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Interstitial fluid transport dynamics
predict glioblastoma invasion and
progression
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Ryan T. Woodall4, Russell C. Rockne4, Jessica J. Cunningham1 & Jennifer M. Munson1,2,5

Glioblastoma is characterized by aggressive infiltration into surrounding brain tissue, hindering
complete surgical resection and contributing to poor patient outcomes. Identifying tumor-specific
invasion patterns is essential for advancing our understanding of glioblastoma progression and
improving surgical and radiotherapeutic strategies. Here, we leverage in vivo dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) to noninvasively quantify interstitial fluid velocity,
direction, and diffusion within and around glioblastomas. We introduce a novel vector-based pathline
analysis to trace downstream accumulation of fluid flow originating from the tumor core, providing a
spatially explicit perspective on local flow patterns. We find that localized fluid transport metrics
predict glioblastoma invasion and progression, offering a new framework to non-invasively identify
high-risk regions and guide targeted treatment approaches.

Glioblastoma (GBM) is themost commonmalignant primary brain tumor,
with a median overall survival of just 15 months following diagnosis and a
5-year survival rate of only 5%1. Characterized by extensive infiltration into
surrounding brain tissue, GBM’s diffuse invasion makes complete surgical
resection difficult, leaving residual tumor cells that drive inevitable recur-
rence and poor patient outcomes2. Despite advances in clinical imaging,
predicting the regions where GBM cells invade beyond the tumor bulk
remains a critical challenge. Identifying areas at high risk for invasion is
essential for improving surgical and radiotherapeutic planning, enabling
more aggressive treatment in invasive regions and greater preservation in
lower-risk areas.

Interstitialfluidflow (IFF) is an ever-present phenomenon in thebrain,
crucial for maintaining normal physiological functions. During tumor
growth, however, IFF is altered by elevated interstitial pressures generated
within the growing tumormass3. This heightened pressure drives abnormal
fluid flow across the tumor’s margins. Studies in rodent GBMmodels have
shown that surrogate tracers for IFF, such as Evans Blue dye, correspond to
regions of cell invasion4, and mechanisms such as CXCR4-CXCL12 sig-
naling and autologous chemotaxis have been implicated in the IFF-driven
invasion process5,6. While these studies offer valuable insights, they rely on
invasive techniques or tissue samples and do not provide a means to
quantify these dynamics in a clinically relevant, in vivo setting. There is a

pressing need for advanced, quantitative, and spatially explicit imaging
metrics to link IFF to local cell invasion in patients.

Magnetic resonance imaging (MRI) is the standard imaging modality
for GBM diagnosis and monitoring. Specifically, dynamic contrast-
enhanced MRI (DCE-MRI) is widely used to delineate tumor boundaries
based on areas of contrast enhancement, as the contrast agent leaks through
the abnormal vasculature associated with GBM7. Current surgical resection
margins are typically defined to include the contrast-enhancing tumor
border and an additional 2 cm margin, an aggressive approach that dis-
regards local spatial heterogeneities in tumor invasion. This static use of
DCE-MRI ignores valuable dynamic information about how the contrast
agent leaks into the parenchyma, which could provide deeper insights into
the tumor microenvironment. Leveraging the Lymph4D algorithm, pre-
viously validated for analyzing fluid transport8, we can noninvasively
quantify interstitial fluid velocity, directionality, and diffusion from DCE-
MRI scans, extracting biologically meaningful metrics directly from clinical
imaging.

Given the known influence of fluid flow on GBM invasion, spatially
explicit patterns of interstitial fluid movement within and around tumors
may correspond to regions of cell invasion. Identifying these patterns using
in-vivo imaging could enable the noninvasive detection of invasive regions.
In this study,we leveragequantitative analysis ofDCE-MRI to examine local

1Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA. 2Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA,
USA. 3Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA. 4Division of Mathematical Oncology and Computational Systems
Biology, City of Hope, Duarte, CA, USA. 5Department of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VI, USA.

e-mail: jcunningham@vt.edu; jm4kt@vt.edu

npj Biomedical Innovations |            (2025) 2:30 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s44385-025-00033-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44385-025-00033-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44385-025-00033-x&domain=pdf
mailto:jcunningham@vt.edu
mailto:jm4kt@vt.edu
www.nature.com/npjbiomedinnov


interstitial fluid velocity and diffusion. We introduce a novel vector-based
pathline analysis to track fluid movement patterns originating from the
tumor core into the surrounding brain parenchyma. To validate the pre-
dictive power of thesemetrics, we assess their correlationwith histologically
confirmed invading tumor cells and longitudinal tumor progression iden-
tified through MRI. The spatially explicit, image-based biomarkers of fluid
transport dynamics presented here offer understanding of GBM invasion
and progression and a significant advancement toward patient-specific
treatment planning and optimization of therapeutic strategies.

Results
Fluid flowmetrics are spatially heterogeneous
We performed DCE-MRI on implanted murine gliomas as described in
detail in the Materials and Methods. Using Lymph4D, IFF magnitude,
diffusion, and direction were calculated for each pixel within the tumor
boundary and the surrounding contrast-enhancing parenchyma with
measurable contrast agent. A heat map and distribution of the magnitudes
for GL261 Mouse 1 shows local variation through the tumor bulk and
surrounding contrast-enhancing parenchyma and highlights intra-mouse
variability (Fig. 1A, B). There is also significant inter-mouse variability in
both the GL261 and Glioma stem cells (GSC) mice (Fig. 1C, D). This
variability is also true of the diffusion coefficient (Fig. 1E–H). Using the

directionality of flow, the trajectory of flow originating within the tumor is
followed until termination (Fig. 1I). For each region in the surrounding
contrast-enhancing parenchyma, the total number of tumor-originating
pathlines passing through that region was summed, generating a “tumor-
originating pathline density” map. This metric also exhibits significant
heterogeneity of the distribution of tumor-originating fluid flowwithin and
between mice (Fig. 1J–L).

