment of power generation potential and cost-effectiveness for photovoltaic power stations.

    Article  Google Scholar 

  168. Peters, I. M. & Buonassisi, T. Energy yield limits for single-junction solar cells. Joule 2, 1160–1170 (2018).

    Article  CAS  Google Scholar 

  169. Rehman, W. et al. Charge-carrier dynamics and mobilities in formamidinium lead mixed-halide perovskites. Adv. Mater. 27, 7938–7944 (2015).

    Article  CAS  Google Scholar 

  170. Tao, L. et al. Stability of mixed-halide wide bandgap perovskite solar cells: strategies and progress. J. Energy Chem. 61, 395–415 (2021).

    Article  CAS  Google Scholar 

  171. Yoon, S. J. et al. Tracking iodide and bromide ion segregation in mixed halide lead perovskites during photoirradiation. ACS Energy Lett. 1, 290–296 (2016).

    Article  CAS  Google Scholar 

  172. Yu, Y., Liu, X., Zhang, S. & Chen, J. Photoinduced phase segregation in wide-bandgap mixed-halide perovskite solar cells. Energy Mater. Devices 2, 9370037 (2024).

    Article  Google Scholar 

  173. Li, Z. X. et al. In situ epitaxial growth of blocking structure in mixed-halide wide-band-gap perovskites for efficient photovoltaics. Joule 7, 1363–1381 (2023).

    Article  CAS  Google Scholar 

  174. Verkhogliadov, G., Haroldson, R., Gets, D., Zakhidov, A. A. & Makarov, S. V. Temperature dependence of photoinduced phase segregation in bromide-rich mixed halide perovskites. J. Phys. Chem. C 127, 24339–24349 (2023).

    Article  CAS  Google Scholar 

  175. Motti, S. G. et al. Phase segregation in mixed-halide perovskites affects charge-carrier dynamics while preserving mobility. Nat. Commun. 12, 6955 (2021).

    Article  CAS  Google Scholar 

  176. Duan, L. P. et al. Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 8, 261–281 (2023).

    Article  CAS  Google Scholar 

  177. Tanko, K. T. et al. Stability and reliability of perovskite photovoltaics: are we there yet? MRS Bull. 50, 512–525 (2025).

    Article  CAS  Google Scholar 

  178. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article  Google Scholar 

  179. Yang, Q., Zhang, H. Z., Jiang, Z. J., Shen, H. & Gong, X. Mobile oxygen capture enhances photothermal stability of perovskite solar cells under ISOS protocols. Adv. Mater. 37, 2500268 (2025).

    Article  CAS  Google Scholar 

  180. Li, X. D. et al. Iodine-trapping strategy for light-heat stable inverted perovskite solar cells under ISOS protocols. Energy Environ. Sci. 16, 6071–6077 (2023).

    Article  CAS  Google Scholar 

  181. Khenkin, M. arkV. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020). This work presents standardized stability testing protocols for PSCs established to enhance research reproducibility and enable large-scale data set analysis.

    Article  Google Scholar 

  182. Zhao, K. et al. Peri-fused polyaromatic molecular contacts for perovskite solar cells. Nature 632, 301–306 (2024).

    Article  CAS  Google Scholar 

  183. Wu, L. Y. et al. Resilience pathways for halide perovskite photovoltaics under temperature cycling. Nat. Rev. Mater. 10, 536–549 (2025).

    Article  Google Scholar 

  184. Li, H. S. & Liu, S. C. Revolutionary SAMs: transforming inverted perovskite solar cells. J. Mater. Chem. A 12, 9929–9932 (2024).

    Article  CAS  Google Scholar 

  185. Suo, J. et al. Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests. Nat. Energy 9, 172–183 (2024).

    Article  CAS  Google Scholar 

  186. Xiong, Y. C. et al. Recent advances in perovskite/Cu(In,Ga)Se2 tandem solar cells. Mater. Today Electron. 7, 100086 (2024).

    Article  Google Scholar 

  187. Wu, S. F., Liu, M. & Jen, A. K. Y. Prospects and challenges for perovskite–organic tandem solar cells. Joule 7, 484–502 (2023).

    Article  CAS  Google Scholar 

  188. Lim, J., Park, N. G., Seok, S. I. & Saliba, M. All-perovskite tandem solar cells: from fundamentals to technological progress. Energy Environ. Sci. 17, 4390–4425 (2024).

    Article  CAS  Google Scholar 

  189. Wang, Y. et al. Oxidation-resistant all-perovskite tandem solar cells in substrate configuration. Nat. Commun. 14, 1819 (2023).

    Article  CAS  Google Scholar 

  190. Han, Q. F. et al. High-performance perovskite/Cu(In,Ga)Se monolithic tandem solar cells. Science 361, 904–908 (2018).

    Article  CAS  Google Scholar 

  191. McMeekin, D. P. et al. Solution-processed all-perovskite multi-junction solar cells. Joule 3, 387–401 (2019).

    Article  CAS  Google Scholar 

  192. Bush, K. A. et al. Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. 3, 428–435 (2018).

    Article  CAS  Google Scholar 

  193. Lee, H., Kang, S. B., Lee, S., Zhu, K. & Kim, D. H. Progress and outlook of Sn–Pb mixed perovskite solar cells. Nano. Converg. 10, 27 (2023).

    Article  CAS  Google Scholar 

  194. Mei, J. & Yan, F. Recent advances in wide-bandgap perovskite solar cells. Adv. Mater. 1, e2418622 (2025).

    Article  Google Scholar 

  195. Zhao, Y. et al. Strain-activated light-induced halide segregation in mixed-halide perovskite solids. Nat. Commun. 11, 6328 (2020).

    Article  CAS  Google Scholar 

  196. Isikgor, F. H. et al. Monolithic perovskite–perovskite–organic triple-junction solar cells with a voltage output exceeding 3 V. ACS Energy Lett. 7, 4469–4471 (2022).

    Article  CAS  Google Scholar 

  197. Jia, Z. et al. Efficient near-infrared harvesting in perovskite–organic tandem solar cells. Nature 643, 104–110 (2025).

    Article  CAS  Google Scholar 

  198. Wang, Y. D. et al. Regulating wide-bandgap perovskite face-on stacking in hybrid-deposited perovskite/organic tandem solar cells. Nat. Commun. 16, 6142 (2025).

    Article  CAS  Google Scholar 

  199. Morales-Acevedo, A. A simple model of graded band-gap CuInGaSe2 solar cells. Energy Procedia 2, 169–176 (2010).

    Article  CAS  Google Scholar 

  200. Zeng, L. et al. A review of perovskite/copper indium gallium selenide tandem solar cells. Sol. RRL 8, 2301059 (2024).

    Article  CAS  Google Scholar 

  201. Yakushev, M. V. et al. Influence of growth conditions on the structural quality of Cu(InGa)Se2 and CuInSe2 thin films. Thin Solid Films 451–452, 133–136 (2004).

    Article  Google Scholar 

  202. Kutsarov, D. I. et al. Progress in flexible perovskite solar cells: paving the way for scalable manufacturing. Adv. Mater. Technol. https://doi.org/10.1002/admt.202401834 (2025).

  203. Pei, F. T. et al. Inhibiting defect passivation failure in perovskite for perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells with certified efficiency 27.35%. Nat. Energy. 10, 824–835 (2025).

    Article  CAS  Google Scholar 

  204. Tang, L. et al. Record-efficient flexible monolithic perovskite–CIGS tandem solar cell with VOC exceeding 1.8 V on polymer substrate. Adv. Energy Mater. 15, 2403682 (2025).

    Article  CAS  Google Scholar 

  205. Lim, S. Y., Choi, Y. J., Park, S. J., Hong, G. P. & Kim, J. Y. Rational design of medium-bandgap perovskite solar cells for triple-junction Si tandems. ACS Appl. Mater. Interfaces 17, 23885–23891 (2025).

    Article  CAS  Google Scholar 

  206. Wang, Y. T. et al. Encapsulation and stability testing of perovskite solar cells for real life applications. ACS Mater. Au 2, 215–236 (2022).

    Article  CAS  Google Scholar 

  207. Cherif, F. E. & Sammouda, H. Prediction of the power conversion efficiency of perovskite-on-CIGS tandem and triple junctions thin-film cells under solar concentration irradiations by optimization of structural and optoelectronic materials characteristic. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 280, 115712 (2022).

    Article  CAS  Google Scholar 

  208. Yan, J., Savenije, T. J., Mazzarella, L. & Isabella, O. Progress and challenges on scaling up of perovskite solar cell technology. Sustain. Energy Fuels 6, 243–266 (2022).

    Article  CAS  Google Scholar 

  209. Wang, H. F., Qin, Z. X., Miao, Y. F. & Zhao, Y. X. Recent progress in large-area perovskite photovoltaic modules. Trans. Tianjin Univ. 28, 323–340 (2022).

    Article  Google Scholar 

  210. Yan, G. H., Yuan, Y., Kaba, M. & Kirchartz, T. Visualizing performances losses of perovskite solar cells and modules: from laboratory to industrial scales. Adv. Energy Mater. 15, 2403706 (2025).

    Article  CAS  Google Scholar 

  211. Jacobsson, T. J. et al. An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nat. Energy 7, 107–115 (2022).

    Article  CAS  Google Scholar 

  212. Hou, Y. et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020). This work is the first demonstration of solution-processed micron-thick perovskite–full-texture silicon tandems.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.H. acknowledges support from the Agency for Science, Technology and Research (A*STAR) under its MTC IRG Grant (M23M6c0108). The authors of this Review are affiliated with the Solar Energy Research Institute of Singapore (SERIS), a research institute at the National University of Singapore. SERIS is supported by the National University of Singapore, the National Research Foundation Singapore, the Energy Market Authority of Singapore and the Singapore Economic Development Board. The data used for the simulation shown in Fig. 5 were provided by SERIS.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. and S.L. contributed equally to this work. Y.Y. and S.L. wrote the first manuscript, and Z.W. and Y.H. revised the manuscript and supervised the project. Y.Y. and S.L. drew the figures. C.D.R.-G and C.A.R.-G completed the calculations. Z.W. and Y.H. contributed to manuscript editing and comments.

Corresponding authors

Correspondence to Zaiwei Wang or Yi Hou.

Ethics declarations

Competing interests

Y.H. is the founder of Singfilm Solar, a company focused on the commercialization of perovskite photovoltaic technologies. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clean Technology thanks Junke Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

III–V semiconductors

Materials made from group III and group V elements of the periodic table, widely used in high-efficiency solar cells and electronic devices.

Double-bounce effect

Refers to light reflecting twice within a material or structure, thereby enhancing absorption or increasing the optical path length.

FA

(Formamidinium). The FA ion is an organic cation frequently used in perovskite solar cells to improve stability and efficiency.

Interdigitated back contact

(IBC). A solar cell design in which both positive and negative contacts are located on the back side of the cell to improve efficiency and reduce shading.

Lewis adducts

Compounds formed by the chemical reaction and combination of a Lewis acid and a Lewis base.

MA

(Methylammonium). The MA ion is an organic cation commonly used as a component in perovskite solar cell materials.

Shockley–Queisser limit

The maximum theoretical efficiency that a single-junction solar cell can achieve under standard illumination conditions.

Silicon heterojunctions

(SHJs). Interfaces between different silicon-based materials that improve solar cell efficiency by reducing recombination losses.

Tunnel oxide passivated contacts

(TOPCons). Ultra-thin oxide layers that enable efficient charge-carrier transport while minimizing surface recombination in solar cells.

Ultra-wide bandgap

(UWBG). A bandgap greater than 1.85 eV.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Liu, S., Rodríguez-Gallegos, C.D. et al. Perovskite-based multi-junction solar cells. Nat. Rev. Clean Technol. (2025). https://doi.org/10.1038/s44359-025-00103-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44359-025-00103-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing