Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Semi-liquid lithium−sulfur batteries for large-scale energy storage

Subjects

Abstract

Reliable access to electricity from renewable sources such as wind and solar underpins the green economy, and energy storage is an essential component of this system. Among various energy storage technologies, lithium–sulfur (Li–S) batteries have attracted interest due to their multielectron redox reactions, high theoretical energy density (2,500 Wh kg–1) and cost-effectiveness. However, major challenges in realizing their potential lie in the formation of soluble liquid intermediates and uncontrolled precipitation of solid sulfur species, impairing long-term cycling stability. In this Review, we discuss the development of semi-liquid Li–S batteries with soluble sulfur species as cathode active materials (catholytes), which can resolve the irreversible solid–liquid–solid phase transitions that affect conventional Li–S systems. In both static and redox-flow configurations, the attainable energy density of semi-liquid Li–S batteries is governed primarily by the solubility and utilization of active sulfur species in non-aqueous catholytes. Rational optimization of the catholyte composition, electrode substrates and cell architectures is therefore required to balance sulfur utilization, mass transport and device-level constraints. Continued advances in improving sulfur solubility in catholytes and reducing system complexity and cost will be critical for translating semi-liquid Li–S batteries into scalable technologies for large-scale energy storage.

Key points

  • Lithium–sulfur (Li–S) batteries are known for their high energy density (2,500 Wh kg–1) and cost-effectiveness, yet the intrinsic solid–liquid–solid sulfur conversion is highly irreversible and lacks long-term viability.

  • Leveraging reversible liquid sulfur conversion chemistry, semi-liquid Li–S batteries (in both static and flow set-ups) are a potential technology for large-scale energy storage.

  • The key pathway to advancing semi-liquid Li–S batteries is to enhance energy density, which is largely determined by the solubility of active sulfur species in non-aqueous catholytes.

  • Rational design of the catholyte composition, electrode substrates and device configurations is essential to balance parallel physico-chemical, electrochemical and engineering requirements.

  • Technical reliability and system-level costs need to be further optimized in order to realize this semi-liquid battery technology on a commercial basis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Semi-liquid lithium–sulfur batteries.
Fig. 2: Soluble lithium polysulfides.
Fig. 3: Lithium disulfide and lithium sulfide dissolution.
Fig. 4: Supporting lithium salts.
Fig. 5: Catholyte substrates as current collectors.
Fig. 6: Lithium–sulfur redox flow batteries.

Similar content being viewed by others

References

  1. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  CAS  Google Scholar 

  2. Wang, Y. et al. Fluorination in advanced battery design. Nat. Rev. Mater. 9, 119–133 (2024).

    Article  CAS  Google Scholar 

  3. Jiang, T. et al. Battery technologies for grid-scale energy storage. Nat. Rev. Clean Technol. 1, 474–492 (2025).

    Article  Google Scholar 

  4. Yang, Z. et al. Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011).

    Article  CAS  Google Scholar 

  5. Huang, Z. et al. Comprehensive analysis of critical issues in all-vanadium redox flow battery. ACS Sustain. Chem. Eng. 10, 7786–7810 (2022).

    Article  CAS  Google Scholar 

  6. Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

    Article  CAS  Google Scholar 

  7. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    Article  CAS  Google Scholar 

  8. Zhou, G., Chen, H. & Cui, Y. Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7, 312–319 (2022).

    Article  CAS  Google Scholar 

  9. Zhang, S. S. Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J. Power Sources 231, 153–162 (2013).

    Article  CAS  Google Scholar 

  10. Pang, Q., Liang, X., Kwok, C. Y. & Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016).

    Article  CAS  Google Scholar 

  11. Seh, Z. W. et al. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 4, 1331 (2013).

    Article  Google Scholar 

  12. Gupta, A., Bhargav, A. & Manthiram, A. Highly solvating electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 9, 1803096 (2019).

    Article  Google Scholar 

  13. Son, Y., Lee, J., Son, Y., Jang, J. & Cho, J. Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv. Energy Mater. 5, 1500110 (2015).

    Article  Google Scholar 

  14. Yu, L., Ong, S. J., Liu, X., Mandler, D. & Xu, Z. J. The importance of the dissolution of polysulfides in lithium–sulfur batteries and a perspective on high-energy electrolyte/cathode design. Electrochim. Acta 392, 139013 (2021).

    Article  CAS  Google Scholar 

  15. Wang, P. et al. High-performance lithium–sulfur batteries via molecular complexation. J. Am. Chem. Soc. 145, 18865–18876 (2023).

    Article  CAS  Google Scholar 

  16. Yang, Y., Zheng, G. & Cui, Y. A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy Environ. Sci. 6, 1552–1558 (2013).

    Article  CAS  Google Scholar 

  17. Cheng, Q. et al. Full dissolution of the whole lithium sulfide family (Li2S8 to Li2S) in a safe eutectic solvent for rechargeable lithium–sulfur batteries. Angew. Chem. Int. Ed. 58, 5557–5561 (2019).

    Article  CAS  Google Scholar 

  18. Rauh, R. D., Abraham, K. M., Pearson, G. F., Surprenant, J. K. & Brummer, S. B. A lithium/dissolved sulfur battery with an organic electrolyte. J. Electrochem. Soc. 126, 523–527 (1979).

