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Cracking the code: predicting tumor
microenvironment enabled
chemoresistancewithmachine learning in
the human tumoroid models
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High-grade serous tubo-ovarian cancer (HGSC) is marked by substantial inter- and intra-tumor
heterogeneity. The tumor microenvironments (TME) of HGSC show pronounced variability in cellular
make-up across metastatic sites, which is linked to poorer patient outcomes. The influence of cellular
composition on therapy sensitivity, including chemotherapy and targeted treatments, has not been
thoroughly investigated. In this study, we examined the premise that the variations in cellular
composition can forecast drug efficacy. Using a high-throughput 3D in vitro tumoroid model, we
assessed thedrug responsesof 23distinct cellular configurations of tumoroids comprised ofOVCAR3
HGSC cells, mesenchymal stem cells, HUVEC endothelial cells, and U937 monocytes to an
assortment of five therapeutic agents, including carboplatin and paclitaxel. We identified that the
overall pooled viability in response to these five drugswas highest among tumoroid compositions that
contained a large number ofmyeloid cells, whereas themost sensitive tumoroids to these agentswere
comprised of only cancer cells. Additionally, we found that the “mesenchymal tumoroids” containing
400 or more mesenchymal stem cells were more sensitive to carboplatin than paclitaxel. By
amalgamating our experimental findings with random forest machine learning algorithms, we
assessed the influence of TME cellular composition on treatment reactions. Our findings reveal
notable disparities in drug responses correlated with tumoroid composition, underscoring the
significance of cellular diversity within the TME as a predictor of therapeutic outcomes. This research
establishes a foundation for employing human tumoroidswith varied cellular composition as amethod
to delve into the roles of stromal, immune, and other TME cell types in enhancing cancer cell
susceptibility to various treatments.

Most ovarian cancer patients are treated with a standard non-personalized
treatment regimenof neoadjuvant chemotherapy comprising platinumand
taxane therapy followed by surgical debulking1. While this treatment regi-
men is often initially effective, most patients experience relapse with the
development of chemoresistance, leading to high mortality2,3. Personalized
medicine is a promising approach to improve patient outcomes wherein
clinical management is based on the specific characteristics of each indivi-
dual tumor and patient. However, high-grade serous ovarian cancer
(HGSC) has a highly heterogeneous clinical response and a paucity of

prognostic factorswithwhichpatients can be stratified. Factors likeBRCA1/
2orCCNE1mutations canaid indirecting clinicalmanagement, but ovarian
cancer patients are still plagued by frequent development of drug-resistant
disease4,5. As a result, there has been a considerable effort todefinemolecular
subtypes of HGSC in order to improve prognosis predictions, and more
effectively determine the clinical management course of action to improve
outcomes6–11.

In this quest, a seminal study identified four molecular subtypes of
HGSC (mesenchymal, immunoreactive, proliferative, and differentiated) in
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microarray analysis of 285 serous and endometrioid tumors10. The
“mesenchymal” subtype with high stromal and low immune signature
corresponded with the worst clinical outcomes, while high immune and
differentiated signatures were associated with more favorable outcomes10.
Since the publication of this report, over the years, thesemolecular subtypes
have been validated by some studies, while others have developed unique
molecular classifications of HGSC into similar, yet different subtypes6–12.
Additionally, single-cell RNA sequencing studies have identified common
cell populations in the tumor microenvironment (TME), including fibro-
blasts, mesenchymal stem cells (MSCs), macrophages, other immune cells,
and endothelial cells13–15. These studies have suggested that the molecular
subtypes are influenced by the proportion of these other non-tumor cell
populationswithin the tumor14,15. However, theHGSCmolecular subtyping
has not been implemented clinically, in part because the specific subtype
markers are not statistically significant across all studies3. Yet, the promise of
usingmolecular subtyping inHGSChas beendemonstrated, for example, in
a retrospective study of the effectiveness of anti-angiogenic therapy
bevacizumab16. By molecular subtyping HGSC, bevacizumab conferred a
greater overall benefit in the two subtypes with the worst prognosis
(mesenchymal and proliferative), thereby indicating that subtype-specific
treatments may improve clinical outcomes16. This example highlights the
potential of molecular subtype signatures to direct clinical management.
Additionally, carcinoma-associated fibroblasts and MSC (CA-MSC)17–19

and macrophages20–26 have been shown to influence ovarian cancer cells to
adoptmore cancer stem-like cell (CSC) phenotypes, becomemore resistant
to chemotherapeutic agents, and becomemore metastatic. Endothelial cells
have been observed to induce cancer stem cell phenotypes and invasion in
other cancer types, including glioblastoma and colorectal27–29. A better
understanding of the role of the nuanced TME cellular composition (i.e.,
high stromal, high immune, etc.) in patient drug responses to various drugs
could enhance the clinical value of HGSC molecular subtyping efforts.
Machine learning models are poised to accomplish this goal and provide
additional context for developing new treatments and direct the effective
administration of current treatments.

Machine learning models are uniquely suited to elucidate the role of
nuanced non-tumoral cellular composition in drug response and che-
moresistance due to their ability to identifymeaningful patterns in complex
multi-dimensional datasets30–32. As an example, Yu et al. developed a
machine learningmodel trainedonproteomic profiles of 130 ovarian serous
carcinoma patients to predict response to platinum therapy using various
supervised machine learning algorithms and proposed the key pathways
involved in platinum resistance with their bioinformatic approach33. In
another study, explicit mathematical models with a machine learning fra-
mework were combined in order to identify candidate combinations of
existing therapies and test mechanistic hypotheses for improving treatment
efficacy34. Together, these and other examples of deep learning and neural
network techniques in predicting drug responses highlight the value of
interpretable machine learning models in clinical and translational
applications35–40.

Random forest is one of the types ofmachine learning approacheswith
high interpretability for biological applications30,32,41–43. This approach not
only achieves accurate predictions, but is also robust for non-parametric
data, outliers, and over-fitting44. Furthermore, random forest enables
measurement of feature importance to gain information on the process used
to generate the model, or what the model “learned” about the data.
Therefore, random forest models are a popular choice in biomedical
machine learning due to these advantages and have resulted in many suc-
cessful models45.

In order to address the unmet need for improvedmolecular subtyping
inHGSC and to clarify the role of the TMEcellular composition in response
to treatment, we utilized a combination of in vitro drug screening of het-
erogeneous tumoroids and easily interpretablemachine learning techniques
in this report. Each of the cell types included in the tumoroids (MSC,
endothelial cell, monocyte) has been previously identified to contribute to
differentmolecular subtype signatures13–15. Therefore, we created tumoroids

of different compositions, where some were predominated by one non-
tumor cell type and others contained high proportions ofmultiple cell types
in order to identify the contributions of an individual cell type and the
contributions of multiple cell types at the same time. We hypothesize that
tumoroids engineered with different cellular compositions (all including
tumor cells) will respond differentially to drug treatments. Furthermore, we
expect the cell composition of each tumoroid to be used tomake predictions
of drug response and to gain insights into key cell–cell relationships in
evolving chemoresistance. Finally, we expect that the findings from the
integrated tumoroid and machine learning model presented in this report
will translate to effective molecular subtyping of patient-specific drug
responses, in order to improve HGSC response and cure rates.

Results
Tumoroids derived from different tumor microenvironment cell
compositions respond differentially to 5 different chemo- and
targeted therapies
HGSCs are comprised ofmultiple cell types, including epithelial cancer cells,
mesenchymal cancer cells, carcinoma-associated MSCs, microvascular
endothelial cells, and macrophages, each of which supports tumor cells in
different contexts14,46,47. The mesenchymal subtype signature is strongly
expressed by the fibroblasts andMSCs, while the immunoreactive signature
features myeloid, T cells, and NK cells. Meanwhile, epithelial cells highly
express a differentiated signature and, to a lesser extent, express a pro-
liferative signature48. In order to investigate the impact of non-tumoral
cellular composition on the HGSC chemosensitivity, 23 tumoroids of dif-
ferent cell compositions (Fig. 1A–C, Table 1) were fabricated. Differential
morphologies of tumoroids were observed for each of the 23 compositions
(Fig. 1C). The responses of cancer cells in tumoroids to conventional che-
motherapies (carboplatin and paclitaxel) as well as targeted biologic treat-
ments (PACMA31, N773, and SC144) were tested (Fig. 2A–F) and assessed
for viability using the MTS assay following 48 h of drug treatment. Three
biologic targeted treatments utilized in this study were: protein disulfide
isomerase inhibitor, PACMA3149; IL-6/STAT3 inhibitor, SC14423,50,51; and
E2F/RUNX2 inhibitor (compound N773).

Within each drug treatment, there were significant differences in
cancer cell viability between tumoroid cell compositions (Fig. 2A–G). In
tumoroids treated with carboplatin, the lowest viability was found in
compositions 1 and 3, which were solely composed of OVCAR3 cells, with
0.563 ± 0.027 and 0.580 ± 0.031mean normalized viability ± standard error
of the mean, respectively. The tumoroids with the highest viability in
response to carboplatin were compositions 11 and 21, with 0.954 ± 0.021
and 0.887 ± 0.035 normalized viability, respectively, which both contained
500U937s. Similarly, compositions 1 and 3 had the lowest viability of all the
tumoroid compositions when treated with paclitaxel (0.782 ± 0.016 and
0.781 ± 0.023, respectively), PACMA31 (0.517 ± 0.012 and 0.568 ± 0.021,
respectively), or N773 (0.641 ± 0.018 and 0.680 ± 0.012). However, the
tumoroid compositions with the highest viability varied between drug
treatments. For paclitaxel, the highest viability was found in tumoroid
compositions 14 and 5 (1.04 ± 0.025 and 1.01 ± 0.023, respectively), which
both contained all four cell types. For PACMA31, the highest viability was
found in tumoroid compositions 11 and 7 (0.956 ± 0.021 and 0.900 ± 0.029,
respectively), which both contained U937s. For N773, the highest viability
was found in tumoroid compositions 14 and 11 (1.00 ± 0.039 and
0.976 ± 0.037), which both contained U937s. Finally, SC144 deviated the
most from the other drugs, with the lowest viability being recorded in
tumoroid compositions 20 and 10 (0.786 ± 0.029 and 0.865 ± 0.030), which
both contained 500 human umbilical vein endothelial cells (HUVECs) and
the highest viability in tumoroid compositions 15 and 1 (1.06 ± 0.026 and
1.04 ± 0.035), which were quite different from each other in terms of cell
composition. ANOVAs were performed to compare viability across
tumoroid compositions for each drug treatment, and p values were reported
in a heatmap (Fig. 2G). In Fig. 2G, the most significant differences were
clustered in the left half of the heatmap, corresponding to comparisons of
compositions 1, 2, and 3 (the cancer cell-only conditions) with the other 20
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compositions that also contained non-tumor cells. Paclitaxel, PACMA31,
and N773 treatment yielded the most significant differences in viability.
Interestingly, a similar cluster of significant differences exists in both the
carboplatin andPACMA31 treatment groups (Fig. 2G).Upon examination,
these clusters correspond to the increased chemoresistance of composition
11 (with macrophages and cancer cells) compared to compositions 12–20,
comprising three or four cell types (all contain MSCs and endothelial cells)
(see Fig. 1A, B, Table 1).

We characterized the chemoresistant tumoroids as those with the
highest average pooled viability after drug treatments. Notably, the top five
chemoresistant tumoroid compositionswere compositions 11, 15, 5, 22, and
23 in order of most viable to least, with overall viability of 0.961 ± 0.012,
0.932 ± 0.012, 0.927 ± 0.013, 0.918 ± 0.0099, and 0.911 ± 0.0088, respec-
tively (mean normalized viability ± SEM) (Table 2). Interestingly, four out
of the five most resistant compositions on average included 500 U937
(myeloid cells). Similarly, we characterized the chemosensitive tumoroids as
those with the lowest average pooled viability after drug treatments. The
most chemosensitive tumoroids after all drug treatmentswere compositions
19, 8, 2, 1, and 3 in order of most viable to least, with overall viability of
0.837 ± 0.016, 0.792 ± 0.0095, 0.788 ± 0.0072, 0.709 ± 0.015, and
0.698 ± 0.012, respectively (Table 3).We noted that the threemost sensitive
tumoroid compositions, on average, were the only three conditions gener-
ated with cancer cells only.

However, the compositions with the greatest resistance and sensitivity
to treatment varied depending on the treatment (Tables 2 and 3). Briefly,
compositions 11, 21, 22, 5, and 13 were the most resistant to carboplatin
treatment, while compositions 19, 7, 14, 3, and 1 were the most sensitive to
carboplatin. Notably, composition 13 contained no cancer cells. Contrarily,
the most resistant compositions to paclitaxel were compositions 14, 5, 10,
16, and 15, two of which contained 500 ECs (Table 2). Compositions 4, 8, 2,
1, and 3 were the most sensitive to paclitaxel, again including the three
tumoroids comprised of cancer cells only. PACMA31 was least effective
against and saw the most resistance from compositions 11, 7, 4, 5, and 15.
Compositions 18, 8, 2, 3, and 1 were the most sensitive to PACMA31

treatment. Compositions 14, 11, 16, 15, and 22 weremost resistant to N773
treatment, including three conditions with 500 U937(myeloid cells).
Compositions 19, 8, 2, 3, and 1 were the most sensitive to N773 treatment.
Finally, compositions 15, 1, 2, 12, and 7 were most resistant to SC144
treatment. Compositions 19, 23, 3, 10, and 20 weremost sensitive to SC144.
Interestingly, among the least impacted compositions for SC144 were
cancer cell-only compositions with 30 and 60 OVCAR3 cells, respectively
(Table 3). Therefore, we observed differential responses to both chemo- and
targeted therapies in the 23 tumoroid compositions, with 3 cancer cell-only
compositions being the most sensitive to drug treatments. These data
highlight the potential clinical application of tumoroids in predicting
responses to targeted therapies.

Additionally, these five therapeutic compounds were evaluated on
tumoroids generated with CSCs in order to investigate the impact of the
stem-like cell status of the cancer cells on the drug response. OVCAR3 cells
were sorted using FACS for ALDH+ and CD133+ cells to obtain CSCs.
These CSCs were then incorporated into tumoroids in place of the bulk
OVCAR3 cells. A few tumoroid compositions (2, 9, 10, and 20) were gen-
erated using CSCs and treated with carboplatin, paclitaxel, SC144, N773,
and PACMA31 (Supplementary Fig. S1). The tumoroids, which included
non-tumor cells, tended to be more resistant to these agents compared to
cancer cell-only tumoroids, even when all the tumoroids were generated
with CSCs.

“Mesenchymal” tumoroids respond differentially to carboplatin
and paclitaxel
Reports in the literature support that “mesenchymal” subtypes are more
sensitive to taxane (paclitaxel) therapy and more resistant to platinum-
based therapies52. “Mesenchymal” subtype signatures have also been linked
to the presence of mesenchymal cells, as opposed to more mesenchymal
cancer cell populations14. Therefore, in order to draw a first pass clinical
parallel with our tumoroid models, we compared the drug response of 7
“mesenchymal tumoroid” compositions (compositions 9, 12, 14, 17, 20, 22,
and 23) characterized by ≥400 MSCs, to carboplatin treatment versus

Fig. 1 |Heterogeneous high-grade serous ovarian tumoroidswere createdwith 23
different cell compositions. A Bar graph showing the total cell number in each
tumoroid composition distributed between high-grade serous cell line OVCAR3
(blue), mesenchymal stem cells (MSCs) (red), endothelial cells (ECs) (green), and
U937 monocytes (purple). B Bar graph showing the percentage of each cell type in

each composition, with OVCAR3 represented in blue, MSCs in red, ECs in green,
andU937monocytes in purple.CPhase contrast image of tumoroids taken on day 5,
madewith each cell composition showing heterogeneous size andmorphology. Scale
bar = 200 μm.
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paclitaxel treatment (Fig. 3A–G). This comparison yielded the opposite
relationship than expected from literature, with carboplatin being more
effective in each of the selected “mesenchymal tumoroids” (0.703, 0.704,
0.623, 0.698, 0.761, 0.858, and 0.792 normalized viability, respectively)
compared to paclitaxel treatment (0.920, 0.994, 1.04, 0.964, 0.967, 0.945, and
0.984 normalized viability, respectively). These differences in paclitaxel
versus carboplatin response were significantly different, with unpaired t-
tests revealing p values of <0.0001, <0.0001, <0.0001, <0.0001, <0.0001,
0.0161, and <0.0001 for compositions 9, 12, 14, 17, 20, 22, and 23,
respectively.

To combat the relative effectiveness of carboplatin versus paclitaxel
dosing, we next examined the relative ranking of the “mesenchymal
tumoroids” compared to all other compositions treated with carboplatin or
paclitaxel (Fig. 3H). We expected that “mesenchymal tumoroids” would
rank in the most resistant compositions among the carboplatin treatment
groupand in the least resistant compositions among thepaclitaxel treatment
group. Surprisingly, the tumoroids with the most MSC were more sensitive
to carboplatin, with an average ranking of 12.7 (in the bottom half of all
compositions), while the “mesenchymal tumoroids”were more resistant to
paclitaxel, with an average rank of 8.6 (in the top half of all compositions).
Additionally, the most resistant composition to paclitaxel, composition 14,
is a “mesenchymal tumoroid.” Of note, composition 22 was the only
“mesenchymal tumoroid” that showed the expected trend (third most
resistant composition to carboplatin and the thirteenth most resistant to
paclitaxel). We also noted that the composition without cancer cells, com-
position 13, also followed the expected “mesenchymal” subtype trend, being
the fifth most resistant to carboplatin and the fifteenth most resistant to
paclitaxel. Therefore, the “mesenchymal tumoroids” with higher numbers

of MSCs were sensitive to carboplatin and resistant to paclitaxel, which is
opposite to the literature report for “mesenchymal” subtype signature.

Machine learningmodelspredicteddrugresponsesbasedon the
tumoroid cellular composition
To investigate the utility of the TME cell composition in predicting treat-
ment response, random forest models were created to predict tumoroid
response to each drug based on cell composition. The primary purpose of
the machine learning approach was to use it as a tool to establish potential
relationships between cell composition features and response to drug
treatment, not necessarily to generate highly accurate prediction models.
Themedian normalized absorbance value from theMTS viability assays for
each drug treatment was used to determine “high” or “low” response to
the drug.

The random forests had variable effectiveness at predicting response to
different drugs. The worst model (predicting SC144 response) had an area
under the curve (AUC) of 0.5883 for the training set and 0.6264 for the test
set (Fig. 4E). Contrarily, the most effective random forest model had an
AUCof 0.6915 for the training set andanAUCof 0.6832on the test setwhen
trained to predict PACMA31 response (Fig. 4C). Paclitaxel (training AUC:
0.6825; test AUC: 0.6898; Fig. 3B) and N773 (training AUC: 0.6415; test
AUC: 0.6833; Fig. 4D) predictions were the second and thirdmost accurate.
The carboplatinmodel was the second-to-last most effective with a training
AUC of 0.6089 and a test AUC of 0.6695 (Fig. 4A). Each model performed
better than a random predictor and was relatively consistent between the
training and test sets, indicating a lack of overfitting. Training set AUCs
ranged from 0.5883 to 0.6915, indicating moderate performance. Interest-
ingly, the three most accurate prediction models (PACMA31, paclitaxel,
andN773) were based on treatments with the greatest significant difference
in viability between experimental conditionswith andwithout non-tumoral
cells (Fig. 2G).

Randomforestmodelspredicted themost importantparameters
for individual drug response
We evaluated the importance of each tumoroid composition parameter in
making predictions for each drug response. None of the random forest
models prioritized the number of a single cell type in making predictions.
The carboplatin model placed relatively equivalent importance on most of
its parameters, but still put the most weight on the proportion of the
tumoroidmade up ofU937 (myeloid cells). The proportion of the tumoroid
made up of endothelial and MSCs respectively were also in the top 5 most
important parameters in the carboplatin model (Fig. 5A). The paclitaxel
responsepredictor placed themost importance by far on the total number of
cells and the total number of all tumor and non-tumor cells plated at the
start of experiment (Fig. 5B). As the total number of TME cells is highly
influential in the total number of cells (more non-tumoral cells inherently
means more total cells), these two parameters are heavily overlapping.
PACMA31 predictions placed the most importance on the ratio of cancer
cells to TME cells and to total cells, respectively (Fig. 5C). The N773 model
placed a similar weight on the ratio of cancer cells to total cells and the total
number of cells alone. Finally, the SC144 model placed the greatest
importance on the cancer cell type (OVCAR3 sorted for CSCs
markers19,23,53,54 ALDH andCD133, compared to unsortedOVCAR3), as an
experiment was conducted with sorted ovarian CSCs as opposed to
unsorted OVCAR3. The SC144 model also placed high importance on the
proportion of myeloid cells in the tumoroids (Fig. 5E). Figure 5F shows a
heatmap of the importance value of each parameter for each drug response
prediction model, revealing a clear pattern of the importance with the
proportion of cancer cells and TME cells in each tumoroid being critical
parameters. The heatmap also reveals moderate importance placed on
various cell–cell relationships, whereas the parameters that considered only
individual cell type numbers were among the least important for all models.

Breaking down the most important parameters for each model and
plotting the important parameter versus the treatment response showed the
relationship between each tumoroid composition variable and the

Table 1 | The tumoroid cell compositions are listed with the
number of cancer cells, mesenchymal stem cells, endothelial
cells, and monocytes in each of the 23 experimental
conditions

Cancer
cells
(OVCAR3)

Mesenchymal
stem
cells (MSC)

Endothelial
cells
(HUVEC)

Monocytes
(U937)

Composition 1 30 0 0 0

Composition 2 60 0 0 0

Composition 3 120 0 0 0

Composition 4 120 20 20 20

Composition 5 60 60 60 60

Composition 6 120 60 60 60

Composition 7 300 60 60 60

Composition 8 30 150 150 150

Composition 9 60 500 0 0

Composition 10 60 0 500 0

Composition 11 60 0 0 500

Composition 12 60 400 200 100

Composition 13 0 300 300 300

Composition 14 60 400 400 100

Composition 15 60 200 200 500

Composition 16 60 200 500 200

Composition 17 60 500 200 200

Composition 18 60 300 300 300

Composition 19 120 400 400 100

Composition 20 60 500 500 0

Composition 21 60 0 500 500

Composition 22 60 500 0 500

Composition 23 60 500 500 500
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Fig. 2 | Heterogeneous high-grade serous ovarian tumoroids with different cell
compositions have statistically significant differences in drug treatment
response. A Box and whisker plot of averaged normalized viability for each
tumoroid cell composition across all treatment conditions, showing overall resis-
tance to treatment. Box and whisker plots showing resistance of each tumoroid

composition to B carboplatin, (C) paclitaxel, (D) PACMA31, (E) N773, and
F SC144. G Heatmap of adjusted p values for comparisons between all conditions
determined via one-way ANOVA and Tukey’s post hoc analysis. Red indicates most
significant (p < 0.05), gray indicates borderline significance (p = 0.05), and blue and
white indicate not significant (p > 0.05).
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treatment response (Fig. 6A–E). In general, there appears to be an inverse
relationship between drug response and the total number of non-tumoral
cells, which is highly correlated with the total cell number. For example,
PACMA31 appears to be most effective when the ratio of cancer cells to
MSCs, endothelial, and myeloid cells is high (i.e., there are no added TME
cells) (Fig. 6C). Interestingly, the SC144 prediction model placed the most
importance on the type of OVCAR3 cells used, as tumoroids made with
CSC-sorted OVCAR3 were more susceptible to SC144. Moreover, when
examining the second most important parameter in predicting response to
carboplatin, low ratios of OVCAR3 to MSC (a higher proportion of MSC
than cancer cells) resulted in generally greater resistance to carboplatin
treatment (Fig. 6F). Therefore, the random forest models revealed the most
important parameters that were instrumental in predicting the individual
drug responses.

Discussion
The cellular composition of the TME has previously been reported in
driving differential treatment responses between HGSC molecular
subtypes14,46,48. However, there is an incomplete understanding of the role
of more nuanced differences in non-tumoral cellular composition on
treatment outcomes. In this work, we leveraged a 3D, tunable hetero-
geneous tumoroid platform to screen the drug responses of tumoroids
representing 23 distinct compositions of tumor cells, MSCs, endothelial,
and myeloid cells. Screening data was subsequently used to generate

random forest models to predict drug response based on tumoroid cell
composition.

The most significant differences in treatment response were found
between tumoroid compositions with only cancer cells and those with added
TME non-tumoral cells. The three most sensitive compositions contained
only cancer cells, supporting the role of TME cells in conferring chemore-
sistance, as expected based on the literature19,55–57. Differences in drug
response between compositions with varying numbers of TME cells suggest
composition-dependent chemoresistance effects. From a clinical application
perspective, this indicates the importance of choosing a therapy compatible
with the tumor composition. For example, based on the data presented in
this study, PACMA31, paclitaxel, and N773 would be relatively less effective
in tumors with high stromal content compared to carboplatin or SC144.

Treatments with paclitaxel, PACMA31, and N773 yielded the most
significant differences in viability, potentially indicating that their respective
mechanisms of action are more attenuated by non-tumor cells than the
mechanisms leveraged by carboplatin and SC144. Significant differences
were identified in the cluster of tumoroid compositions treated with car-
boplatin andPACMA31,with increasedchemoresistanceof composition11
compared to compositions 12–20. This cluster of differences included the
significant difference between composition 11 and composition 15, which
both contain 500 myeloid cells, refuting the rationale that myeloid cells are
solely responsible for the chemoresistance observed in composition 11. It is
possible that carboplatin and PACMA31 are negatively influencing viability

Fig. 3 | Comparison of carboplatin and paclitaxel response among high-grade
serous ovarian tumoroids with the highest number of mesenchymal stem cells,
termed “mesenchymal tumoroids”. A–G Average normalized viability of each
mesenchymal tumoroid following treatment with carboplatin or paclitaxel.

HAverage resistance rank of each “mesenchymal tumoroid” to carboplatin (blue) or
paclitaxel (red) compared to all other tumoroid compositions. Error bars represent
the standard error of the mean. Results of unpaired t-tests are represented by
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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in composition 15 through effects on the MSCs and/or ECs. However,
PACMA31 has previously been reported to be effective against ovarian
cancer cells and non-toxic to healthy tissues49. Alternatively, it is possible
that the MSCs and/or ECs are interacting with the cancer cells and/or
myeloid cells to attenuate the chemoresistant effect observed in composition
11. The molecular mechanism driving this response requires further
experimentation but poses some interesting questions with potential
translational implications.Weadditionally observed that paclitaxelwas least
effective against compositions 14, 5, 10, 16, and 15, two of which contained
500 ECs, potentially indicating a connection between ECs and resistance to
paclitaxel (Table 3). This is contrary to previous reports of anti-angiogenic
and endothelial-specific effects of paclitaxel58–60. However, it is possible that
ECs are conferring chemoresistance through indirect mechanisms such as
the modulation of tumoroid extracellular matrix61.

After generating random forest models for each drug treatment, we
found that themodel predicting SC144 response had theworst performance

but was still better than a random prediction model. The tumoroid com-
positions that were least impacted by SC144 contained cancer cell-only
compositions. SC144 inhibits gp130 through binding, resulting in gp130
phosphorylation and deglycosylation, and ultimately abrogates STAT3
phosphorylation and subsequent downstream gene activation62. Through
these mechanisms, SC144 was previously shown to be effective against
ovarian cancer cell lines in vitro and in vivo62. However, in our tumoroid
platform, overall response across all conditions was low as indicated by
sparse significant differences between experimental compositions. This low
overall response perhaps suggests the need for increased doses in our system
to identify true responses.More robust drug responses obtainedwith higher
concentration treatment or longer duration treatment could also reduce
overlap in response values between compositions, potentially leading to
more accurate model predictions. However, STAT3 has been implicated in
ovarian CSCmaintenance, and therefore, the inhibitor SC144may bemore
effective against CSC63. We tested this theory on a subset of the tumoroid

Fig. 4 | Random forest model performed better than random predictors at pre-
dicting drug responses to each treatment for all tumoroid cell compositions.
Receiver operating characteristic curves (ROCs) for the training (left) and test (right)

set for the random forest model generated to predict response to A carboplatin,
(B) paclitaxel, (C) PACMA31, (D) N773, and E SC144.
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compositions and indeed found lower viability in response to the same
concentration of SC144 in these CSC tumoroids compared to bulk
OVCAR3 tumoroids. Therefore, this drug may have a more impactful
clinical response in tumors that have high CSC levels. Additionally, our
model performance may be improved by testing this drug on more
tumoroid compositions, instead of just 4.

When we examined the response of “mesenchymal tumoroids” (those
with at least 400MSCs) to carboplatin andpaclitaxel effectiveness, we found
that carboplatin was more effective in the selected “mesenchymal” com-
positions compared to paclitaxel treatment. This was contrary to expecta-
tion. Although, like SC144, paclitaxel had a low overall response, suggesting
the potential need for higher doses or longer treatments to ensure that
treatment effects are not being obscured. This finding could also be due to a
number of factors, including the crude nature with which we defined
“mesenchymal tumoroids.” It is possible that some other tumoroid com-
positions would be classified as a mesenchymal subtype if they were to be
sequenced, even with lower numbers of MSC at the start of the experiment.
In fact, previous work in our lab compared the gene expression in patient-
specific tumoroids made with composition 18 (60 patient-specific tumor
cells+ 300 MSC+ 300 EC+ 300 PBMC) versus matched patient-specific
spheroids made with only 60 patient tumor cells. In this work, patient-
specific tumoroids were found to bemore resistant to carboplatin treatment
and to have a transcriptome reflective of the mesenchymal subtype. From
this, we may infer that composition 18 in this analysis, and perhaps other
compositions, could have been justifiably considered as “mesenchymal
tumoroids.” However, in the absence of sequencing data to group each
composition into appropriate molecular subtypes, this possible explanation
remains conjecture. Furthermore, while mesenchymal subtypes have been

attributed to the presence of mesenchymal cells, the subtype signature may
also be influenced by other cell types in the stroma, making our crude
definition of a “mesenchymal tumoroid” less meaningful.

We found that paclitaxel was least effective against compositions 14, 5,
10, 16, and 15, all of which contained 500 ECs. This is not in line with
previous reports of anti-angiogenic effects of paclitaxel but might be related
to ECs conferring chemoresistance through modulation of tumoroid
extracellular matrix. The response to SC144 was low across all conditions,
suggesting a need for higher doses. Carboplatin was more effective in
“mesenchymal tumoroids” (those with at least 400 MSCs) compared to
paclitaxel, which had a low overall response. Only composition 22 was the
most representative of the “mesenchymal” molecular subtype. The three
most accurate prediction models (PACMA31, paclitaxel, and N773) were
those that had the most significant differences in response between cancer
cell-only conditions and compositions with added non-tumoral cells,
indicating that these three drugs would be less effective in tumors with high
stromal content. Overall, training set AUCs ranged from 0.5883 to 0.6915,
indicating moderate performance. However these values are in line with
those of previous drug predictionmodels generated based onprotein (AUC:
~0.58–0.64 for variousmachine learning algorithms)33 ormolecular features
(AUC: ~0.56–0.76 for a Deep Neural Network model)64 demonstrating the
potential of predictions made based solely on cell composition.

The results of this study highlight the importance of considering
complex relationships between cell types in predicting drug response. The
random forest models did not use the quantity of a single cell type as a
significant factor, but rather more complex parameters that considered
multiple cell types. One example was the relationship between PACMA31
response and the ratio of cancer cells toMSCs, ECs, andU937s,where ahigh

Fig. 5 | Random forest model provided easily accessible variable importance
measures to facilitate interpretation of results. Top 5 most influential parameters
in predicting drug response to (A) carboplatin, (B) paclitaxel, (C) PACMA31,

DN773, and E SC144. FHeatmap of the importance measures of all parameters for
each drug prediction model across all tumoroid cell compositions.
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ratio of cancer cellswas found tobemore effective.Another examplewas the
importance of the type of OVCAR3 cells used in the experiment for pre-
dicting SC144 response,where tumoroidsmadewith sortedOVCAR3CSCs
were more susceptible to SC14465–67, potentially due to SC144’s ability to
prevent STAT3 activation, which is known to be involved in CSC main-
tenance. These findings emphasize the need for complex in vitro models
with more than two cell types for drug screening applications and the
limitations of human observation alone in understanding the nuanced
aspects of TME-conferred chemoresistance.

Lastly, examining the relationships between important parameters and
drug response showed the direction between each parameter and treatment
response. Amore nuanced analysis, using the ratio of cancer cells toMSCs,
showed the expected carboplatin response trend of increased resistance in
more mesenchymal tumors. This highlights the importance of cell–cell
relationships in drug response stratification.Machine learningmodels have
the potential to predict therapy response based on cell composition and
evaluate the importance of each parameter. Although the models have
moderate accuracy, they can be improved with more physiologically rele-
vant tumoroids (with matched cancer-associated stromal and immune
cells) andhigher concentration or longerdurationdrug treatments to obtain
more robust drug responses.

Recent work has suggested that the stromal cells can impact molecular
subtyping classifications and thus may have prognostic significance14,47,68,
however, the exact role of nuanced differences in stromal composition in
drug response is still unclear. Furthermore, current drug treatment pre-
diction models rely on bulk-omics measurements or expensive imaging
techniques, which are often limited in sample size and only exist for pre-
viously administered therapies32,33,43,69–72, limiting their utility in predicting
response to novel therapies. In this work, we developed an in vitro model
system to generate tumoroids with different cell compositions and tested
drug response using a high-throughput hanging drop plate platform.

Random forest models were used to predict drug response based on
tumoroid composition. The results showed significant differences in drug
response based on tumoroid composition, supporting the importance of the
cellular composition of the TME in predicting therapy response18,19,29,73–75.
Yet, it highlights the importance of nuanced differences in cell composition
that may obscure the drug responses. This work provides proof of concept
for using tumoroids with different compositions to investigate the role of
TME cells in resistance to therapies.

Methods
Cell culture and materials
Epithelial ovarian cancer cells (OVCAR3: American Type Culture Collec-
tion, ATCC) were cultured in RPMI 1640 (Gibco) supplemented with 10%
fetal bovine serum (FBS: Atlanta Biologics) and 1% antibiotics and anti-
mycotics. Human adipose-derived MSCs (haMSCs: Lonza PT-5006) were
cultured in Adipose-derived Stem Cell Basal Medium (Lonza) supple-
mented with 10% FBS and 1% antibiotics and antimycotics as well as 2mM
L-glutamine (Gibco). HUVECs were a donation from Lonza and were
cultured in Endothelial Basal Medium-2 (EBM-2 [AKA EGM-2]: Lonza).
U937 monocytes were purchased from ATCC and were cultured in 1640
RPMI supplementedwith 10%heat-inactivated FBS and 1% antibiotics and
antimycotics. Tumoroid cultures were formed in 384-well hanging drop
plates in TumoroidMedium (TM) (2X SFM: EBM-2 (5:1)+ 20 μMROCK
inhibitor). See Supplementary Table S1 for detailed composition.

Cancer stem-like cell (CSC) isolation
Ovarian CSCswere isolated from theHGSC cell lineOVCAR3 as described
previously76. Briefly, cells were harvested and incubated with ALDEFLUOR
reagent (Stem Cell Technologies, Vancouver, BC), and CD133 antibody
(Milentyi Biotech, SanDiego, CA), and sorted using flow cytometry for cells
positive for elevated ALDH and CD133 positivity. Appropriate DEAB and

Fig. 6 |Normalized viability versus the important features for each random forest
model reveals cell composition dynamics in drug response prediction. The most
important features in predicting response to A carboplatin, (B) paclitaxel,
(C) PACMA31, (D) N773, and E SC144 versus normalized viability. F Plotting the

secondmost important feature in predicting carboplatin response versus normalized
viability reveals the expected relationship between the presence of mesenchymal
cells and resistance to carboplatin (higher ratios ofMSCs to OVCAR3 are associated
with greater resistance to carboplatin).
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isotype controls were used for both assays to determine gate settings as
described previously77,78. CSCs were freshly sorted and used to make
tumoroids within <24 h after flow sorting.

Tumoroid fabrication in hanging drop plates
To plate tumoroids in 384-well hanging drop plates, each cell type is col-
lected from 2D plates and resuspended in its respective 2D culture medium
for counting on a hemacytometer. The cell density of each cell type is
calculated and thenused to calculate the total volume of that cell suspension
that will be needed to obtain the required number of that cell type for each
experimental composition. The calculated volume of each cell suspension is
then added into a single tube per tumoroid composition, spun down at
800 × g, and resuspended in the appropriate volumeof tumoroidmediumso
that every well plated on the hanging drop plate will receive 20 μL of the
desired number of each cell type.

Maintenance and drug treatment of tumoroids
Tumoroids were imaged on days 3, 5, and 7 using an epifluorescent
Olympus microscope to obtain phase contrast images (4×). On day 3,
tumoroids are supplemented with 2 μL of tumoroid medium per well. On
day 5, each tumoroid composition was fed with 2 μL of tumoroid medium
with no drug as a control or 200 μM carboplatin, 10 μM paclitaxel, 10 μM
PACMA31, 10 μM N773, and 10 μM SC144. Each treatment condition
contained 20–40 wells as technical replicates. Plates were incubated for 48 h
and imaged on day 7.

Tumoroid viability
To quantify viability, an MTS assay was used. Two microliters of MTS
reagent were added to each well, and plates were incubated at 37 °C.
Absorbance was then measured in each well at 2- and 4-h incubation time
points. Normalized viability was quantified by averaging all control wells
and dividing the absorbance in each well by the control average to obtain
viability measurements for each drug in reference to the viability of the
control. Drug assays for each tumoroid composition were repeated in
2–12 separate experiments (most compositions were 2–4 replicates, but
compositions 2 and 18 had 12 and 7 replicates each because they served as
frequent control compositions).

Data processing
NormalizedMTSviability datawere compiled into anExcel spreadsheet and
coupled with the corresponding input cell composition for a given experi-
ment. To avoid “zero values” that would lead to “N/As” that need to be
excluded or imputed in random forestmodels, a value of 0.001was added to
all cell numbers. Features were generated by calculating various relation-
ships between the four cell numbers obtained at the inception of the
experiment. These included the following and are shown in Supplementary
Table S2: (Cancer cells, haMSCs, HUVECs, U937s, Total cells, Cancer cells:
haMSC,Cancer cells: HUVECs, Cancer cells: U937,Cancer cells: Total cells,
Cancer cells: TME cells, TME cells, haMSC: HUVECs, haMSC: U937,
HUVEC: U937, haMSC+HUVEC, haMSC+U937, HUVEC+U937,
Cancer cells+ haMSC, Cancer cells+HUVECs, Cancer cells+U937,
haMSC:Total cells, HUVEC:Total cells, U937: Total cells, Cancer cell type).

Compiled data was then grouped by drug treatment and saved in
different files that were then read into RStudio v1.4.1093 with R version 4.1
for use in model generation. The median absorbance value for each drug
treatment was calculated and used as a threshold to assign each replicate a
“high” or “low” response label. After appending the response label to the
dataset, it was converted into the “Factor” datatype for use as the prediction
variable. The normalized absorbance values (and any other parameters that
were not needed) were then trimmed from the dataset.

Machine learning model generation
The trimmed dataset was then split into a training set (75% of the samples)
and a test set (25% of the samples). At this point, the seedwas set at “123” in
order to facilitate repeatable runs of the model. First, the training set was

used to optimize the number of trees for the random forest to generate and
the number of parameters to consider at each node split. Those optimal
values were then used as inputs in the “randomForest()” function with the
training set as the dataset to build the model and the test set in the test set
slot. After running the model, the variable importance (quantified as mean
decrease in Gini impurity) was saved, receiver operating characteristic
(ROC) curves were generated, and AUC values were calculated to quantify
model performance on the training and test sets for each drug. The ROC
plots the true positive rate against the false positive rate at every possible
threshold value. The AUC represents the probability of themodelmaking a
correct prediction. AnAUC of 1.0 indicates themodel is correct every time;
an AUC of 0.5 indicates the model has the same performance as a random
predictor.

Data availability
Data generated during the current study are available from the corre-
sponding author on reasonable request.

Code availability
No codes have been generated in this work.
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