Table 1 Comparative performance analysis of prior algorithms across multiple databases

From: mRMEBP: a unified framework for online detection of atrial fibrillation utilizing deep learning

Authors

Year

Main features

Database

Key techniques

Performances in %

     

Se

Sp

PPV

ACC

Luo et al.34

2024

RRIs

LTAFDB

Sobolev test statistics+End-to-end LM

95.90

93.60

95.00

AFDB

96.20

98.20

97.30

MITDB

93.80

95.60

95.40

NSRDB

NA

99.60

NA

NA

Kumar et al.32

2023

RRIs

AFDB

CNN

96.06

98.29

97.04

MITDB

96.87

86.94

87.98

NSRDB

NA

94.44

NA

NA

Jahan et al.30

2022

RRIs

LTAFDB

AdaBoost

86.45

81.57

AFDB

87.58

89.27

MITDB

85.67

81.25

NSRDB

NA

93.21

NA

NA

Liu et al.29

2022

RRIs

AFDB

MGNN+Self-attention

94.95

97.77

93.91

97.07

MITDB

95.17

91.94

53.92

92.23

NSRDB

NA

96.86

NA

NA

Andersen et al.23

2019

RRIs

AFDB

CNN+RNN+Median filter

98.98

96.95

95.76

97.80

MITDB

98.96

86.04

45.45

87.40

NSRDB

NA

95.01

NA

NA

Sološenko et al.21

2019

RRIs+PPIs

AFDB

SQA+Decision logic

97.10

98.40

97.80

MITDB

96.80

91.30

92.60

NSRDB

NA

99.20

NA

NA

Ródenas et al.17

2017

RRIs+AA

AFDB

COSEn+TQEn+LDA

96.47

97.35

96.96

MITDB

75.30

93.51

91.98

Zhou et al.15

2015

RRIs

LTAFDB

Symbolic dynamics+Shannon Entropy+Threshold

96.14

95.73

97.03

95.97

AFDB

97.37

98.44

97.89

97.99

AFDB

97.31

98.28

97.89

97.84

AFDB

98.43

98.46

97.92

98.45

MITDB

97.83

87.41

47.67

88.51

NSRDB

NA

99.68

NA

NA

AFDB+NSRDB

97.36

99.32

96.86

98.98

AFDB+NSRDB

97.31

99.31

96.83

98.96

AFDB+NSRDB

98.43

99.35

96.82

99.19

  1. Training data. Records “00735” and “03665” are excluded. Records “04936” and “05091” are excluded.
  2. ‘ − ’ signifies no data reported. ‘NA’ stands for not applicable. See text for abbreviations.