    Article  CAS  Google Scholar 

  19. Yu, X. & Manthiram, A. A class of polysulfide catholytes for lithium–sulfur batteries: energy density, cyclability, and voltage enhancement. Phys. Chem. Chem. Phys. 17, 2127–2136 (2015).

    Article  CAS  Google Scholar 

  20. Fan, F. Y. et al. Solvent effects on polysulfide redox kinetics and ionic conductivity in lithium–sulfur batteries. J. Electrochem. Soc. 163, A3111–A3116 (2016).

    Article  CAS  Google Scholar 

  21. Meyerson, M. L., Rosenberg, S. G. & Small, L. J. A mediated Li–S flow battery for grid-scale energy storage. ACS Appl. Energy Mater. 5, 4202–4211 (2022).

    Article  CAS  Google Scholar 

  22. Zhang, J. et al. Lithium polysulfide solvation and speciation in the aprotic lithium–sulfur batteries. Particuology 89, 238–245 (2024).

    Article  CAS  Google Scholar 

  23. Song, Y. et al. Anion-involved solvation structure of lithium polysulfides in lithium–sulfur batteries. Angew. Chem. Int. Ed. 63, e202400343 (2024).

    Article  CAS  Google Scholar 

  24. Di Lecce, D. et al. High capacity semi-liquid lithium sulfur cells with enhanced reversibility for application in new-generation energy storage systems. J. Power Sources 412, 575–585 (2019).

    Article  Google Scholar 

  25. Ren, Y. X., Zhao, T. S., Liu, M., Wei, L. & Zhang, R. H. High-performance nitrogen-doped titania nanowire decorated carbon cloth electrode for lithium-polysulfide batteries. Electrochim. Acta 242, 137–145 (2017).

    Article  CAS  Google Scholar 

  26. Wang, W. et al. Asymmetric self-supporting hybrid fluorinated carbon nanotubes/carbon nanotubes sponge electrode for high-performance lithium-polysulfide battery. Chem. Eng. J. 349, 756–765 (2018).

    Article  CAS  Google Scholar 

  27. Li, X. et al. Enhanced performances of Li/polysulfide batteries with 3D reduced graphene oxide/carbon nanotube hybrid aerogel as the polysulfide host. Nano Energy 30, 193–199 (2016).

    Article  Google Scholar 

  28. Wu, X.-W. et al. Three-dimensional carbon nanotubes forest/carbon cloth as an efficient electrode for lithium–polysulfide batteries. ACS Appl. Mater. Interfaces 9, 1553–1561 (2017).

    Article  CAS  Google Scholar 

  29. Zhou, G., Paek, E., Hwang, G. S. & Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 6, 7760 (2015).

    Article  CAS  Google Scholar 

  30. Babu, G., Ababtain, K., Ng, K. Y. & Arava, L. M. Electrocatalysis of lithium polysulfides: current collectors as electrodes in Li/S battery configuration. Sci. Rep. 5, 8763 (2015).

    Article  CAS  Google Scholar 

  31. Pan, H. et al. On the way toward understanding solution chemistry of lithium polysulfides for high energy Li–S redox flow batteries. Adv. Energy Mater. 5, 1500113 (2015).

    Article  Google Scholar 

  32. Dong, K., Wang, S. & Yu, J. A lithium/polysulfide semi-solid rechargeable flow battery with high output performance. RSC Adv. 4, 47517–47520 (2014).

    Article  CAS  Google Scholar 

  33. Fan, F. Y. et al. Polysulfide flow batteries enabled by percolating nanoscale conductor networks. Nano Lett. 14, 2210–2218 (2014).

    Article  CAS  Google Scholar 

  34. Chen, Q., Guo, W., Wang, D. & Fu, Y. A self-healing Li–S redox flow battery with alternative reaction pathways. J. Mater. Chem. A 9, 12652–12658 (2021).

    Article  CAS  Google Scholar 

  35. Chang, C. & Pu, X. Revisiting the positive roles of liquid polysulfides in alkali metal–sulfur electrochemistry: from electrolyte additives to active catholyte. Nanoscale 11, 21595–21621 (2019).

    Article  CAS  Google Scholar 

  36. Liu, Y. et al. Electrolyte solutions design for lithium–sulfur batteries. Joule 5, 2323–2364 (2021).

    Article  CAS  Google Scholar 

  37. Conder, J. et al. Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction. Nat. Energy 2, 17069 (2017).

    Article  CAS  Google Scholar 

  38. Wujcik, K. H. et al. Fingerprinting lithium–sulfur battery reaction products by X-ray absorption spectroscopy. J. Electrochem. Soc. 161, A1100–A1106 (2014).

    Article  CAS  Google Scholar 

  39. Barchasz, C. et al. Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal. Chem. 84, 3973–3980 (2012).

    Article  CAS  Google Scholar 

  40. Adeoye, H. A., Dent, M., Watts, J. F., Tennison, S. & Lekakou, C. Solubility and dissolution kinetics of sulfur and sulfides in electrolyte solvents for lithium–sulfur and sodium–sulfur batteries. J. Chem. Phys. 158, 064702 (2023).

    Article  CAS  Google Scholar 

  41. Mikhaylik, Y. V. et al. High energy rechargeable Li–S cells for EV application: status, remaining problems and solutions. ECS Trans. 25, 23–34 (2010).