Multimodal co-registration allows for MRI-derived flowmetrics
and IHC cell center analysis
BothMRI imaging and IHC sectioningwere performed in the coronal plane
(Fig. 2A, B). For each mouse, one or two MRI slices with the largest tumor
bulk were selected (Fig. 2C). Features such as ventricles, white matter, and
tumor shape were used to identify two to three corresponding histological
sections for eachMRI slice. Tumor boundarieswere determined onboth the
MRI and IHC slices (Methods), and the locations of invading cells were
identified (Fig. 2D). MRI and histological slices were co-registered using a
multimodal registration approach (Fig. 2E, Methods), enabling the spatial
coordinates of invadingGL261 cells identifiedby IHC to be directlymapped
onto the MRI images (Fig. 2F). This allowed for the integration of MRI-
derived flow metrics with the precise locations of individual invading cells
for spatially detailed analysis.

Fig. 1 | Intra- and inter-mouse variability of magnitude, diffusion, and tumor
originating pathline density. A Heat map of tumor and surrounding contrast-
enhancing parenchyma IFF magnitude (um/s) with the tumor (blue boundary) and
contrast-enhancing parenchyma (yellow boundary) (Scale bar = 500 µm).
BDistribution of magnitudes within GL261 Mouse 1. C IFF magnitude of all pixels
within the surrounding contrast-enhancing parenchyma for each GL261 mouse.
Compact letter display shows columns are statistically indistinguishable if and only if
they share at least one letter. D IFF magnitude of all pixels within the surrounding
contrast-enhancing parenchyma for each GSC mouse. E Heat map of tumor and
surrounding contrast-enhancing parenchyma IFF diffusion coefficient (um2/s)
(Scale bar = 500 µm). FDistribution of diffusion coefficients within GL261Mouse 1.

G IFF diffusion coefficient of all pixels within the surrounding contrast-enhancing
parenchyma for each GL261 mouse. H IFF diffusion coefficient of all pixels within
the surrounding contrast-enhancing parenchyma for each GSC mouse. I Tumor-
originating pathlines (dark red is initial locationmoving to ending location as bright
yellow) (Scale bar = 500 µm). J Density heatmap of tumor-originating pathlines
where blue and red represent a low and high tumor-originating pathline density,
respectively (Scale bar = 500 µm).K Tumor originating pathline density of all pixels
within the surrounding contrast-enhancing parenchyma for each GL261 mouse or
location. L Tumor originating pathline density of all pixels within the surrounding
contrast-enhancing parenchyma for each GSC mouse or location.
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Average tumor velocity magnitude is positively correlated with
overall invasiveness
IFF velocity magnitudes were measured in the tumor and the surrounding
contrast-enhanced parenchyma of implanted GL261 tumors (Fig. 3A). The
average velocity within the tumor is positively correlated with average
velocity of the contrast-enhancing parenchyma (Spearman r = 0.7509, p
value = 0.0066). The average velocity magnitude in the tumor and sur-
rounding contrast-enhancing parenchyma for each mouse location was
compared to the total number of invading cells counted in the matching
histological slices for thatMRI location (Fig. 3B).Velocitymagnitudes in the
tumorwere significantly correlatedwith the numberof invading tumor cells
(Spearman r = 0.7509, p value = 0.0066) (Fig. 3C). The average velocity of
the contrast-enhancing parenchyma and number of invading cells were not
significantly correlated (Spearman r = 0.4807, p value = n.s.) (Fig. 3C).

Local velocity magnitude is elevated in invasive regions
The contrast-enhancing parenchymal regions that have at least one
invading cell have a significantly faster velocitymagnitude than regionswith
no invading cells; 0.47 µm/s ± 0.28 and 0.40 µm/s ± 0.25, respectively (p
value < 0.001; Cohen’sD = 0.28) (Fig. 3D). Velocitymagnitude is negatively
correlatedwith distance to boundary,meaning that in four of the sevenmice
higher velocities were found closer to the tumor boundary. Velocity mag-
nitude is negatively correlated with the flow angle difference to outward
normal in five of the seven mice, and positively correlated with tumor-
originating pathline density, in three of the sevenmice, showing that regions
with elevated velocities were found where flow was directed away from the
tumor boundary. Additionally, velocity magnitude is positively correlated
with diffusion and invasive cells in three mice (Fig. 3E).

Local diffusion coefficient is lower in invasive regions
Diffusion coefficients were measured in the tumor and surrounding
contrast-enhancing parenchyma of implanted GL261 tumors (Mouse 1
shown) (Fig. 4A). The average diffusion coefficient in the tumor and the
contrast-enhanced parenchyma were significantly correlated (Supplemen-
tary Fig. 5). The average diffusion coefficient in the tumor and surrounding
contrast-enhancing parenchyma for eachmouse location was compared to
the total number of invading cells counted inmatching histological slices for
that MRI location (Fig. 4B), but these were not significantly correlated
(Fig. 4C). More importantly, when the spatially local diffusion coefficients
were analyzed, as opposed to the overall bulk averages, regions that have at
least one invading cell dohave a significantly lower diffusion coefficient than
regions with no invading cells (11.59 ± 5.73 vs. 13.87 ± 4.96 (p value =
<0.001; Cohen’s D = 0.43) (Fig. 4D). This underscores the importance of
considering the spatial heterogeneity of transport metrics and focusing on

individual local regions rather than relying on overall averages. The diffu-
sion coefficient is positively correlatedwith the distance to boundary for five
of the seven mice, meaning that for each of these mice, the diffusion coef-
ficient increases as thedistance from the tumor increases (Fig. 4E). There are
only sparse significant correlationsof diffusionwithother IFFmetrics across
the mice, though five of the seven mice had significant negative correlation
to invasion, which highlights that regions with invading cells have lower
diffusion coefficients across the majority of the mice.

Tumor-originating fluid flow is significantly elevated in regions of
invasion
The tumor-originating pathline density metric represents the relative
amount of fluid originating from the tumor that traverses a given local
region, with a higher pathline density indicating a greater volume of tumor-
derivedfluid passing through that parenchymal area. InMouse 1, the tumor
pathline density and histologically identified invading cells are shown
(Fig. 5A–C). Tumor-originating pathline density is significantly higher in
local regions that have at least one invading cell (2.35 ± 7.54 vs. 5.55 ± 11.31
(p value < 0.001; Cohen’s D = 0.33) (Fig. 5D). This demonstrates that
regions experiencing outward fluid flow from the tumor bulk into the
parenchyma have significantly more invading cells, as quantified by this
novelmetric. Overall, we found that tumor originating pathlines intersected
with 40–89% of all invading cells within eachmouse with an average across
all mice of 60.14% of invading cells (Fig. 5E).

In all seven mice, tumor-originating pathline density was negatively
correlated with distance to the boundary, as expected, as all pathlines ori-
ginate within the tumor, and the density of outward flow naturally dimin-
ishes with increasing distance from the tumor. In three mice, there was a
positive correlationwith velocitymagnitudemeaning in thesemice, regions
with higher levels of tumor originating flow passing through them also
experience higher velocity magnitudes. In all seven mice, outward flow is
significantly correlated with invasion. Observing this pattern consistently
across all mice in the study underscores the predictive power of this novel
metric in identifying regions of invasion.

Transport metrics significantly correlated with MRI-identified
progressive disease
While identifying individual invading cells provides localized insights,
radiographic progression reflects broader tumor growthdynamics.Here,we
analyze the underlying transport metrics associated not with individual cell
invasion but with radiographic progression using a patient-derived xeno-
graft (PDX) (G34) as a more representative model of human disease than
the GL261 syngeneic tumor model. For Mouse P1, the tumor boundary on
Day 6 post injection (Fig. 6A) and the tumor boundary on Day 8 post

Fig. 2 |Multimodal co-registrationofMRI and IHCcell centers. A 400 µmcoronal
MRI slices through the entire murine brain. B 12 µm IHC slices within the tumor
bulk. C MRI slice with mass tumor bulk, with the tumor (blue) and contrast-
enhanced parenchymal (yellow) regions (Scale bar = 1mm). D Corresponding IHC

slice with tumor boundary (Scale bar = 1mm) and inlay showing individual iden-
tified invading cells (white arrows) (Scale bar = 100μm). EMultimodal registration
using control point and geometric transformation. F Combined MRI features and
individual invading cell locations (Scale bar = 500μm).
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injection (Fig. 6B) are shown. Creating a differencemap betweenDay 8 and
Day 6 highlights the pixels corresponding to areas of radiographic pro-
gression (purple highlight) with contrast-enhanced parenchyma (yellow)
(Fig. 6C). The tumor-originating pathline densities from the fluid flow
measured on Day 6 are shown (Fig. 6D, Supplementary Dataset 2). We
found that regions containingprogression byDay8had a significantly faster
velocity magnitude on Day 6 than regions that did not show progression (p
value = 0.0093; Cohen’s D = 0.15) (Fig. 6E). Additionally, regions contain-
ing progression by Day 8 had a significantly lower diffusion coefficient on
Day 6 than regions that did not show progression (p value < 0.001; Cohen’s
D = 0.26) (Fig. 6F, Supplementary Fig. 3). Further, tumor-originating
pathline density was significantly higher in regions that exhibited progres-
sion (p value < 0.001; Cohen’s D = 0.31) (Fig. 6G).

Both histological invasion and radiographic progression are
captured by the same transport patterns
The observed correlations between transport metrics and the spatial radi-
ologic progression mirror the correlations identified in the study where
invasion was quantitatively assessed using histological tissue sections
(Fig. 6H, I). Regions of progression and invasion were negatively correlated
with distance to boundary, meaning both are occurring close to the tumor
boundary, as expected. Regions of progression and invasionwere negatively
correlated with the diffusion coefficient in four and five of the seven mice,

respectively. Tumor-originating pathline density was positively correlated
with progression in three of the seven mice and with invasion in all seven
mice, indicating regionswith increased tumor-originating outwardflow can
be associated with both progression of disease and invasion. These results
indicate that transport metrics can characterize single-cell invasion at a
given time point while also capturing the broader, cumulative impact of
such invasion on disease progression.

Discussion
In this study, we developed a set of analytical techniques to quantify
transport metrics of IFF as determined by non-invasive MR imaging and
link those metrics to important physiological outcomes (Table 1). We have
previously validated the use of DCE-MRI for measuring transport within
and around glioma based on underlying physical principles9. Our features
include distance from delineated tumor boundary, fluid flow velocity, dif-
fusion coefficient, and two novel metrics to quantify fluid moving with
respect to the tumor boundary: angle difference of tumor boundary normal
vector tofluidflowdirectionanddensity of tumor-originatingpathlines.We
directly linked these transport features to GBM invasion and progression
in mice.

Specifically, averages of tumor-wide velocity magnitude as well as
spatially explicit local analysis of velocity magnitude reveal a positive cor-
relation with invasion. Interestingly, overall averages of diffusion coefficient

Fig. 3 | Increased velocity magnitude is associated with elevated invasion.
AHeatmap of velocity magnitude with tumor and contrast-enhancing parenchyma
in light blue and yellow outlines, respectively (Scale bar = 500 µm). B Invasive cells
(yellow points) overlaid onMRI (Scale bar = 500 µm).CCorrelation of total number
of invading cells and average velocity magnitude within the tumor (Spearman
r = 0.7509, p value = 0.0066) and contrast-enhancing parenchyma (Spearman
r = 0.4807, p value = n.s.) for all MRI slices examined.DVelocity magnitude in each

region with and without at least one invading tumor cell (Mann-Whitney U test
performed, p value < 0.001; Cohen’s D = 0.28; no invasion (N = 2402); invasion
(N = 208)). EMultiparametric correlation analysis of local velocity magnitudes and
each flow parameter. All correlations shown are significant as obtained from a
Spearman correlation. Each point represents one of seven mice; missing points
indicate mice without significant values for that parameter.
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exhibit no correlation to invasion, but the diffusion coefficient does have a
significant negative correlation to invasion when interrogated at a finer
spatial resolution in somemice.Notably, tumor-originatingpathlinedensity
emerges as a novel transportmetric associatedwith invasion that correlated
in all of the tumors examined. These transport metrics that significantly
correlate with histologically identified invading cells are the same metrics
that correlate with radiographic progression in our PDX.

Elevated velocities have been implicated in a host of cancers, primarily
breast and glioma10–13. Application of elevated velocities on tumor cells has
been linked to increased glioma cell invasion in vitro14 and in vivo6.We and
others have identified underlying mechanisms that drive flow-induced
glioma invasion consisting of both intra- and extracellular drivers15. Of
interest to the current study, when cells are exposed to subtle IFF, pericel-
lular gradients of CXCL12 can drive directional migration through auto-
logous chemotaxis16. These gradients, as modeled in silico, are sensitive to
the features of flow, including magnitudes and directionalities, indicating a
potential sensitivity to the complex flows that we see through our image
analysis17. In silico models have explored these complex flow patterns that
arise due to contributions of the tumor microenvironment, such as het-
erogeneous vasculature and intratumoral pressure18,19. Seminal work
investigating transport in glioma reports intratumoral pressures drive
interstitialflow into the surrounding parenchyma, though the heterogeneity

of flow within and around tumors in the brain remained understudied in
experimental models20,21. Our localized analysis shows that heterogeneity of
fluid flow transport within and around the tumor differentially accounts for
spatially varying invasion patterns. Thus, considering local transport trends
is important to better understand initial invasion and ultimate progression
of the disease.

The diffusion coefficient within cancer tissue has been associated with
both the presence and progression of disease. In endometrial, cervical, and
breast cancers, diffusion coefficients are typically lower than in corre-
sponding healthy tissues22–25. One retrospective clinical study in patients
with GBM interrogated all voxels as individual data points and, similar to
our study, found that regions of progression were most associated with a
lower apparent diffusion coefficient26. One marked difference between our
results and these reports is that we measure the apparent diffusion coeffi-
cient of the contrast agent gadolinium through the solution of the mass
transport equation. Other studies use the apparent diffusion coefficient of
water based on diffusion tensor imagingMRI. As the diffusion coefficient is
directly related tomolecule size, it follows that our calculated rates are slower
than these reported rates, due to the difference in size between water and
gadolinium.The biological reasons for this relationship are not fully known,
as there are seemingly counteracting elements involved. Specifically, diffu-
sion can be limited in densermatrices, with reduced porosity, and thus, cells

Fig. 4 | Decreased diffusion is associated with invasion. ARepresentative heatmap
of diffusion coefficient indicating the tumor and surrounding contrast-enhancing
parenchyma in blue and yellow outlines, respectively (Scale bar = 500 µm).
B Invasive cells (yellow points) overlaid on MRI highlighting the tumor (blue) and
contrast-enhanced parenchymal (yellow) regions (Scale bar = 500 µm). C Average
diffusion coefficient of the tumor and surrounding contrast-enhancing parenchyma
is not significantly correlatedwith the number of invasive cells counted, though there
is a negative trend (Tumor: Spearman r = -0.4351, p value = n.s.; Contrast-

enhancing parenchyma: Spearman r = -0.4737, p alue = n.s.). D The diffusion
coefficient in each local region with at least one invading tumor cell is significantly
lower that regions without invasion (Mann-Whitney U test performed, p value =
<0.001; Cohen’s D = 0.43; No Invasion (N = 2402) Invasion (N = 208)).
E Multiparametric correlation analysis of diffusion coefficient. All correlations
shown are significant (p value < 0.05) as obtained from a Spearman correlation. Each
point represents one of seven mice; missing points indicate mice without significant
values for that parameter.
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may have more limited free movement. However, these denser matrices
offer binding sites of preferential interactions with receptors on tumor cells
that could have an inverse effect on more active motility27–29. Other effects
specific to diffusion coefficient relate to the interactions between the sub-
strate measured and the surrounding tissue, such as electrostatic charge,
which may also be interacting with cells in interesting ways for further
exploration.

As invasion ultimately originates from the tumor bulk and travels into
the parenchyma, the ability to examine and quantify downstream impli-
cations of tumor cell phenotypic changes and of tumor-associated drainage
is important. The density of tumor-originating pathlines in the parenchyma
offers knowledge not only about the tumor but also about how the tumor
interfaces with the surrounding tissue in order to identify regions of interest
for further analysis. Regions of elevated pathline accumulation may be
where interstitial flow from the tumor converges before entering drainage

pathways. Vasculature may serve as conduits for gadolinium drainage,
specifically funneling into perivascular spaces known for the transport of
fluid through the parenchyma30. Perivascular invasion is a hallmark ofGBM
and thus, could be a linking factor between the flow pathways and invasion
seen in our correlative analysis.

Elevated flow may affect individual cell types or potentially confer
phenotypic changes to the cells. We know that CXCR4/CXCL12 is an
important pathway in glioma cells that are responsive to IFF as documented
in vitro and in vivo5,6,9. Similarly, CD44 as the hyaluronic acid receptor, has
also been implicated in the invasion of tumor cells in response to flow9,14.
Both of these molecular markers are important for various phenotypes in
GBM that contribute to malignancy of disease including progression and
histopathological grade31,32. TheCXCR4/CXCL12 signaling cascade has also
been implicated in temozolomide resistance33. CD44+ tumor cells, classi-
fied as being more of a mesenchymal subtype, have been shown to have

Fig. 5 | Tumor-originating pathline density is significantly elevated in regions of
invasion. A Tumor-originating pathlines overlaid on T1-weighted contrast-
enhanced MRI with tumor (blue) and contrast-enhanced parenchyma (yellow).
Dark red and yellow denote the original and ending position of tumor-originating
pathlines, respectively (Scale bar = 500 µm). B Tumor-originating pathline density
overlaid on T1-weighted contrast-enhancedMRI (dark blue and red represent a low
and high number of tumor-originating pathlines, respectively) (Scale bar = 500 µm).
C Invasive cells (dark yellow points) overlaid on a T1-weighted contrast-enhanced

MRI (Scale bar = 500 µm). D Local tumor-originating pathline density with and
without at least one invading tumor cell (Mann-Whitney U test performed,
p value < 0.001; Cohen’s D = 0.33; Invasion (N = 2402) No Invasion (N = 208)).
E Percentage within eachmouse of invading cells with at least one tumor originating
pathline within its region. F) Multiparametric correlation analysis of tumor-
originating pathline density. All shown correlations are significant based on
Spearman analysis. Each point represents one of sevenmice; missing points indicate
mice without significant values for that parameter.
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higher resistance to radiation therapy31,34. Interestingly, they are also more
associated with other known players in microenvironmentally-conferred
treatment resistance, such as hypoxic regions or perivascular niches35–37. By
couplingourflow-basedapproacheswithother spatial profilingmethods for
tumor cell and tumor microenvironment markers, we can explore the
unique changes to regions showing higher exposures to interstitial flow.

The primary aim of the methodology developed here is to apply it to
clinical images to gain spatial insight into recurrence and tumormargins in
glioma patients. Invasive tumor margins in GBM yield incomplete resec-
tion, therapeutic targeting, and, ultimately, recurrence in patients. Thus, the
ability to utilize non-invasive standard of care imaging and quantitative
metrics like thosedeveloped in this study to aid in the identificationof tumor
cells at thesemargins has long been sought38. Intraoperative identification of
tumor cells has beenachievedusing imagingagents, suchas 5-ALA39 and the
field of photodynamic therapies is rapidly growing to incorporate improved
imaging agents40, though thesemethods are limited to surface identification

during surgery, and do not describe deeper tissue invasion beyond 3–5mm
or progression41. Methods to leverage MRI combined with AI or machine
learning have been probed to define treatment margins or predict pro-
gressive disease42, yet few are grounded in the inherent underlying physical
and biological drivers of tumor invasion, like fluid transport and interstitial
flow-increased invasion. Labeling gliomacellswith iron-oxidenanoparticles
enables tracking of progression along specific structures43, however, cell-
labeling methods lack translatability to patients and are detection limited.
While translating the quantitative approach presented here to clinical
imaging presents several challenges, it remains feasible with current and
emerging techniques. Registration across sessions is more complex in the
clinical setting due to factors such as variability in scan acquisition across
sites (e.g., emergency room vs. post-operative imaging). Post-surgical brain
shift presents amajor challenge for accurate registration in clinical imaging,
though emerging approaches using deformable registration with masking
offer solutions44. Of note, clinically standard DCE imaging successfully

Fig. 6 | MRI-identified glioma progression correlates with diffusion coefficient,
pathlines, and velocity magnitude in a patient-derived xenograft model. ADay 6
tumor boundary (cyan) as identified on T1 image (Scale bar = 1mm).BDay 8 tumor
boundary (purple) as identified on a T1 image in the same tumor (Scale bar = 1mm).
C Pixels containing tumor on Day 8 (purple points) within the contrast-enhancing
parenchyma of Day 6 (yellow pixels) are classified as “Progression,” whereas all
remaining contrast-enhancing pixels in the parenchyma are classified as “No Pro-
gression” (Scale bar = 500μm).DDay 8MRI is overlaid with Day 8 tumor boundary
(purple), Day 6 tumor boundary (cyan) andDay 6 tumor-originating pathlines (dark
red to yellow transition indicates direction of pathline origination to termination)
(Scale bar = 500 µm). E Local velocity magnitude comparison between no

progression and progression regions (Mann-Whitney U test performed, p value =
0.009; Cohen’sD = 0.15; No Progression (N = 435) Progression (N = 1524)). F Local
diffusion coefficient comparison between no progression and progression regions
(Mann-Whitney U test performed, p value < 0.001; Cohen’s D = 0.26). G Tumor
originating pathline density comparison between no progression and progression
regions (Mann-Whitney U test performed, p-value < 0.001; Cohen’s D = 0.31).
H Neighborhood multiparametric correlation analysis of MR-signal identified
graded progressionmetric. I) Neighborhoodmultiparametric correlation analysis of
histologically identified invasion. All shown correlations are significant based on
Spearman analysis. Each point represents one of sevenmice; missing points indicate
mice without significant values for that parameter.
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captures early contrast dynamics, providing a potential opportunity for
adapting the present analysis methods to work within clinical constraints.

While we have presented novel quantitative metrics from DCE-MRI,
they should not be relied upon in isolation. Our fluid flow metrics can and
should be added to the feature space that can be obtained from other MR
imaging modalities. SomeMRI-calculated features that have been clinically
correlated with survival in glioma include: preoperative tumor volume,
Karnofsky performance status, tumor location, edema, extent of resection,
contrast enhancement, temporal changes in serum proteomics and pH45–49.
Specifically, perfusion imaging has been one of themost clinically usedMRI
scans in the treatment of glioma, providing vessel leakiness from KTrans to
identify specific biomarkers indicative of progression and recurrence50,51.
These perfusion metrics have also been found to be predictive of tumor
grade and treatment response38. Combining our novel features with these
existing metrics offers a promising approach to improve the accuracy of
tumor margin delineation and understanding disease dynamics. For
instance, combining these features using more advanced modeling techni-
ques (e.g., linear and non-linear combination classifiers) may yield better
performance compared to relying on individual metrics alone.

In conclusion, our study presents a significant stride towards non-
invasive, in vivo localization of invading tumor cells through the develop-
ment of quantitative metrics of IFF derived from DCE-MRI. This
advancement not only offers the potential to identify additionalmechanisms
and correlates of invasion via complementary tissue-level analyses such as
immunohistochemistry (IHC) but also opens avenues for exploring extra-
cellular matrix components, metabolites, and cellular reactivities relevant to
glioma invasion52. Furthermore, a deeper understanding of transport para-
meters in and around invasive regions holds promise for the development of
targeted therapeutic delivery strategies that leverage the unique transport
characteristics of these areas. These metrics could support a shift away from
uniform2 cmsurgicalmargins andmore personalized radiation approaches,
potentially sparing healthy brain tissue, reducing treatment-related mor-
bidity and toxicity, and concentrating therapy where it is most needed.
Ultimately, this study presents a first step towards the promise of translating
IFF analyses into tangible improvements in patient outcomes.

Methods
Cell culture
GL261-GFP cells were generated as previously described in ref. 12. Cells
were maintained for at least three passages after thawing with Dulbecco’s
Modified Eagle Medium (DMEM)+ 10% fetal bovine serum (Thermo-
Fisher, Gibco). Cells were resuspended at a concentration of 20,000 cells/uL
in serum-freemedia for tumor implantation as described previously6. GSCs
G34, a generous gift from BJ Purow at the University of Virginia, were
cultured following the previously described protocol in ref. 53. GSCs were
cultured in neurobasal media (ThermoFisher) with N2 and B27 without
vitamin A supplements (ThermoFisher), human recombinant basic fibro-
blast growth factor and epidermal growth factor (50 ngmL−1, Thermo-
Fisher), Glutamax (ThermoFisher), and Penicillin–Streptomycin
(ThermoFisher) in low-adhesion tissue culture flasks (Grenier).

In vivo tumor model
Invasion-flow correlation study. For GFP-GL261 injections, all animal
procedures were approved by the Institutional Animal Care and Use

Committee at Virginia Polytechnic Institute and State University under
approved protocol #20-146. Ten, 8–11-month-old transgenic B6.Cg-
S1pr3tm1.1Hrose/J mice54 (JAX stock #028624) were anesthetized with
isoflurane and connected to a stereotactic frame. A burr hole was drilled
at coordinates −2, +2, −2.2 (AP, ML, DV) from bregma, and 100,000
GFP+GL261 cells in 5 µL serum free DMEM were injected via a
Hamilton syringe and syringe pump (World Precision Instruments) at
1 µL/min for 5 min. The syringe was inserted to a depth of 3 mm then
retracted 0.5 mm before injection. The Hamilton syringe was removed
three minutes after the completion of the injection to prevent reflux, and
the burr hole was sealed with bone wax.

PDX progression study. The progression study was conducted at the
University of Virginia under approved protocol 4021. Seven 8–10-week-
old SCID mice were injected using the same protocol as previously
published in ref. 9. Mice were injected with G34 GSCs, and the tumors
were allowed to grow for 10 days. T1, T2, and DCE-MRI imaging were
performed on days 6, 8, and 10. Following DCE-MRI, mice were
euthanized via cardiac perfusion, and brains were harvested.

Magnetic resonance imaging
Invasion-flow correlation study. DCE-MRI was performed on all mice
with detectable tumors on Days 15 and 24 to allow for tumor growth. Mice
were imagedwith a 9.4 T small animalMRI (Bruker BioSpecAVANCENEO
94/20 USR, Ettlingen, Germany) equipped with 660 mT/m high power gra-
dient. An active detunable 86mm volume coil was used as the transmit coil,
and a planar 20mm receive-only surface coil was used as the receive coil. A
T2-weighted image was taken using rapid acquisition with relaxation
enhancement (RARE) sequence to confirm tumor growth with the following
parameters: repetition time (TR) = 1800ms, echo time (TE) = 40ms, field of
view (FOV) = 19.2 × 19.2mm with a 192 × 192 matrix, slice
thickness = 0.5mm,numberof slices = 16,withnineaverages requiringa total
acquisition time of about 6.5min per mouse.

To measure the interstitial fluid transport metrics, a pre-contrast T1-
weighted image was collected followed by tail vein injection of Gadolinium
(Magnevist, Bayer HealthCare Pharmaceuticals) at a concentration of
0.1mmol/kg in sterile, heparinized saline. Four post-contrast T1-weighted
imageswere acquired for approximately 12minpost-injection, as previously
published4. T1-weighted images were acquired using a fast low angle shot
sequence using the following parameters: repetition time (TR) = 180ms,
echo time (TE) = 11ms, FOV= 19.2 × 19.2mm with a 192 × 192 matrix,
slice thickness = 0.5mm, number of slices = 16, and 7 averages requiring a
total acquisition time of about 3min per sequence (Supplementary Fig. 1).

Progression Study. For GSC-injected mice, DCE-MRI was performed
on days 6, 8, and 10 according to the protocol established in prior
publications4,9. These earlier time points, compared to day 15 for the
GL261 model, were chosen to match tumor size across models,
accounting for differences in in vivo growth rates among glioma stem cell
lines. This timing allowed for more consistent comparisons of tumor
behavior and imaging metrics despite biological variability.

Tissue harvest, cryosectioning, IHC, and microscopy
Mice were euthanized and transcardially perfused with ice cold 1 x phos-
phate buffered saline followed by 4% paraformaldehyde (PFA). Brains were
post-fixed in PFA for 18 h and placed in 30% sucrose until complete sub-
mersion was achieved. Afterwards, brains were placed in molds of optical
cutting temperature compound at−80 °C and sectioned at 12 μmthickness
on a cryostat. SpecificMRI slices of interest were identified on T2-weighted
MRI based on tumor size and minimal needle-track damage. One to two
distinct MRI tumor locations were sectioned per mouse. Structural features
(i.e., ventricles, white matter, tumor shape) in the T2-weightedMRI images
were used as a guide during cryosectioning to collect cryosectioned slices
corresponding to the identifiedMRI slice of interest.At each location, two to
three histological sections were used for the analysis based on tissue quality

Table 1 | Summary of key dynamics between IFF parameters
and glioma cell invasion in murine models

Transport Metric Cell invasion and radiographic
progression

Velocity Magnitude Increased

Diffusion Coefficient Decreased

Tumor-Originating Pathline
Density

Increased
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(Supplementary Fig. 2). Slides were stained with DAPI (Thermofisher) for
10min and imaged at 20Xon aVS200Olympus Slide ScannerwithDAPI in
the blue channel and GFP+GL261 cells in the green channel.

Registration of histological tissue sections to MRI slices
Control point image registration was performed in MATLAB. A local
weighted mean geometric transformation was used to account for orien-
tation and shape differences between the MRI slices and the histological
tissue section. At least 12 distinct, reliable anatomical landmarks in both the
MRI and histological tissue sections were chosen for each registration.
Registration control points were selected on consistent gross anatomical
features such as the brain shape and ventricles, minimizing any impact of
modality differences. IHC-identified spatial coordinates of the invading
GL261 cells and vertices of the tumor boundarieswere registered to theMRI
using the resulting transformation matrix. A composite tumor boundary
was created for eachMRI image that preserves only areas identified as tumor
bulk in all histological technical replicates (Supplementary Fig. 3).

Identification of tumor boundary and invading tumor cells
The DAPI and GFP channels were split and exported individually using
ImageJ. The green channel of the GFP+GL261 cells were thresholded
based on intensity to remove background fluorescence. Images were colo-
calized with DAPI staining to include only the GFP signal associated with a
nucleus (DAPI). ImageJ watershed segmentation was used to separate
touching or overlapping nuclei. The resulting identified objects represented
individual GL261 cells.

To identify invading tumor cells and define the boundary between
these cells and the main tumor bulk, we used a combination of manual and
computational methods. Invading cells were defined as any GL261 cell
located outside the contiguous tumor mass and were manually identified
(Supplementary Fig. 4). To improve the accuracy and reliability of this
manual classification, two independent investigators jointly reviewed each
histological section and labeled each GL261 cell as either bulk or invading.
This process was carried out across multiple serial IHC sections from the
same MRI slice, which served as technical replicates and increased con-
fidence that no invasive region was completely missed, and that regions
identified as invading reflected true invasion.

The boundary of the remaining contiguous tumor bulk, meaning the
GL261 cells not marked as invading, was then defined using a computa-
tional approach. The (x, y) coordinates of these cells were input into the
MATLAB boundary function, which generated a polygon that enclosed the
main tumor area and returned a set of (x, y) vertices outlining the tumor
border. This IHC-defined tumorboundary, after registration toMRI, is used
as the MRI tumor boundary.

Transport metric analysis
From the DCE-MRI sequence, transport metrics were obtained using
“Lymph4D,” a previously published and openly available tool8. Briefly,
parameter optimization is performed in a pixel-wise manner for the two-
dimensional diffusion-advection equation to identify the combinationof the
velocity magnitude and direction of advection and diffusion coefficient that
best describes the change in gadolinium over time of that pixel acquired by
the DCE-MRI.

Defining the contrast-enhancing parenchymal region
Toensure that transportmetricswereobtained inpixels that experienced influx
of gadolinium, we developed a strategy to define these regions. To determine
whether a pixel experienced gadolinium signal, we used an analysis of the
standard deviation (SD) of the time-signal intensity curve (TSIC) of each pixel.
The SD of the TSIC for each pixel is calculated using the following formula:

SDpixel ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

X

N

i¼1

ðIðtiÞ � �IÞ2
v

u

u

t

where N is the number of time points in the DCE-MRI, I(ti) is the intensity
of thepixel at time ti, and�I is themean intensity of theTSICof that pixel over
all time points. To identify contrast enhancement at the pixel level, we
compared the SDpixel of each pixel to the mean SDpixel of an ROI in the
contralateral brain,whichserved as thenoise baseline.Weconsidered apixel
to be contrast-enhancing if its SDpixel exceeded twoSDabove themeanSDof
the contralateral noise ROI. This thresholding approach enabled the
delineation of regions exhibiting contrast enhancement. Within these
regions, transport metrics computed using Lymph4Dwere deemed reliable
and above the noise threshold.

The result was a semi-automatically identified region of contrast-
enhanced parenchyma where the transport metrics calculated using
Lymph4D were considered valid and not noise (Supplementary Fig. 4).

Definition of outward flowmetrics
Flow normal to boundary is defined as the difference between the IFF
direction vector at each pixel and the normal vector at the nearest point on
the tumor boundary. For a given pixel, the closest point to the tumor
boundary was identified by finding the boundary vertex with theminimum
Euclidean distance to the center of the pixel. To calculate the normal vector
at this boundary vertex, two lines extending out from this boundary vertex
were identified using the two adjacent boundary vertices. The normal
vectors of these lines are the perpendicular lines that point away from the
tumor bulk. The average direction of these twonormal vectorswasweighted
by the distance away from the boundary vertex of interest to give a more
accurate estimate of the normal vector at the boundary vertex of interest.
The flow difference to the outward normal metric was calculated by taking
the angle difference between the IFF direction vector and the boundary
normal vector.Thismetrichas a value between [0, 180],where zero indicates
an IFF flow pointing directly away from the tumor boundary and 180
indicates an IFF flow direction pointing directly toward the tumor
boundary.

Tumor-originating pathlineswere obtained by tracking the trajectories
of virtual particles with origination points within the tumor boundary. A
pathline is obtained by seeding a particle at a location given by~s t0

� � ¼
ðx0; y0Þ within the MRI image. The virtual particle seeded at this location
will have a velocity given by~uparticle t0

� � ¼~uðx0; y0Þ where u is defined by
the velocity of the flow field provided by DCE-MRI analysis. The particle
trajectory sparticle tð Þ is calculated using ODE45 in MATLAB. This method
places a particle at the center of each pixel contained within the previously
calculated tumor boundary and calculates the trajectory until termination,
meaning it reaches a velocity equal to zero. For a given pixel, the number of
tumor-originating pathlines that traverse the pixel is summed and reported
as the “tumor-originating pathline density” (Supplementary Fig. 6).

Tumor- and contrast-enhanced parenchymal-wide analysis
Each transport metric was averaged for the overall tumor area and for the
contrast-enhanced parenchymal region. Statistical analysis: Unpaired
Mann-Whitney U tests and Spearman r correlations were used to compare
averaged tumor and contrast-enhanced parenchymal transport metrics.

Local metric analysis
For each pixel within the tumor boundary and the identified contrast-
enhanced parenchyma, a feature vector was constructed including the fol-
lowingmetrics: distance to boundary, flowmagnitude, diffusion coefficient,
flow direction angle difference to boundary normal, tumor-originating
pathline density, and number of invading cells. The distance to boundary
metric is calculated as the Euclidean distance between the focal center of the
pixel and the nearest point on the tumor boundary. The flow magnitude,
diffusion coefficient, and flow direction angle difference to outward normal
are calculated by averaging this value of each metric in the 3 × 3 pixel
neighborhood surrounding the pixel. For the tumor-originating pathline
density and the number of invading cells, the values of these metrics in all
nine individual pixels in the 3 × 3 pixel neighborhood are summed (Sup-
plementary Dataset 1). Statistical analysis:UnpairedMann-Whitney t-tests
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were used to compare transportmetrics in pixels with andwithout invasion.
Pearson r correlations were used for multiparametric correlation analysis.
Cohen’s d was calculated to report effect sizes, providing a standardized
measure of the magnitude of differences between groups.

Progression analysis on tumor growth differences
For eachmouse, aT1-weightedMRI slice of interestwasmanually identified
that included the largest tumor area observed six days post-tumor injection.
IFF transport metrics were calculated, and contrast-enhanced parenchyma
was identified using the DCE-MRI of this slice of interest. Manual slice
matching of T2-weighted images to the DCE-MRI modality was required
for tumor segmentation. Manual slice matching was performed by con-
currently comparing the lesion and surrounding anatomy between the
DCE-MRI and T2-weighted images from both six- and eight-day post-
injection. Anatomically matched T2-weighted images from six- and eight-
day post-injection were registered to the T1-weighted slice of interest using
control point registration with a nonreflective similarity transformation in
MATLAB. Waypoints were selected based on consistent anatomical land-
marks, including the ventricles and skull, which remain clearly identifiable
across both T1- and T2-weighted images (Supplementary Dataset 2). On
these registered T2-weighted images, the tumor was manually segmented,
and the regions segmented as tumor eight days post injection that were not
segmented as tumor six days post injection were identified as tumor pro-
gression.Anypixel on theT1-weighted slice of interest, including anypart of
this identified progression region, was classified as a progression pixel.
“Graded progression” is defined as the number of pixels in the 3 × 3 pixel
neighborhood classified as progression, with possible values from [0,9].
Statistical analysis: Unpaired Mann-Whitney t-tests were used to compare
transport metrics in pixels with and without progression. Pearson r corre-
lations were used for multiparametric correlation analysis. Cohen’s d was
calculated to report effect sizes, providing a standardized measure of the
magnitude of differences between groups.

Data Availability
Data is available on request and not appropriate for deposit in a repository.

Code availability
Code is available on github (Lymph4D: https://github.com/avaccari/
Lymph4D/blob/main/lineCreate.m).
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