    Article  CAS  Google Scholar 

  42. Manthiram, A., Chung, S. & Zu, C. Lithium–sulfur batteries: progress and prospects. Adv. Mater. 27, 1980–2006 (2015).

    Article  CAS  Google Scholar 

  43. Bi, C.-X. et al. Galvanic corrosion of lithium metal anodes in lithium–sulfur batteries. J. Am. Chem. Soc. 147, 34632–34640 (2025).

    Article  CAS  Google Scholar 

  44. Zhu, Y. et al. Deciphering the species-dependent polysulfide corrosion on lithium anode toward durable lithium–sulfur batteries. Adv. Mater. 37, 2506132 (2025).

    Article  CAS  Google Scholar 

  45. Bi, C. et al. Evolution of lithium metal anode along cycling in working lithium–sulfur batteries. Adv. Energy Mater. 14, 2402609 (2024).

    Article  CAS  Google Scholar 

  46. Zhang, S. S. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta 70, 344–348 (2012).

    Article  CAS  Google Scholar 

  47. Ma, G. et al. A lithium anode protection guided highly-stable lithium–sulfur battery. Chem. Commun. 50, 14209–14212 (2014).

    Article  CAS  Google Scholar 

  48. Lin, Z., Liu, Z., Fu, W., Dudney, N. J. & Liang, C. Phosphorous pentasulfide as a novel additive for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 23, 1064–1069 (2012).

    Article  Google Scholar 

  49. Fu, K. K. et al. Stabilizing the garnet solid-electrolyte/polysulfide interface in Li–S batteries. Chem. Mater. 29, 8037–8041 (2017).

    Article  CAS  Google Scholar 

  50. Xu, H., Wang, S. & Manthiram, A. Hybrid lithium–sulfur batteries with an advanced gel cathode and stabilized lithium-metal anode. Adv. Energy Mater. 8, 1800813 (2018).

    Article  Google Scholar 

  51. Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article  CAS  Google Scholar 

  52. Yen, Y.-J. & Chung, S.-H. Lithium–sulfur cells with a sulfide solid electrolyte/polysulfide cathode interface. J. Mater. Chem. A 11, 4519–4526 (2023).

    Article  CAS  Google Scholar 

  53. Yu, X., Bi, Z., Zhao, F. & Manthiram, A. Hybrid lithium–sulfur batteries with a solid electrolyte membrane and lithium polysulfide catholyte. ACS Appl. Mater. Interfaces 7, 16625–16631 (2015).

    Article  CAS  Google Scholar 

  54. Yu, X., Joseph, J. & Manthiram, A. Polymer lithium–sulfur batteries with a Nafion membrane and an advanced sulfur electrode. J. Mater. Chem. A 3, 15683–15691 (2015).

    Article  CAS  Google Scholar 

  55. Gao, J. et al. Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon–sulfur composite cathode. J. Power Sources 382, 179–189 (2018).

    Article  CAS  Google Scholar 

  56. Ponnada, S. et al. Insight into lithium–sulfur batteries with novel modified separators: recent progress and perspectives. Energy Fuels 35, 11089–11117 (2021).

    Article  CAS  Google Scholar 

  57. Xiang, Y. et al. Advanced separators for lithium-ion and lithium–sulfur batteries: a review of recent progress. ChemSusChem 9, 3023–3039 (2016).

    Article  CAS  Google Scholar 

  58. Li, X.-Y. et al. Polysulfide chemistry in metal–sulfur batteries. Chem. Soc. Rev. 54, 4822–4873 (2025).

    Article  CAS  Google Scholar 

  59. Yao, Y. et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60, 4090–4097 (2020).

    Article  Google Scholar 

  60. Zhao, Q. et al. Designing electrolytes with polymerlike glass-forming properties and fast ion transport at low temperatures. Proc. Natl Acad. Sci. USA 117, 26053–26060 (2020).

    Article  CAS  Google Scholar 

  61. Xia, D. et al. Design criteria of dilute ether electrolytes toward reversible and fast intercalation chemistry of graphite anode in Li-ion batteries. ACS Energy Lett. 8, 1379–1389 (2023).

    Article  CAS  Google Scholar 

  62. Tang, S. & Zhao, H. Glymes as versatile solvents for chemical reactions and processes: from the laboratory to industry. RSC Adv. 4, 11251–11287 (2014).

    Article  CAS  Google Scholar 

  63. Di Lecce, D. et al. Glyme-based electrolytes: suitable solutions for next-generation lithium batteries. Green Chem. 24, 1021–1048 (2022).

    Article  Google Scholar 

  64. Zhang, C. et al. Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids. I. Stability of solvate cations and correlation with electrolyte properties. J. Phys. Chem. B 118, 5144–5153 (2014).

    Article  CAS  Google Scholar 

  65. Zhang, B. et al. The fundamental understanding of lithium polysulfides in ether-based electrolyte for lithium–sulfur batteries. ACS Energy Lett. 6, 537–546 (2021).

    Article  CAS  Google Scholar 

  66. Huang, X. et al. Cyclic voltammetry in lithium–sulfur batteries—challenges and opportunities. Energy Technol. 7, 1801001 (2019).

    Article  Google Scholar 

  67. Dibden, J. W., Smith, J. W., Zhou, N., Garcia-Araez, N. & Owen, J. R. Predicting the composition and formation of solid products in lithium–sulfur batteries by using an experimental phase diagram. Chem. Commun. 52, 12885–12888 (2016).

    Article  CAS  Google Scholar 

  68. Wetzel, T. L., Mills, T. E. & Safron, S. A. Chemical potentials and activities: an electrochemical introduction. J. Chem. Educ. 63, 492 (1986).

    Article  CAS  Google Scholar 

  69. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

    Article  CAS  Google Scholar 

  70. Park, C. et al. Structural and transport properties of Li/S battery electrolytes: role of the polysulfide species. J. Phys. Chem. C. 123, 10167–10177 (2019).

    Article  CAS  Google Scholar 

  71. Vijayakumar, M. et al. Molecular structure and stability of dissolved lithium polysulfide species. Phys. Chem. Chem. Phys. 16, 10923–10932 (2014).

    Article  CAS  Google Scholar 

  72. Liu, Q. et al. Insight on lithium polysulfide intermediates in a Li/S battery by density functional theory. RSC Adv. 7, 33373–33377 (2017).

    Article  CAS  Google Scholar 

  73. Rajput, N. N. et al. Elucidating the solvation structure and dynamics of lithium polysulfides resulting from competitive salt and solvent interactions. Chem. Mater. 29, 3375–3379 (2017).

    Article  CAS  Google Scholar 

  74. Pascal, T. A., Wujcik, K. H., Wang, D. R., Balsara, N. P. & Prendergast, D. Thermodynamic origins of the solvent-dependent stability of lithium polysulfides from first principles. Phys. Chem. Chem. Phys. 19, 1441–1448 (2017).

    Article  CAS  Google Scholar 

  75. Wang, B., Alhassan, S. M. & Pantelides, S. T. Formation of large polysulfide complexes during the lithium–sulfur battery discharge. Phys. Rev. Appl. 2, 034004 (2014).

    Article  CAS  Google Scholar 

  76. Hong, H., Ma, X. & Zhi, C. Advanced eutectic materials for energy storage: ionic liquids, molten salts, deep eutectic solvents, alloys, and organic cocrystals. Batteries Supercaps 8, e202500432 (2025).

    Article  CAS  Google Scholar 

  77. Hansen, B. B. et al. Deep eutectic solvents: a review of fundamentals and applications. Chem. Rev. 121, 1232–1285 (2020).

    Article  Google Scholar 

  78. Harder, E., Anisimov, V. M., Whitfield, T., MacKerell, A. D. & Roux, B. Understanding the dielectric properties of liquid amides from a polarizable force field. J. Phys. Chem. B 112, 3509–3521 (2008).

    Article  CAS  Google Scholar 

  79. Liu, B., Zhao, J. & Wei, F. Characterization of caprolactam based eutectic ionic liquids and their application in SO2 absorption. J. Mol. Liq. 180, 19–25 (2013).

    Article  CAS  Google Scholar 

  80. Kang, D. W., Moon, J., Choi, H.-Y., Shin, H.-C. & Kim, B. G. Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries enabled by a high-concentration dual-salt electrolyte with high LiNO3 content. J. Power Sources 490, 229504 (2021).

    Article  CAS  Google Scholar 

  81. Li, L. et al. A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Adv. Energy Mater. 1, 394–400 (2011).

    Article  CAS  Google Scholar 

  82. Warren, Z. & Rosero-Navarro, N. C. Solution-based suspension synthesis of Li2S–P2S5 glass–ceramic systems as solid-state electrolytes: a brief review of current research. ACS Omega 9, 31228–31236 (2024).

    Article  CAS  Google Scholar 

  83. Miura, A. et al. Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. Nat. Rev. Chem. 3, 189–198 (2019).

    Article  CAS  Google Scholar 

  84. Ghidiu, M., Ruhl, J., Culver, S. P. & Zeier, W. G. Solution-based synthesis of lithium thiophosphate superionic conductors for solid-state batteries: a chemistry perspective. J. Mater. Chem. A 7, 17735–17753 (2019).

    Article  CAS  Google Scholar 

  85. Gao, S. et al. A fluorinated Lewis acidic organoboron tunes polysulfide complex structure for high-performance lithium–sulfur batteries. Adv. Energy Mater. 15, 2403439 (2025).

    Article  CAS  Google Scholar 

  86. Liu, F. et al. Improving the electrochemical performance of lithium–sulfur batteries by interface modification with a bifunctional electrolyte additive. Chem. Eng. J. 443, 136489 (2022).

    Article  CAS  Google Scholar 

  87. He, L. et al. Electrode interface engineering in lithium–sulfur batteries enabled by a trifluoroacetamide-based electrolyte. ACS Appl. Mater. Interfaces 14, 31814–31823 (2022).

    Article  CAS  Google Scholar 

  88. Pan, H. et al. Ammonium additives to dissolve lithium sulfide through hydrogen binding for high-energy lithium–sulfur batteries. ACS Appl. Mater. Interfaces 9, 4290–4295 (2017).

    Article  CAS  Google Scholar 

  89. Shi, P. et al. Sulfone-assisted-NH4I as electrolyte additive with synergistic dissolution and catalysis effects on reducing the activation voltage of Li2S cathode. Chem. Eng. J. 398, 125608 (2020).

    Article  CAS  Google Scholar 

  90. Gu, J. et al. Ammonium benzenesulfonate as an electrolyte additive to relieve the irreversible accumulation of lithium sulfide for high-energy density lithium–sulfur battery. J. Colloid Interface Sci. 629, 368–376 (2023).

    Article  CAS  Google Scholar 

  91. Qiu, H. et al. A bifunctional electrolyte additive ammonium hexafluorophosphate for long cycle life lithium–sulfur batteries. Mater. Lett. 351, 134986 (2023).

    Article  CAS  Google Scholar 

  92. Zong, C. et al. Ammonium silicofluoride as bifunctional electrolyte additive to regulate the electrode interface in lithium–sulfur battery. Ionics 30, 1383–1389 (2024).

    Article  CAS  Google Scholar 

  93. Chung, S., Chang, C. & Manthiram, A. Progress on the critical parameters for lithium–sulfur batteries to be practically viable. Adv. Funct. Mater. 28, 1801188 (2018).

    Article  Google Scholar 

  94. Gao, N. et al. Low-temperature Li–S battery enabled by CoFe bimetallic catalysts. J. Mater. Chem. A 10, 8378–8389 (2022).

    Article  CAS  Google Scholar 

  95. Gupta, A. & Manthiram, A. Unifying the clustering kinetics of lithium polysulfides with the nucleation behavior of Li2S in lithium–sulfur batteries. J. Mater. Chem. A 9, 13242–13251 (2021).

    Article  CAS  Google Scholar 

  96. Zhang, T., Marinescu, M., O’Neill, L., Wild, M. & Offer, G. Modeling the voltage loss mechanisms in lithium–sulfur cells: the importance of electrolyte resistance and precipitation kinetics. Phys. Chem. Chem. Phys. 17, 22581–22586 (2015).

    Article  CAS  Google Scholar 

  97. Liu, B., Gu, H., Torres, J. F., Yin, Z. & Tricoli, A. Balancing polysulfide containment and energy loss in lithium–sulfur batteries. Energy Environ. Sci. 17, 1073–1082 (2024).

    Article  CAS  Google Scholar 

  98. Liao, K. & Manthiram, A. Impact of cathode microstructure on sulfur redox kinetics in lithium–sulfur batteries. Adv. Energy Mater. 15, 2502062 (2025).

    Article  CAS  Google Scholar 

  99. Younesi, R., Veith, G. M., Johansson, P., Edström, K. & Vegge, T. Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li. S. Energy Environ. Sci. 8, 1905–1922 (2015).

    Article  CAS  Google Scholar 

  100. Song, Z. et al. Designer anions for better rechargeable lithium batteries and beyond. Adv. Mater. 36, 2310245 (2024).

    Article  CAS  Google Scholar 

  101. Lee, D. et al. Progress in lithium–sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution. ChemSusChem 6, 2245–2248 (2013).

    Article  CAS  Google Scholar 

  102. Kartha, T. R. & Mallik, B. S. Revisiting LiClO4 as an electrolyte for Li-ion battery: effect of aggregation behavior on ion-pairing dynamics and conductance. J. Mol. Liq. 302, 112536 (2020).

    Article  CAS  Google Scholar 

  103. Wang, W. et al. The electrochemical performance of lithium–sulfur batteries with LiClO4 DOL/DME electrolyte. J. Appl. Electrochem. 40, 321–325 (2010).

    Article  CAS  Google Scholar 

  104. Wu, F. et al. Boosting high-performance in lithium–sulfur batteries via dilute electrolyte. Nano Lett. 20, 5391–5399 (2020).

    Article  CAS  Google Scholar 

  105. Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015).

    Article  Google Scholar 

  106. Sadd, M., Agostini, M., Xiong, S. & Matic, A. Polysulfide speciation and migration in catholyte lithium−sulfur cells. ChemPhysChem 23, e202100853 (2022).

    Article  CAS  Google Scholar 

  107. Song, J.-K., Kim, M., Park, S. & Kim, Y.-J. LiTFSI salt concentration effect to digest lithium polysulfides for high-loading sulfur electrodes. J. Energy Chem. 78, 574–581 (2023).

    Article  CAS  Google Scholar 

  108. Sun, K., Li, N., Su, D. & Gan, H. Electrolyte concentration effect on sulfur utilization of Li-S batteries. J. Electrochem. Soc. 166, A50 (2019).

    Article  CAS  Google Scholar 

  109. Karaseva, E. V. et al. The mechanism of effect of support salt concentration in electrolyte on performance of lithium–sulfur cells. Electrochim. Acta 296, 1102–1114 (2019).

    Article  CAS  Google Scholar 

  110. Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).

    Article  Google Scholar 

  111. Gupta, A., Bhargav, A., Jones, J.-P., Bugga, R. V. & Manthiram, A. Influence of lithium polysulfide clustering on the kinetics of electrochemical conversion in lithium–sulfur batteries. Chem. Mater. 32, 2070–2077 (2020).

    Article  CAS  Google Scholar 

  112. Zhang, J.-H. et al. Charging lithium polysulfides by cationic lithium nitrate species for low-temperature lithium−sulfur batteries. Energy Storage Mater. 73, 103786 (2024).

    Article  Google Scholar 

  113. Chu, H. et al. Achieving three-dimensional lithium sulfide growth in lithium–sulfur batteries using high-donor-number anions. Nat. Commun. 10, 188 (2019).

    Article  Google Scholar 

  114. Kim, S. et al. Tuning of electrolyte solvation structure for low-temperature operation of lithium–sulfur batteries. Energy Storage Mater. 59, 102763 (2023).

    Article  Google Scholar 

  115. Gupta, A. & Manthiram, A. Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 10, 2001972 (2020).

    Article  CAS  Google Scholar 

  116. Holoubek, J. et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2021).

    Article  CAS  Google Scholar 

  117. Weng, S. et al. Temperature-dependent interphase formation and Li+ transport in lithium metal batteries. Nat. Commun. 14, 4474 (2023).

    Article  Google Scholar 

  118. Li, X.-Y. et al. Two-stage solvation of lithium polysulfides in working lithium–sulfur batteries. J. Am. Chem. Soc. 147, 15435–15447 (2025).

    Article  CAS  Google Scholar 

  119. Chen, Z.-X. et al. Accelerating the sulfur redox kinetics in weakly-solvating lithium–sulfur batteries under lean-electrolyte conditions. Energy Storage Mater. 83, 104502 (2025).

    Article  Google Scholar 

  120. Jin, T. et al. Promoting the rate performances of weakly solvating electrolyte-based lithium–sulfur batteries. Angew. Chem. Int. Ed. 64, e202504898 (2025).

    Article  CAS  Google Scholar 

  121. Thenuwara, A. C. et al. Efficient low-temperature cycling of lithium metal anodes by tailoring the solid-electrolyte interphase. ACS Energy Lett. 5, 2411–2420 (2020).

    Article  CAS  Google Scholar 

  122. Yamada, M., Watanabe, T., Gunji, T., Wu, J. & Matsumoto, F. Review of the design of current collectors for improving the battery performance in lithium-ion and post-lithium-ion batteries. Electrochem 1, 124–159 (2020).

    Article  Google Scholar 

  123. Zhu, P. et al. A review of current collectors for lithium-ion batteries. J. Power Sources 485, 229321 (2021).

    Article  CAS  Google Scholar 

  124. Huang, W. et al. Mechanically-robust structural lithium–sulfur battery with high energy density. Energy Storage Mater. 33, 416–422 (2020).

    Article  CAS  Google Scholar 

  125. Choi, S. W., Kim, J. R., Jo, S. M., Lee, W. S. & Kim, Y.-R. Electrochemical and spectroscopic properties of electrospun PAN-based fibrous polymer electrolytes. J. Electrochem. Soc. 152, A989 (2005).

    Article  CAS  Google Scholar 

  126. Forner-Cuenca, A. & Brushett, F. R. Engineering porous electrodes for next-generation redox flow batteries: recent progress and opportunities. Curr. Opin. Electrochem. 18, 113–122 (2019).

    Article  CAS  Google Scholar 

  127. Arenas, L. F., Ponce de León, C. & Walsh, F. C. Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage. J. Energy Storage 11, 119–153 (2017).

    Article  Google Scholar 

  128. Chalamala, B. R. et al. Redox flow batteries: an engineering perspective. Proc. IEEE 102, 976–999 (2014).

    Article  CAS  Google Scholar 

  129. Zhang, Y. et al. Lithium–sulfur batteries meet electrospinning: recent advances and the key parameters for high gravimetric and volume energy density. Adv. Sci. 9, 2103879 (2022).

    Article  CAS  Google Scholar 

  130. Deng, S., Guo, T., Heier, J. & Zhang, C. J. Unraveling polysulfide’s adsorption and electrocatalytic conversion on metal oxides for Li–S batteries. Adv. Sci. 10, 2204930 (2023).

    Article  CAS  Google Scholar 

  131. Zhang, Q. et al. Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries. Nano Lett. 15, 3780–3786 (2015).

    Article  CAS  Google Scholar 

  132. Seh, Z. W. et al. Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chem. Sci. 4, 3673–3677 (2013).

    Article  CAS  Google Scholar 

  133. Hou, T.-Z. et al. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium–sulfur batteries. Small 12, 3283–3291 (2016).

    Article  CAS  Google Scholar 

  134. Tao, X. et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat. Commun. 7, 11203 (2016).

    Article  CAS  Google Scholar 

  135. Zheng, J. et al. Lewis acid–base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett. 14, 2345–2352 (2014).

    Article  CAS  Google Scholar 

  136. Zhou, F. et al. Lewis acid-optimized hydrolysable catalytic binder with dynamic hydrogen-bonded framework for durable lithium–sulfur batteries. Chem. Eng. J. 507, 160009 (2025).

    Article  CAS  Google Scholar 

  137. Zhou, F. et al. Sulfur electrode tolerance and polysulfide conversion promoted by the supramolecular binder with rare-earth catalysis in lithium–sulfur batteries. Energy Storage Mater. 67, 103315 (2024).

    Article  Google Scholar 

  138. Wang, Y. et al. Adsorption-energy-based activity descriptors for electrocatalysts in energy storage applications. Nat. Sci. Rev. 5, 327–341 (2018).

    Article  CAS  Google Scholar 

  139. Jeong, T.-G. et al. Heterogeneous catalysis for lithium–sulfur batteries: enhanced rate performance by promoting polysulfide fragmentations. ACS Energy Lett. 2, 327–333 (2017).

    Article  CAS  Google Scholar 

  140. Han, Z. et al. Catalytic effect in Li–S batteries: from band theory to practical application. Mater. Today 57, 84–120 (2022).

    Article  CAS  Google Scholar 

  141. Shen, Z. et al. Rational design of a Ni3N0.85 electrocatalyst to accelerate polysulfide conversion in lithium–sulfur batteries. ACS Nano 14, 6673–6682 (2020).

    Article  CAS  Google Scholar 

  142. Shen, Z. et al. Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh-loading lithium–sulfur conversion in a microreactor-like battery. Adv. Funct. Mater. 30, 1906661 (2020).

    Article  CAS  Google Scholar 

  143. Liu, Z., Balbuena, P. B. & Mukherjee, P. P. Revealing charge transport mechanisms in Li2S2 for Li–sulfur batteries. J. Phys. Chem. Lett. 8, 1324–1330 (2017).

    Article  CAS  Google Scholar 

  144. Jiao, S., Fu, X. & Huang, H. Descriptors for the evaluation of electrocatalytic reactions: d-band theory and beyond. Adv. Funct. Mater. 32, 2107651 (2022).

    Article  CAS  Google Scholar 

  145. Zeng, P. et al. Propelling polysulfide redox conversion by d-band modulation for high sulfur loading and low temperature lithium–sulfur batteries. J. Mater. Chem. A 9, 18526–18536 (2021).

    Article  CAS  Google Scholar 

  146. Wu, Q., Chen, K., Shadike, Z. & Li, C. Relay-type catalysis by a dual-metal single-atom system in a waste biomass derivative host for high-rate and durable Li–S batteries. ACS Nano 18, 13468–13483 (2024).

    Article  CAS  Google Scholar 

  147. Liu, D. et al. Catalytic effects in lithium–sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 5, 1700270 (2018).

    Article  Google Scholar 

  148. Li, Z., Jiang, H., Lai, N.-C., Zhao, T. & Lu, Y.-C. Designing effective solvent–catalyst interface for catalytic sulfur conversion in lithium–sulfur batteries. Chem. Mater. 31, 10186–10196 (2019).

    Article  CAS  Google Scholar 

  149. Zhao, M. et al. Electrochemical phase evolution of metal-based pre-catalysts for high-rate polysulfide conversion. Angew. Chem. Int. Ed. 59, 9011–9017 (2020).

    Article  CAS  Google Scholar 

  150. Zhao, C.-X. et al. Precise anionic regulation of NiFe hydroxysulfide assisted by electrochemical reactions for efficient electrocatalysis. Energy Environ. Sci. 13, 1711–1716 (2020).

    Article  CAS  Google Scholar 

  151. Ao, X. et al. Catalyst passivation and coping strategies in lithium–sulfur batteries. ChemSusChem 18, e202500810 (2025).

    Article  CAS  Google Scholar 

  152. Hou, R. et al. Advances in high-entropy catalysts for lithium–sulfur batteries: design principles, recent progress, and prospects. Adv. Sci. 12, e11072 (2025).

    Article  CAS  Google Scholar 

  153. Dong, Y. et al. Progress and prospect of organic electrocatalysts in lithium−sulfur batteries. Front. Chem. 9, 703354 (2021).

    Article  CAS  Google Scholar 

  154. Li, X. et al. Surface gelation on disulfide electrocatalysts in lithium–sulfur batteries. Angew. Chem. Int. Ed. 61, e202114671 (2022).

    Article  CAS  Google Scholar 

  155. Park, M., Ryu, J., Wang, W. & Cho, J. Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2, 16080 (2017).

    Article  CAS  Google Scholar 

  156. Wei, T. et al. Biphasic electrode suspensions for Li-ion semi-solid flow cells with high energy density, fast charge transport, and low-dissipation flow. Adv. Energy Mater. 5, 1500535 (2015).

    Article  Google Scholar 

  157. Duduta, M. et al. Semi-solid lithium rechargeable flow battery. Adv. Energy Mater. 1, 511–516 (2011).

    Article  CAS  Google Scholar 

  158. Hamelet, S. et al. Non-aqueous Li-based redox flow batteries. J. Electrochem. Soc. 159, A1360–A1367 (2012).

    Article  CAS  Google Scholar 

  159. Ventosa, E. et al. Electron bottleneck in the charge/discharge mechanism of lithium titanates for batteries. ChemSusChem 8, 1737–1744 (2015).

    Article  CAS  Google Scholar 

  160. Pan, S., Fang, W., Yan, J., Zhang, S. & Zhang, H. Multiscale coupled electron–ion transport in semi-solid lithium flow batteries. Energy Environ. Sci. 18, 5868–5896 (2025).

    Article  CAS  Google Scholar 

  161. Li, Z. & Lu, Y.-C. Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes. Nat. Energy 6, 517–528 (2021).

    Article  CAS  Google Scholar 

  162. Lei, J. et al. An active and durable molecular catalyst for aqueous polysulfide-based redox flow batteries. Nat. Energy 8, 1355–1364 (2023).

    Article  CAS  Google Scholar 

  163. Ahmad, A. et al. Optimized and cost-effective elemental-sulfur sodium polysulfide/sodium bromide aqueous electrolytes for redox flow batteries. J. Power Sources 614, 235013 (2024).

    Article  CAS  Google Scholar 

  164. Wang, Z. et al. Synergy of single atoms and sulfur vacancies for advanced polysulfide–iodide redox flow battery. Nat. Commun. 16, 2885 (2025).

    Article  CAS  Google Scholar 

  165. Girschik, J., Kopietz, L., Joemann, M., Grevé, A. & Doetsch, C. Redox flow batteries: stationary energy storages with potential. Chem. Ing. Tech. 93, 523–533 (2021).

    Article  CAS  Google Scholar 

  166. Friedman, D. C., Masciangioli, T. M. & Olson, S. The Role of the Chemical Sciences in Finding Alternatives to Critical Resources: A Workshop Summary (National Academies Press, 2012).

  167. Gong, K. et al. A zinc–iron redox-flow battery under $100 per kW h of system capital cost. Energy Environ. Sci. 8, 2941–2945 (2015).

    Article  CAS  Google Scholar 

  168. Crawford, A. et al. Comparative analysis for various redox flow batteries chemistries using a cost performance model. J. Power Sources 293, 388–399 (2015).

    Article  CAS  Google Scholar 

  169. Shoaib, M. et al. Advances in redox flow batteries—a comprehensive review on inorganic and organic electrolytes and engineering perspectives. Adv. Energy Mater. 14, 2400721 (2024).

    Article  CAS  Google Scholar 

  170. Bordignon, D. & Guarnieri, M. Progress in flow-battery shunt current investigations: a species-resolved foundational approach. J. Energy Storage 124, 116783 (2025).

    Article  CAS  Google Scholar 

  171. Rahman, F. & Skyllas-Kazacos, M. Vanadium redox battery: positive half-cell electrolyte studies. J. Power Sources 189, 1212–1219 (2009).

    Article  CAS  Google Scholar 

  172. Viswanathan, V. et al. Cost and performance model for redox flow batteries. J. Power Sources 247, 1040–1051 (2014).

    Article  CAS  Google Scholar 

  173. Gao, Y., Pan, Z., Sun, J., Liu, Z. & Wang, J. High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nanomicro Lett. 14, 94 (2022).

    CAS  Google Scholar 

  174. Balaram, V., Santosh, M., Satyanarayanan, M., Srinivas, N. & Gupta, H. Lithium: a review of applications, occurrence, exploration, extraction, recycling, analysis, and environmental impact. Geosci. Front. 15, 101868 (2024).

    Article  CAS  Google Scholar 

  175. Wu, F., Shivakumar, K. R., Konhauser, K. O. & Alessi, D. S. Lithium resources and novel strategies for their extraction and purification. npj Mater. Sustain. 3, 30 (2025).

    Article  Google Scholar 

  176. Yang, Y. et al. Preparation of high-quality lithium sulfide by reducing lithium sulfate with hydrogen: a green and cost-effective method. Green Chem. 26, 7231–7245 (2024).

    Article  CAS  Google Scholar 

  177. Wang, C. et al. Stable sodium–sulfur electrochemistry enabled by phosphorus-based complexation. Proc. Natl Acad. Sci. USA 118, e2116184118 (2021).

    Article  CAS  Google Scholar 

  178. Yu, X. & Manthiram, A. Room-temperature sodium–sulfur batteries with liquid-phase sodium polysulfide catholytes and binder-free multiwall carbon nanotube fabric electrodes. J. Phys. Chem. C. 118, 22952–22959 (2014).

    Article  CAS  Google Scholar 

  179. Self, E. C., Tyler, J. L. & Nanda, J. Ambient temperature sodium polysulfide catholyte for nonaqueous redox flow batteries. J. Electrochem. Soc. 168, 080540 (2021).

    Article  CAS  Google Scholar 

  180. Tian, L. et al. Designing electrolytes with high solubility of sulfides/disulfides for high-energy-density and low-cost K–Na/S batteries. Nat. Commun. 15, 7771 (2024).

    Article  CAS  Google Scholar 

  181. Noack, J., Wietschel, L., Roznyatovskaya, N., Pinkwart, K. & Tübke, J. Techno-economic modeling and analysis of redox flow battery systems. Energies 9, 627 (2016).

    Article  Google Scholar 

  182. Lechner, M. et al. Cost modeling for the GWh-scale production of modern lithium-ion battery cells. Commun. Eng. 3, 155 (2024).

    Article  Google Scholar 

  183. Yang, C., Li, P., Yu, J., Zhao, L.-D. & Kong, L. Approaching energy-dense and cost-effective lithium–sulfur batteries: from materials chemistry and price considerations. Energy 201, 117718 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

W.L. acknowledges support by the Air Force Office of Scientific Research (grant number FA9550-22-1-0143). W.L. and P.W. acknowledge support from the Dartmouth PhD innovation programme.

Author information

Authors and Affiliations

Authors

Contributions

P.W. and H.Q. wrote the article. B.L. and R.Z. contributed substantially to discussion of the content. W.L. supervised, reviewed and edited the article. All authors reviewed the manuscript before submission.

Corresponding author

Correspondence to Weiyang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clean Technology thanks Melissa L. Meyerson, Long Kong, Qingping Wu and Meng Zhao for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Qing, H., Li, B. et al. Semi-liquid lithium−sulfur batteries for large-scale energy storage. Nat. Rev. Clean Technol. (2026). https://doi.org/10.1038/s44359-026-00147-4

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44359-026-00147-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing