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DNA-Encoded Library (DEL) technology allows the screening of millions to billions of compounds in a
pooled fashion, which is faster and cheaper than traditional approaches. Themassive amounts of DEL
binder and not-binder data enableMachine Learning (ML)model development and virtual screening of
readily accessible, drug-like libraries in an ultra-high-throughput fashion. Here, we report a
comparative assessment of DEL+ML pipeline for hit discovery using three DELs and fiveMLmodels
(fifteen DEL+ML combinations). Each ML model was used to identify orthosteric binders of two
therapeutic targets, Casein kinase 1α/δ (CK1α/δ). Overall, 10% and 94% of the predicted binders and
not-binders were confirmed in biophysical assays, including two nanomolar binders (187 and
69.6 nM). Our study provides insights into the DEL+MLparadigm for hit discovery: the importance of
chemical diversity in trainingdata andMLmodel generalizability over accuracy.Wepublicly sharedour
results for further use and similar developments.

Hit finding is a key step of early-stage, small-molecule drug discovery that
involves identifying putative chemical matter with desired properties that
bind to protein targets of interest and modulate their activity1; however, hit
finding is an expensive and longprocess2–7.Newapproaches are increasingly
being sought to expedite and improve the process hit finding. These new
approaches include cell-based screening that gives more biologically rele-
vant hits8,9, repurposing screening of molecules with known mechanism of
actions10, and screening of ultra-large, small molecule libraries in a high-
throughput fashion. One approach in the latter category is using DNA-
encoded libraries (DELs) in which combinatorial synthesis of small mole-
cules is integrated with a DNA barcoding process7,11,12. Individual DELs can
range in size frommillions to billions of unique small molecules depending
on the number of chemistry steps and the number of building blocks
included at each step.

The DEL field has been applying the technology to drug discovery for
over a decade13–17. The approach has yielded successes in the clinic, but
several technical limitations have hindered further progress18–20. To address
these challenges, DEL researchers have developed new methods for
encoding, synthesis, pooling, and screeningDELs7,21–23. However, one of the
greatest challenges in deconvoluting hits from a DEL screen is

resynthesizing the individual compounds “off DNA”. This is expensive and
time consuming, and can have a very low success rate. More importantly,
this approach limits the scalability, introduces bias, and doesn’t leverage the
negative SAR or subtle patterns in the positive DEL data22,24. To overcome
this, the field is moving to the use of machine learning (ML) approaches to
identify novel hits from unseen chemical libraries23,25–30, with commercially
available and easily synthesizable, drug-like molecules. In this way, the time
from screen to validated hit is greatly reduced.Machine learning algorithms
can be trained to predict the small molecules that will bind to a given target
based on their chemical structures and other relevant (e.g., physicochem-
ical) properties. TheMLmodels can then prioritize compounds from large,
low-cost chemical libraries for experimental screening, significantly redu-
cing the time and cost of identifying initial binders from a DEL screen.

Building on the above-mentioned advances and applications of ML to
DELs, we sought to understand better how the composition of different
DELs and different ML models trained using these DEL data impact the
outcome of DEL+ML paradigm for hit discovery.We chose to screen two
well-characterized drug targets31, CSNK1A1(CK1α) and CSNK1D (CK1δ),
against three DELs of different sizes and chemical compositions: Milli-
poreSigma DEL, HitGen OpenDEL®, and DOS-DEL32. The resulting DEL
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screening data were then used to train five different ML models that
included both traditional models, such as Random Forest33, and Deep
Neural Network models, such as Multi-Layer Perceptron34 and
ChemProp35. The developedMLmodelswere applied to a blind (i.e., unseen
by the models and with unknown labels) assessment set of 140,000 com-
pounds. Predicted binders from the blind assessment set were tested in a
biophysical binding assay to confirm if they were correctly predicted as
binders. We further tested molecules that were predicted not to bind to the
screened targets, to understand the potential DEL+ML pipeline for fil-
tering out true negatives. As far as the authors are aware, thiswork is thefirst
such analysis of its kind. In total, 80 (10%, 80 out of 808) and 83 (94%, 83 out
of 88) compounds were confirmed as binders and not-binders, respectively,
in the biophysical assay. Our cross-DEL and cross-ML results analyses
highlight the influence of DEL data quality, chemical space overlap between
training and test datasets, ML algorithms on the outcome of a DEL+ML
paradigm for hit discovery. Finally, we released the developed DEL+ML
pipeline with trained models in an open-source GitHub repositories
(https://github.com/broadinstitute/DEL-ML-Refactor), to foster data
sharing and community usage and refinement of the developed models for
hit identification.

Results
The DEL+ML pipeline for hit discovery
Our DEL+ML workflow is built of five modules: (1) DEL screening; (2)
data preparation for training ML models; (3) developing ML models; (4)
prediction of hits; and (5) validation of hits in experimental assay. A sche-
matic overview of the pipeline is illustrated in Fig. 1.

Two members of the Casein kinase (CK1) protein family, CK1α
(CSNK1A1) and CK1δ (CSNK1D), with broad serine/threonine protein

kinase activity and demonstrated therapeutic potential31, were screened
against three DNA-encoded small molecule libraries (DELs; see Methods:
DNA-Encoded Libraries). These libraries are a 10millionmember, peptide-
like DEL from MilliporeSigma, a 1 billion member, drug-like DEL from
HitGen (HitGen OpenDEL®), and an 11 million member, diversity-
oriented synthesis DEL, referred to as MS10M, HG1B, and DD11MDELs,
respectively. Both proteins (CK1α/δ) were screened in the presence and
absence of a potent inhibitor (also referred to as the positive control com-
pound, BAY6888). The positive control compound was discovered at the
Broad as part of a past drug discovery campaign andhas been shown to bind
to the canonical ATP-binding pocket of CK1α/δ. The use of a positive
control compound in the design of DEL screening resulted five different
selection conditions, referred to as CK1α, CK1α+inhibitor (CK1α+inh),
CK1δ, CK1δ+inhibitor (CK1δ+inh), and blank, a beads-only control (see
Methods: DEL screening).

Results from five different selection conditions revealed multiple
types of binders from the DELs: orthosteric (DEL molecules that are
enriched for the protein-only condition but not for protein plus the
inhibitor), allosteric (DEL molecules that are enriched for both the
protein-only and the protein plus the inhibitor conditions) and cryptic
binders (DEL molecules enriched for the protein plus the inhibitor
condition but not for protein-only condition). For this study, we
focused exclusively on the orthosteric binders since compounds to test
and validate the ML models are not available for allosteric or cryptic
binders. By informatically removing potentially allosteric and cryptic
DEL binders, we identified enriched compounds that bind only in the
absence of the inhibitor (i.e., orthosteric DEL binders), indicating they
are competitive with the positive control compound, BAY6888. (see
Methods: Stratifying enriched DEL molecules and binder types).

Fig. 1 | Schematic of the DEL+ML workflow for hit identification. Three DNA-
Encoded Libraries (DEL): MS10M (MilliporeSigma DEL, 10M compounds), HG1B
(HitGen OpenDEL®, 1B compounds), and DD11M (DOS-DEL, 11M compounds),
were screened against two proteins CK1α/δ. Both CK1α/δwere screened in presence
and absence of a potent inhibitor, resultingfive selection conditions: a beads-only, no
target control, CK1α, CK1α+inh, CK1δ, CK1δ+inh (Methods: DEL screening).
DEL screening results were informatically processed to stratify positives (orthosteric
binders to CK1α/δ) and negatives (not binders to CK1α/δ) for training five machine
learning (ML) models (Methods: Stratifying enriched DEL molecules and binder
types). These models are: Multi-layer Perceptron (MLP), Support Vector Machine

(SVM), RandomForest (RF), Extra Gradient boosting (XGB), andGraphical Neural
Network (ChemProp). All ML models were tested using an independent validation
set of known binders to CK1α/δ and applied to a bind assessment set of 140 K
compound collection for predicting binders and not-binders (Supplementary Fig. 4;
Methods: Validation and blind assessment datasets). A selected set of predicted
binders and not-binders were finally tested in a biophysical SPR assay to identify
confirmed binders and not-binders (Methods: Protein Production and Assay
Methods). This figure was created by Behnoush Hajian and Mirabella Vulikh and
has been used with written permission.
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About 444 K orthosteric DEL binders were identified for CK1α from
the HG1B DEL, whereas 3.2 K and 156K orthosteric DEL binders were
identified out ofMS10M andDD11MDELs, respectively. At the same time,
for CK1δ, about 432 K, 3.5 K and 58 K orthosteric DEL binders were
identified from HG1B, MS10M and DD11M libraries, respectively (Sup-
plementary Fig. 1). The enrichment scores for DEL compounds from the
three libraries screenedshowed avariable distribution and range forCK1α/δ
(Supplementary Fig. 2). Across DEL libraries, the magnitude of the
enrichment is not comparable as different protocols were used to calculate
the enrichment (see Methods: DEL Data deconvolution and enrichment
score calculation). To analyze the quality of DEL binders, we computed the
physicochemical properties (i.e., molecular weight, MW; log of the calcu-
lated partition coefficient, log P; topological polar surface area, TPSA; the
number of hydrogen bond acceptors, HBA; the number of hydrogen bond
donors, HBD; and the number of rotatable bonds, Rbond) of orthosteric
DEL binders across all three DELs (Supplementary Fig. 3). Comparison of
these properties acrossDELs showed thatHG1BDELscreening resulted the
highest fraction of binders (48% and 46% for CK1α andCK1δ, respectively)
with drug-like properties, i.e., complying all Lipinski’s rules of five36,37

(Supplementary Table 1).
Five different machine learning (ML) models were trained using

screening results from each of the three DELs. These models includeMulti-

layer Perceptron (MLP)34, Support Vector Machine (SVM)38, Random
Forest (RF)33, Extra Gradient boosting (XGB)39, and Graphical Neural
Network (ChemProp)35. A step-by-step workflow for ML model training,
tuning, assessment is shown in Supplementary Fig. 4. The workflow was
executed for fifteen DEL+ML combinations (three DELs and five ML
models). A balanced training set was built using enriched, orthosteric DEL
molecules and not-enriched DEL molecules from each DEL for model
training (seeMethods: Training datasets; Supplementary Table 2). Notably,
only the DEL selection data andML techniques described herein were used
in building these models. No prior information regarding known ligand
data was used in model training, and no explicit representation of the
protein targets or 3D data was used. All models were tuned and then tested
using an in-DEL 20% hold-out dataset (see Methods: Cross-validation and
parameter tuning) and an independent validation dataset of known CK1α
and CK1δ binders (non-DEL compounds, see Methods: Validation and
blind assessment datasets).

Each ML model trained to predict CK1α and CK1δ binders was
separately used to discover hits (i.e., orthosteric binders) from a blind
assessment set of 140 K in-house compounds (referred to as Broad Com-
pound Collection or Broad CC). Results of chemical space analyses (Fig. 2;
Methods: tSNEanalysis) of trainingdatasets generated from threeDELs and
the validation dataset (i.e., literature-curated40 and in-house set of known

Fig. 2 | Chemical space comparison for DEL training dataset, validation set
(known binders to CK1α/δ), and blind assessment set screened for hit discovery.
The output of t-distributed stochastic neighbor embedding (t-SNE) analysis per-
formed separately for three DELs, MilliporeSigma (MS10M) DEL, HitGen

OpenDEL (HG1B), and DOS-DEL (DD11M) are shown in (a), (b), and (c),
respectively. The Broad CC is the blind assessment set of 140 K compounds used to
predict hits by the ML models. The known binders or validation set include
literature-curated hits and in-house set of binders to CK1α and CK1δ.
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binders to CK1α/δ) in the context of Broad CC showed that the blind
assessment dataset covers a large chemical space, including the space
occupied by known binders. Notably, we observed a vast difference in the
chemical space coverage by three different DELs, with the HG1B and
MS10Mshowing themost and least diversity andoverlapwith theBroadCC
(Fig. 2). An ensemblemethodwas applied to select compounds from the set
of predicted binders by different ML models from Broad CC, simulta-
neously accounting for model diversity and chemical diversity (see Meth-
ods: Compound selection for experimental validation).

Experimental validation followed a traditional two-step approach: a
primary screen at two compound concentrations, followed by dose
−response bindings assays to confirm hits from the primary screen (see
Methods: Protein production and assaymethods). In total, 808 compounds
predicted as binders were tested in the primary biophysical assay (two
doses): 237 by the MS10M DEL trained models, 283 by the HG1B DEL
trained models, and 288 by the DD11MDEL trained models. Of these, 126
(16%, 126/808) were verified as primary hits, and 80 (10%, 80/808) were
confirmed as binders in dose-dependent binding assay (Supplementary
Data 1). At the same time, 83 out of 88 (94%) compounds predicted as not-
binders were confirmed not to bind to the target proteins.

Performance of MLmodels for three DEL libraries
Each ML model developed in this study was tuned over five-fold cross-
validation within the 80% of the training data from a DEL (positives and
negatives, Supplementary Table 2) to find the optimal set of parameters for
the ML algorithms (Supplementary Data 2). Parameters were tuned to
achieve the best accuracy at a fixed false discovery rate of 5% or 95%
precision (see Methods: Cross-validation and parameter tuning). After
parameter tuning, themodelswere evaluated using 20%hold-outmolecules
in the respective DEL library. We refer to this assessment as “in-DEL hold-
out test”. Finally, all models were trained on 100% of the DEL positive and
negative data and were tested with a validation set of known binders (non-
DEL compounds), composed of literature hits (Supplementary Data 3) and
internal hits (see Methods: Validation and blind assessment datasets). We
refer to this assessment as “independent validation” (results are shown in
Table 1). Results of the in-DEL hold-out test and the independent test of
models trained using all three DELs are shown in Fig. 3 and Table 1,
respectively.Molecules were representedwith 2048-bit morgen fingerprints
for trainingMLP, SVM, RF and XGBmodels and graphical neural network
generated features for training ChemProp (see Methods: Feature
representation).

The in-DEL test performances of ML models across three DELs
showed that the balanced accuracy ofmodels trained usingMS10M,HG1B,
and DD11MDELs on the 20% hold-out set were approximately 95%, 55%,
and 90%, respectively. The ChemProp models demonstrated the highest
accuracies for all in-DEL hold-out tests (about 1-3% higher accuracy across
DELs; Fig. 3). Interestingly, although the “in-DEL” test performance of the
MLmodels trained using HG1BDEL was lower compared to those trained
usingMS10MandDD11MDELs (Fig. 3), models trained usingHG1BDEL
correctly identified most binders in the non-DEL validation set (Table 1).
This result indicates that models trained using HG1B data, which was the
largestDEL screened (1Bmolecules) and covered themost diverse chemical
space (Fig. 2) and had the most drug-like properties (Supplementary Fig. 3
and Supplementary Table 1) relative to the two other DELs screened, was
best able to generalize outside the DEL (i.e., training data) space and predict
binders outside the in-DEL chemical space. Similar to the in-DEL hold-out
test, ChemPropmodel showed the best performance in correctly predicting
binders to CK1α (48%, 107 out of 221) and CK1δ (45%, 212 out of 476) in
the validation set across three DELs (Table 1), while RF was the lowest
performing model.

Additionally, we repeated the model training for MLP, SVM, RF and
XGB by including six different physicochemical properties into the feature
representation of the molecules (see Methods: Feature representation) and
carried out the above-mentioned in-DEL hold-out test and independent
validation. Notably, the inclusion of physicochemical properties in feature

representations did not show improvement in the performance (Supple-
mentary Fig. 5 and Supplementary Table 3). Thus, for MLP, SVM, RF and
XGBmodels, we report results from the 2048-bit feature only in the rest of
the paper. For training the ChemProp35 model, the molecules were repre-
sented using features generated by the graphical neural network, embedded
in ChemProp software package.

Intrigued by the best performance of HG1B-trained ChemProp
models in the non-DEL validation set (internal and literature hits, Table 1),
we performed a supplemental analysis with this DEL+ML combination.
While our HG1B DEL-based ML models were originally trained using a
balanced dataset with a 50%/50% proportion of positives and negatives
(Supplementary Data 1), we repeated the training and independent vali-
dations of ChemProp models with varying proportions of positives and
negatives in the training data from HG1B DEL. This experiment showed
that the 50%/50% proportion of positives and negatives in the training data
result themost optimal result (SupplementaryTable 4). Aswe decreased the
number and proportion of positives keeping the same number of negatives
(i.e., increased proportion of negatives compared to positives), the number
of correct predictions of knownbinders decreased (SupplementaryTable 4).
In contrast, the decreased proportion of negatives in the training data,
keeping the same number of positives (i.e., increased proportion of positives
compared to negatives) ultimately led to overprediction. These results
indicate that a balancedproportion of positives and negatives in the training
data is abest practice in the applicationofmachine learningpresented in this
study (i.e., supervised training of ML for binary classification).

Analyses of predicted and confirmed hits identified by ML
Five ML models trained using screening results from each DEL to predict
binders for CK1α and CK1δwere used to nominate compounds as binders
and not-binders from the blind assessment dataset, referred to as BroadCC
(Broad Compound Collection), a set of 140 K drug-like compounds with a
broad chemical diversity (Fig. 2 and Fig. 4). The selection of compounds
from predicted binders was performed to ensure the model diversity (i.e.,
contribution of each of five ML models was considered) and chemical
diversity of compounds, that is, predicted compoundswere clustered to pick
a diverse set of representatives from the chemical space covered by the
BroadCC compound set (see Methods: Compound selection for experi-
mental validation). A total of 808 distinct compounds, 237, 283, and 288
from the predicted binders by models trained using MS10M, HG1B, and
DD11M, respectively, was selected for experimental validation in the pri-
mary assay.

Analyses of the physicochemical properties of the predicted binders,
selected for experimental validation, showed that most of them had drug-
like properties, with compounds selected by models trained using HitGen
DEL having the most drug-like properties (Supplementary Fig. 6). About
63% of the predicted binders prioritized for experimental testing haveMW
≤500Da, and the fraction of compounds predicted as binderswith drug-like
properties increases to 82% when accounting for predictions by models
trainedusing theHitGenDELalone; the library composedof themost drug-
like molecules (Supplementary Fig. 3). Comparison of physicochemical
properties of the training data (i.e., DEL binders), predicted binders and
experimentally confirmed binders showed that the physicochemical prop-
erty profiles of the training data influence the predictions and properties of
the predicted binders as well as confirmed hits. For example, in line with
HG1B DEL binders (used for training the ML models), the predicted bin-
ders from the unseen BroadCC library by ML models trained using HG1B
DEL data had the highest number of compounds conforming to all
Lipinski’s rules of five36,37 (Supplementary Table 1). Consequently, HitGen
DEL-trained ML models also resulted the highest hit rate (15%; Table 2),
althoughmost confirmedbinderspredictedby anyDEL-trainedmodels had
desirable physicochemical properties (Supplementary Table 1).

Additionally, the chemical space coverage analysis showed that the
selected compounds predicted for experimental testing covered a diverse
chemical space and are contributed by different ML models and DELs
(Fig. 4a). To further check whether training using a specific DEL data set
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influences the sampling of predicted binders by ML models, we quantified
the pairwise Tanimoto distance between compounds selected by pairs of
DELs (e.g., 237 and 283 compounds selected from the Broad CC bymodels
trained usingMS10M and HG1BDELs, respectively) and between two sets
of randomly selected compounds from the Broad CC to match the above
selected compounds (237 and 283 compounds). Noticeably, the cross-DEL,
pair-wise distance between selected compounds were smaller compared to
randomly selected sets of compounds from the BroadCC compound set
(Supplementary Fig. 7), indicating that the ML predictions are different
from randomsampling and the trainingDELdata influence theMLmodels’
predictions of compounds and their properties and chemical space.

Primary and confirmed hit rate of DEL+ML pipeline
Compounds predicted as binders by the ML models and selected for
experimental validation from the BroadCC dataset (Fig. 4a) were tested in a
Surface Plasmon Resonance (SPR) binding assay against both CK1α and
CK1δ (see Methods: Protein Production and Assay Methods). First, the
compounds were tested at two concentrations (10 μM and 30 μM); com-
pounds with an %Rmax >10%, which showed an increase in response at the
higher concentration, were identified as primary hits. In total, 126 (16% of
808) compoundswere categorized asprimaryhits; of these, 42 (out of 237), 54
(out of 283), and 30 (out of 288) were predicted by models trained using
MS10M,HG1B, andDD11M, respectively.Next, theprimaryhitswere tested
in a dose-response confirmation SPR assay. Compounds resulting in an %
Rmax >=15% at 50 μM, which showed a dose-dependent binding, were
identified as confirmed binders (or hits). Overall, 80 compounds were con-
firmed as binders out of 808 that were selected for experimental validation,
resulting in a 10%hit rate.The list of confirmedbinders identified forCK1α/d
from different DEL+ML combinations is given in Supplementary Data 1.

Although the primary hit rates fromMS10M (18%, 42 out of 237) and
HG1B (19%, 54 out of 283) were comparable, the HG1B DEL-trained
models provided the highest confirmed hit rate (15%) compared to that of
10% and 5% by MS10M and DD11M DELs (Table 2), demonstrating the
effectiveness of the large HG1B DEL and its broad chemical diversity in
identifying a higher number of confirmed hits. Comparing the hit rates
across different ML models, we further observed that the ChemProp out-
performed other ML models in identifying confirmed binders (hit

rate=16%, hit count=32; Table 2), which is consistent with the performance
evaluation results from the in-DEL test and validation set of known binders
(Fig. 3 and Table 1). TheMLmodels RF andMLP resulted the same hit rate
of 11%;however, the total numberof confirmedbinderspredictedbyRFwas
lower compared to MLP (8 versus 24; Table 2).

Concomitantly with the predicted binders, we tested 88 predicted not-
binders in the confirmation assay, and 94% (83 out of 88) of those were
confirmed as not binding to the target proteins. This set of confirmed not-
binders includes 29 (out of 30), 14 (out of 16), and 40 (out of 42) predicted
not-binders by model trained using MS10M, HG1B, and DD10M,
respectively.

Analyses of confirmed binders identified by DEL+ML pipeline
The 80 confirmed binders of CK1α/δ identified in this study hadmolecular
weights of between 400–500 Da with the majority of the compounds
complying the Lipinski’s rules of five36,37 (Supplementary Table 1), and
showed a range of binding affinities (Supplementary Data 1). Eight con-
firmed binders showed KD values between 20–50 μM (3, 2, and 3 com-
pounds identified by models trained using MS10M, DD11M, and HG1B
DEL, respectively). Notably, theHitGenDEL trainedmodels identified four
compounds with KD values between 0.06–6 μM, including a nanomolar
binder to CK1α/δ (KD for CK1α = 308 nM and KD for CK1δ = 187 nM;
Table 3). Additionally, the DOS-DEL trained models identified one nano-
molar binder (KD for CK1α = 161 nM and KD for CK1δ = 69.6 nM; Table
3). The top two tight binders were identified by DEL+ML combinations
HG1B+MLP and DD11M+ChemProp, are shown in Table 3 with their
screening results and properties. For the remaining 67 confirmed hits, the
KD was greater than 50 μM (Supplementary Data 1).

The chemical space analyses of the confirmed binders demonstrated
the utility of employing multiple different ML models contributing to
sampling diverse chemical space (Fig. 4b). Specially, the chemical space of
the BroadCC dataset probed by the two best performing neural network-
based methods ChemProp and MLP were relatively different.

Discussion
DNA-encoded library (DEL) screening is awidely used approach to identify
novel smallmolecules that bind a specific target41–43; the technologyhas been

Table 1 | Validation of ML models on an independent set of known binders for CK1α and CK1δ, curated from literature (called
“literature hits”) and available in house (“internal hits”)

CK1α CK1δ

Literature hits (15) Internal hits (206) Literature hits (245) Internal hits (231)

Multi-Layer Perceptron (MLP) MS10M DEL 0 0 0 0

HG1B DEL 1 12 25 80

DD11M DEL 2* 22 55 27

Support Vector machine (SVM) MS10M DEL 0 0 0 0

HG1B DEL 0 0 5 0

DD11M DEL 2* 7 9 6

Random Forest (RF) MS10M DEL 0 0 0 0

HG1B DEL 0 0 1 0

DD11M DEL 0 0 0 0

Extra-Gradient Boosting (XGB) MS10M DEL 0 0 0 0

HG1B DEL 1 27 8 40

DD11M DEL 2* 11 0 0

Graphical Neural Network
(ChemProp)

MS10M DEL 0 0 1 3

HG1B DEL 2* 105* 88 124*

DD11M DEL 0 3 122* 39

The reported numbers indicate the number of correctly predicted binders for the respective target protein by the ML models trained using the corresponding DEL data. The feature representation for the
molecules was 2048 bits Morgan fingerprints for MLP, SVM, RF, and XGB models and graphical neural network-based features for ChemProp model (Methods: Feature representation).
Bold indicates the best performance from a ML model across three DEL libraries.
*indicates the best overall performance by a DEL+ML combination for a dataset.
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shown powerful in discovering novel ligands for diverse target types
(enzymes, PPIs and folding chaperones, chromatin-related, etc.)44–47 and
different ligand types (e.g., covalent or non-covalent small molecules,
bifunctional degraders, molecular glues)48–53. One of the key advantages of
the DEL screening technology is the large amount of data detailing both
binders and non-binders from the screens, which is ideal for training ML
models for scalable and efficient virtual screening of large, readily accessible

small-molecule libraries28,29,54,55. For example,McCloskey et al.28 successfully
performed ML modeling on data obtained from DEL screenings (an
X-Chem in-house DEL) of three targets (sEH, ERα and c-KIT) to identify
potent compounds that were contained in the DEL used for screening.
Another example came fromXiong et al.55, who screened an in-house 30M-
member DEL against TIGIT and then employed ML to identify TIGIT
inhibitors. In this study we performed the first systematic analysis

Fig. 3 | Comparison of in-DEL hold-out test performances of ML models. The
models were trained using data from three DELs (80%) and tested using in-DEL
hold-out set (20%). The feature representation for the molecules was 2048 bits
Morgan fingerprints for MLP, SVM, RF, and XGB. The ChemProp model
internally generated graphical neural network-based features to represent the
molecules (Methods: Feature representation). The reported balanced accuracy,

MCC, F1 score, and recall is reported for (a) multi-layer perceptron, (b) support
vector machine, (c) random forest, (d) extra-gradient boosting and (e) graphical
neural network (ChemProp) models. Values indicate the binary classification
performance (Methods: ML performance evaluation metrics) of the five ML
models in correctly predicting orthosteric DEL binders of CK1α and CK1δ.
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comparing three different DNA-encoded libraries (DEL) and five different
machine learningmodels in a DEL+ML pipeline (Fig. 1), to identify novel
binders to two paralog proteins (CK1α/δ). The results provided a better
understanding of how different DEL library sizes and inter-library diversity
ofDELmolecules as well as differentML algorithms influence hit discovery.

Our analyses revealed that the library size and diversity ofmolecules in
the library do not necessarily correlate. While the largest DEL screened in
our study, HG1B (HitGen OpenDEL®, 1 billion molecules), showed the
highest diversity in the chemical space coverage (Fig. 2), the chemical space
coverage byDD11M (DOS-DEL, ~11millionmolecules)32 was significantly

Fig. 4 | Chemical diversity of predicted binders, selected from Broad Compound
Collection (Broad CC) for experimental validation, and confirmed binders in
biophysical assay in a dose-dependent manner. Each panel shows the output of
t-distributed stochastic neighbor embedding (t-SNE) analysis for the blind

assessment set (Broad CC) used to discover hits, with predicted binders selected for
experimental validation in (a) and binders confirmed in biophysical assay in (b)
highlighted in colors. The plots are separately colored by the DELs the ML models
are trained on (left) and the MLmodels (right) predicted the compound as a binder.

Table 2 | Confirmed hit (i.e., binder) count and hit rate from different DEL+ML combinations

(a) Confirmed hit count and hit rate per DEL

DEL Number of compounds selected for experimental
validation

Number of compounds identified as confirmed
binders

Hit Rate

MilliporeSigma (MS10M) 237 23 10%

HitGen (HG1B) 283 43 15%

DOS-DEL (DD11M) 288 14 5%

(b) Confirmed hit count and hit rate per ML

ML Number of compounds selected for experimental
validation

Number of compounds identified as confirmed
binders

Hit Rate

Multilayer-Perceptron (MLP) 217 24 11%

Support Vector Machine (SVM) 149 7 5%

Random Forest (RF) 73 8 11%

Extra Gradient Boosting (XGB) 163 9 6%

Graphical Neural Network (ChemProp) 206 32 16%

Hits are confirmed primary (two-dose) and confirmation (six-doses) biophysical SPR assay.
Bold indicates the best performance.
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higher compare to MS10M (MilliporeSigma DEL, ~10 million molecules),
which is approximately the same size asDD11M.The observeddifference in
chemical space coverage byMS10M andDD11M affected the performance
of MLmodels in correctly predicting known binders of CK1α/δ (non-DEL
compounds). The HG1B and DD11M trained ML models consistently
outperformed the same ML models trained using MS10M DEL molecules
(Table 1) in correctly identify knownbinders, indicating that chemical space
diversity is more important than library size when using ML models to
virtually screen hits.

An intriguing observation from the analyses of predictive accuracies
from ML models trained on different DELs was a relatively low in-DEL
accuracy from HG1B-trained models (Fig. 2), but high performance in
accurately predicting known binders to the targets (validation set) as well as
predicting novel binders from the blind compound set, Broad CC (Table 1).
We speculate thatmultiple factors contributed to this result. First, the intra-
DELmolecules of HG1BDEL are diverse enough tomake the in-DEL test a
hard problem, which also makes the ML models trained with the HG1B
generalizable and robust enough to identify non-DEL, novel binders. Fur-
thermore, the t-SNE analyses of the libraries showed that the HG1B DEL
CK1α/δ orthosteric binders (i.e., positives) are relatively closer to the known
binders (validation set comprised of literature and internal hits; Fig. 2) and
to the overlapping t-SNE space of compounds in the blind assessment set
(Broad CC), compared to two other DELs. Notably, although DD11M-
trained models were the second-best in predicting known binders after
HG1B-trained models (Table 1), most binders predicted by DD11M-
trained models from the Broad CC didn’t confirm in the experimental
validation (highest confirmed hit rate by HG1B-trained models, 15% and
lowest hit rate by DD11M-trained models, 5%; Table 2). We speculate that
the lower confirmation hit rate from the DD11-trainedmodels is attributed
to comparatively less drug-like physicochemical properties of DOS-DEL
molecules (Supplementary Fig. 3, Supplementary Table 1) and the lack of
overlap between the chemical space of the DD11M library and the blind
assessment set, BroadCC(Fig. 2). In summary,weobserve that the chemical
diversity ofDELmolecules in the trainingdata (Fig. 2 andFig. 4), the balance

in positives and negatives in the training data (Supplementary Table 2 and
Supplementary Table 4), the relative closeness of the DEL binders to non-
DEL binders to the target when known (Fig. 2), and the drug-likeliness of
DEL molecules used for training in terms of their physicochemical prop-
erties (Supplementary Table 1) are positive contributors to ML models’
generalizability and robustness in identifying novel, drug-like binders and
the hit rate of the DEL+ML pipeline.

Concomitantly withmultiple DELs, we testedmultipleML algorithms
in our DEL+ML hit discovery pipeline, and compared the five different
ML models’ performances using data from each DEL (Fig. 3, Tables 1, 2).
The neural network models (MLP and ChemProp) excelled in their per-
formances compared to the traditional MLmodels (SVM, RF and XGB) in
predictive accuracy, which is in line with recent studies30. In total, 24 out of
217 (11%) compounds predicted to bind by MLP and 32 out of 206 (16%)
compounds predicted to bind by ChemProp were confirmed in dose-
response (Table 2). However, interestingly, the confirmed hits predicted by
ChemProp models were sampled mostly from a focused chemical space
(Fig. 4b), overlapping with the known binders, in contrast to MLP models
which sampled hits from a more diverse space. Different feature repre-
sentations ofmolecules (2048-bitMorgan fingerprints, with andwithout six
physicochemical properties) did not impact the outcome of theMLmodels
(Fig. 3 and Supplementary Fig. 4).While this may not always be the case, in
future studies such as those described herein, the speed of generating fin-
gerprints and relative performance gain will be the primary factor in
selecting the feature representation.

The confirmed hits discovered by our DEL+ML pipeline ranged in
affinity from triple digitmicromolar to double digit nanomolarwithmost of
themoleculesbeingweak binders (Table 3 andSupplementaryData 1). Two
nanomolar binders were identified as confirmed hits, one from the MLP
model trained on data from the HitGen OpenDEL and one from the
ChemProp model trained on the DOS-DEL data. The majority of the in-
DELHitGenmolecules had drug-like properties andmost of the molecules
selected by the ML models trained on the HitGen DEL data had drug-like
properties (Supplementary Fig. 3 and 6, Supplementary Table 1). The

Table 3 | Top binders to CK1a/d discovered by the DEL+ML pipeline

Compound CK1α CK1δ ML DEL MW (Da) logP

Ka
(M−1s−1)

Kd (s−1) KD (nM) Ka
(M−1s−1)

Kd (s−1) KD (nM)

BRD1755 5.43e+ 08 1.67e+ 02 308 3.35e+ 05 6.25e-02 187 MLP HitGen 332.3 3.336
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compounds from the HitGen DEL trained models that were tested were, in
general, more soluble than the compounds tested from the other library
datasets. To improve the hit rate in similar studies, filtering both the DEL
datasets used and the predicted binders for more drug-like compounds
would be beneficial.

In summary, in this study, we demonstrate the effectiveness of utilizing
extensiveDEL screening data in conjunctionwithmachine learningmodels
for the discovery of novel, drug-like hits beyond the conventional DEL
chemical space. Our approach incorporating multiple DEL libraries and
multiple ML models allowed for a comprehensive comparative assessment
of DEL libraries of different sizes and chemical space coverage across tra-
ditional (RF, SVM, XGB) and non-traditional (deep-neural network-based
models, e.g., ChemProp and MLP) machine learning algorithms. The
DEL+MLworkflow allowed us to probe into a drug-like existing library of
easily synthesizable compounds, enabling the experimental testing of in
total 808 compounds (with a 10%hit rate), which is unlikely to be the case if
we were to resynthesize molecules out of a DEL screen. Our method also
demonstrated the ability to identify validated not-binders to the target
proteins (CK1α/δ) as well as confirmed binders. We recognize, however,
that the confirmation hit rate of 10% is specific to our targets CK1α/δ, which
are canonically druggable kinases56. This hit rate will vary depending on
targets, especially those conventionally known as undruggable such as
transcription factors and GTPases57, and the number and quality of DEL
screening hits for the target of interest. Additionally, building a similar
DEL+ML pipeline for allosteric or cryptic binders to kinases as well as
potentially selective binders to CK1α or CK1δ was outside the scope of this
particular study, but would be an interesting follow-up of our study. We
released the two best-performing ML models (ChemProp and MLP) in an
open-source GitHub repository (https://github.com/broadinstitute/DEL-
ML-Refactor/tree/main) for users to screen compounds (given SMILES
strings) andgenerate binary predictions for the compounds to be a binder or
not-binder to CK1α/δ. In our repository, we have also made the training
data fromHitGenOpenDEL library publicly available. Future directions for
this line of research will include improving predictive accuracy for the hit
discovery pipeline, identifying chemically actionable hits for drug discovery
programs, and developing a hit-to-lead pipeline whose input will be the
validated confirmed hits identified from a refined version of the pipeline
described here and molecular docking27 to improve the ML models.

Methods
DEL selection and data analysis
DNA-Encoded Libraries. We screened three DNA-Encoded Libraries
(DELs) with diverse properties for a comprehensive cross-DEL evalua-
tion. These libraries were chosen based on their different underlying
chemistries and building block compositions. The libraries included in
this study are: (1) the MilliporeSigma 10 million compound DEL com-
prised of peptide-like molecules (referred to asMS10M), (2) the HitGen
OpenDEL library comprised of 1 billion drug-like molecules (referred to
as HG1B) consisting of 15 sub-libraries, and (3) the Diversity Oriented
Synthesis (DOS)-DEL library15,32 comprised of approximately 11 million
molecules (referred to asDD11M), generated using the diversity-oriented
synthesis approach. The DD11M DEL is a combined set of a 6.67M
molecule DOS-DEL and a 3.7 M molecule DOSEDO DEL32.

DEL screening. All DEL screens included the following five conditions:
(1) streptavidin immobilization beads alone (blank), (2) CK1α captured
on beads (CK1α), (3) CK1α captured on beads in the presence of 10 μM
BAY6888 (CK1α+inh), (4) CK1δ captured on beads (CK1δ), and (5)
CK1δ captured on beads in the presence of 10 μM BAY6888 (CK1δ
+inh). The base buffer, screening buffer, blocking buffer, andDEL buffer
used for the DEL screens of the MS10M DEL (Sigma DYNA002-5VL)
and the HG1B (HitGen) were the same. All buffer components were
prepared from powder in nuclease-free water (Growcells UPW-1000). A
base buffer of 50 mM HEPES pH7.5, 50 mM NaCl, 10 mM MgCl2,
0.5 mM TCEP, and 2% DMSO was prepared. The screening buffer was

prepared by adding TWEEN-20 (Cytiva Life Sciences) to the base buffer
to a final concentration of 0.05%. Blocking buffer was prepared by adding
to the base buffer TWEEN-20 to a final concentration of 0.05% and
D-biotin (MilliporeSigma #B0301) to a final concentration of 100 μM.
DEL buffer was prepared by adding to the base buffer TWEEN-20 to a
final concentration of 0.05% and herring sperm DNA (MilliporeSigma
#D7290) to a final concentration of 0.01 mg/ml. The elution buffer used
for screening the MS10M DEL was 10 mM Tris pH 8.5, 0.05% TWEEN-
20 in nuclease-free water. The elution buffer used for screening theHG1B
DEL was the same as the screening buffer.

Protein was immobilized by incubating 250 pmol of protein and 15 μl
of streptavidin Dynabeads slurry (ThermoFisher #65001) at room tem-
perature for 45min with mixing. DEL selections that included BAY6888
used a compound concentration of 10 μMinDELbuffer with afinalDMSO
concentration of 2%. The MS10M DEL screens were performed using the
manufacturer’s protocol. The HG1B screens were performed similarly.
After the 1st round of elution, the elution sample (50 μL) was divided into
two portions: 5 μL reserved for the following QC/PCR amplification, while
45 μL was mixed with a freshly prepared immobilized protein under the
identical screening condition. The incubation, washing, and elution steps
were repeated. A total of three rounds of selection were performed. The
elution from each roundwas analyzed by qPCR alongwith a standard curve
providedby theDELkitmanufacturer. The resultswere used to calculate the
copy number of each sample. In subsequent steps, samples with copy
numbers between 107 and 108, corresponding to the 2nd roundof selections,
were used.

PCR amplification of the eluted samples was performed using a stan-
dard PCR protocol and PCR primers provided by the manufacturer. PCR
products were purified from 2% agarose gel using a Qiagen Gel Extraction
Kit (#28706 × 4). All samples for the selections performedwith theMS10M
and HG1B DELs were sent to Azenta Inc. for sequencing. Azenta prepared
the samples for sequencing by adding closing DNA tags that encoded the
specific selection condition of each sample (ex. CK1α with 10 μM
BAY6888). Sequencing was performed using Illumina HiSeq sequencing
with 2 × 150 base pairs, ~350 million PE reads, and a single index.

The DEL screening with DOS-DELwas conducted using a KingFisher
Duo Prime (Thermo Scientific) in a 96-well deepwell plate (Thermo Sci-
entific 95040452) at room temperature. The buffers used are ‘B Buffer’
containing 25mM HEPES pH 7.4, 150mM NaCl, 10mM MgCl2, and
0.05% Tween-20 (w/v); ‘S Buffer’ containing 25mM HEPES pH 7.4,
150mM NaCl, 10mM MgCl2, 0.05% Tween-20 (w/v), and 0.3mg/mL
Ultrapure Salmon Sperm DNA (ThermoFisher Scientific 15632011).
Dynabeads™ MyOne™ Streptavidin C1 (ThermoFisher #65001, 20 µL per
sample) were washed three times with B buffer before protein immobili-
zation. The proteins (CK1α or CK1δ) were diluted to 2.5 µM in B buffer
(100 µL per sample) and immobilized to the washed beads (1 h, medium
mix). ThebeadswerewashedoncewithBbuffer (200 µL), oncewithSbuffer
(200 µL), and once with S buffer containing 2%DMSO or 10 μMBAY6888
(2%DMSO, 200 µL) (3min each,mediummix). The beadswere transferred
to the DOS-DEL library (1 million copies per library member, 100 µL in S
buffer containing 2% DMSO or 10 μM BAY6888) and incubated (1 h,
medium mix). The beads were then washed once with S buffer containing
2%DMSO or 10 μMBAY6888 (200 µL) and twice with B buffer containing
2% DMSO or 10 μM BAY6888 (200 µL) (3min each, medium mix). The
beads were transferred to B buffer (100 µL) and heated (95 °C, 5min) to
elute DEL compounds into the supernatant. The supernatant (20 μL) was
restriction digested by StuI (0.1 μL, NEB R0187) in 1× SmartCutter buffer
(56.5 μL, NEB B7204S) per sample (37 °C, 1 h) and cleaned up using the
ChargeSwitch PCR Clean-Up Kit (Thermo Scientific CS12000). The bar-
codes of the eluted DEL were PCR amplified using i5 index primer (3 μL of
10 μM stock in water), i7 index primer (3 μL of 10 μM stock in water),
cleaned up elution samples (19 μL), and Phusion® High-Fidelity PCR
MasterMixwithHFBuffer (NEBM0531L) (25 μL of 2×). The PCRmethod
is as follows: 95 °C for 2min; 19 cycles of 95 °C (15 s), 55 °C (15 s), 72 °C
(30 s); 72 °C for 7min; hold at 4 °C. The PCR products were pooled in

https://doi.org/10.1038/s44386-025-00007-4 Article

npj Drug Discovery |             (2025) 2:5 9

https://github.com/broadinstitute/DEL-ML-Refactor/tree/main
https://github.com/broadinstitute/DEL-ML-Refactor/tree/main
www.nature.com/npjdrugdiscov


equimolar amounts, and the 187 bp amplicon was gel purified using 2%
E-Gel EX Agarose Gels (ThermoFisher Scientific G401002) and the QIA-
quick Gel Extraction Kit (Qiagen 28704). The DNA concentration was
measuredusing theQubit dsDNABRassay kit and sequencedusing aHiSeq
SBS v4 50 cycle kit (Illumina FC-401-4002) and HiSeq SR Cluster Kit v4
(Illumina GD-401-4001) on aHiSeq 2500 instrument (Illumina) in a single
50-base read with custom primer CTTAGCTCCCAGCGACCTGCTT-
CAATGTCGGATAGTG and 8-base index read with custom primer
CTGATGGAGGTAGAAGCCGCAGTGAGCATGGT.

DEL Data deconvolution and enrichment score calculation. DEL
data deconvolution (i.e., decoding DNA sequence to retrieve the struc-
ture of the small molecule) for three different libraries was performed
differently.

For MS10M DEL, the data deconvolution was performed by the pro-
vider of the DEL using an in-house bioinformatic pipeline developed by
DyNAbind GmbH. That pipeline was used to calculate Z-scores for mole-
cules present in the sequencing output (see Eq. 1; hit count = the number of
times amolecule is present in the sequencingoutput,μ =mean,σ = standard
deviation, and cond = a selection condition). We were supplied with the
chemical structures and corresponding Zscores of all molecules with
Z-scores > 5.

Zmol;cond ¼
hit countmol;cond � μðhit countscondÞ

σhit countscond
ð1Þ

Data deconvolution for the HG1B DEL was carried out using YoDEL
(https://www.cephalogix.com), a commercial Python-based application.
Using the YoDEL software package, we calculated the hit count and effect
size per DEL molecule present in the sequencing output using Eq. 2.

Effect Sizemol ¼
kcount � poilamda

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

poilamda

p ð2Þ

Here,
kcounts = the number of counts observed for a given condition
poilambda = (tagcount / Ntotal-tags) × nselection-count
tagcount = the count of tags encoding the combination of building

blocks (for example: the combination of [1, 2, 1] is 2 tag combinations)
Ntotal-tags = the total number of encoding tag combinations within the

library
nselection-count = the number of sequences collected for the library +

selection condition
DOS-DEL data deconvolution was performed following the published

methods15,29, resulting in a calculated enrichment ratio of all molecules
present in the sequencing output, reported as the lower bound of 95%
confidence interval.

Stratifying enriched DEL molecules and binder types. For each DEL
library, MS10M, HG1B and DD11M, we obtained DEL screening results
for five selection conditions, CK1α, CK1α+inhibitor (CK1α+inh),
CK1δ, CK1δ+inhibitor (CK1δ+inh), and a beads-only control (blank).
For the CK1α and CK1δ conditions, 2.5 μM of the target protein was
added to the assay. For the CK1α+inh and CK1δ+inh conditions, 10 μM
of a known orthosteric inhibitor, 10 μM BAY6888, was also added. For
the blank condition, no protein or inhibitor was added. To select enriched
DEL bindermolecules and build datasets for trainingMLmodels, we set a
threshold on the enrichment score or effect size (see Methods: DEL Data
deconvolution and enrichment score calculation) above which a mole-
cule was classified as a “binder” for a given selection condition (CK1α,
CK1α+inh, CK1δ, CK1δ+inh). The enrichment scores and thresholds
differed across the three DELs, but were consistent across all selection
conditions within each DEL.

ForMS10M, a DELmolecule was considered enriched if the following
two conditions were met (as recommended by the DEL provider): (1)

molecule’s Z-score >=5.0 in the selection condition with protein and (2)
molecule’s Z-score in the selection condition with protein > molecule’s
Z-score in the blank condition. In total, 17,050 out of 10M molecules in
MS10M DEL were identified as enriched. The HG1B consisted of 1B
molecules. After deconvolution of DEL screening results, we obtained hit
counts and effect size for 2.5Mmolecules. Then, we selected the top 25% of
2.5Mmolecules with an effect size >0 in each of the selection conditions in
presence of the protein (CK1α, CK1α+inh, CK1δ, CK1δ+inh) and filtered
out any molecules with an effect size >= 0 in the blank condition, to obtain
the set of enriched molecules (Supplementary Fig. 1). For DD11M DEL,
582 Kmolecules were retrieved after deconvolution. Similar to HG1BDEL,
we selected the top 25% of themolecules and filtered out anymolecule with
an enrichment ratio >=0 in the blank condition, to generate the set of
enriched DD11M molecules (Supplementary Fig. 1).

After filtering the enriched molecules, we stratified sets of molecules
enriched in the presence of a target protein (CK1α or CK1δ) but not enri-
ched in the condition containing target protein plus inhibitor; these mole-
cules were classified as orthosteric binders to the target. In contrast,
molecules enriched in the presence of a target protein plus inhibitor (CK1α
+inh or CK1δ+inh) but not enriched in the presence of the target protein
alonewere classified as crypticbinders to the target.Molecules enrichedboth
in thepresence and absence of the inhibitor are classified asallostericbinders
to the target. The counts and distribution of enrichment scores for
orthosteric, allosteric and cryptic DEL binders from three DEL libraries is
shown in Supplementary Fig. 1-2.

Machine learning: datasets,models, andperformanceevaluation
Training datasets. We adopted a general approach for preparing the
positive (“DEL binder molecules”) and negative datasets (“DEL not-a-
binder molecules”) from each of the three DELs for developing ML
models. In this study, our goal was to train ML models to identify
orthosteric binders of CK1α/d. Therefore, the positive datasets are
composed of orthosteric DEL binders only (see Methods: Stratifying
enriched DEL molecules and binder types). The positive datasets for
CK1α and CK1δ were prepared separately out of each DEL, whereas a
single negative dataset was prepared from each DEL. Our approach for
selecting DEL binders (“positives”) and DEL not binders (“negatives”)
was based on the effect size or enrichment ratio threshold for conditions
with proteins as well as the results from the blank control (or no protein)
condition, to mitigate the noise in the DEL screening results. The phy-
sicochemical property distribution of DEL binders across three DELs
used for training the ML models are shown in Supplementary Fig. 3,
separately for CK1α and CK1δ. In addition, the average values of the
properties across DELs along with the fraction of molecules in the
training data, predicted binders, and confirmed binders conforming to
Lipinski’s rule of five are presented in Supplementary Table 1.

For MS10M, all orthosteric binders and partially competitive orthos-
teric binders were combined to generate the set of positives. Partially
competitive binders included binders that were enriched in both presence
and absence of the inhibitor but the Z-score in absence of the inhibitor was
two-fold higher than that in presence of the inhibitor. The final sets of
positives for CK1α and CK1δ comprised of 3620 and 4232 molecules,
respectively. To prepare the negative set, we downsampled approximately
9.99M molecules with Z-Score <5.0 to 10 K molecules (see Methods:
Downsampling approach), to generate a relatively balanced datasets of
positives and negatives. For HG1BDEL, orthosteric DEL binders for CK1α
and CK1δ were downsampled from 444 K and 432 K, respectively (Sup-
plementary Fig. 1), to prepare positive sets for each paralog protein com-
prising of 350 Kmolecules. To prepare the negative dataset fromHG1B, we
first pickedmoleculeswith an effect size >0 inblank condition and effect size
= 0 in four other conditions, resulting 384 k molecules (out of 2.5M
molecules that came out of the DEL screening). We then downsampled the
set of 384 k molecules to a diverse set of 100 k molecules (see Methods:
Downsampling approach). An additional set of 250 k molecules from the
HG1B library, in which all the enriched molecules were removed, were
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sampled to prepare a combined negative set of 350 k molecules. For
DD11M, we identified 156 K orthosteric DEL binders to CK1α and 58 K
orthosteric DEL binders to CK1δ (Supplementary Fig. 1). At the same time,
98 K molecules were identified as not enriched (molecules with an enrich-
ment ratio>0 inblank condition andenrichment ratio=0 in each condition
with protein). To generate a balanced set of positives, we downsampled the
CK1α orthosteric binders from 156 K to 98 K and used the full negative set.
ForCK1δ, we downsampled the negative set from98 K to 58 K tomatch the
size of our positive set. The number of molecules in positive and negative
datasets used to train ML models are listed in Supplementary Table 2.

Cross validation and parameter tuning. Five-fold cross validation was
performed for each model developed in this study to determine the
parameters for theMLmodels (Supplementary Fig. 4).Model parameters
were tuned for a fixed false discovery rate, FDR < = 5%. For cross-vali-
dation, 80% of the DEL positive and negative datasets were used for
training themodels and the remaining 20% (hold-out test set) of the DEL
positive and negative molecules were used for evaluating the model
performance. The splitting of the training and test sets for cross-
validation was performed using Sci-Kit learn’s RandomizedSearchCV
interface. ForMS10MDEL, we ran cross-validation on the entire positive
and negative dataset (Supplementary Table 2). Due to computational
constraints, forHG1B andDD11MDELs, we conducted cross-validation
using a 25k sub-sample of the data. Final parameters used for model
training are reported in Supplementary Data 2.

Validation and blind assessment datasets. In addition to cross-
validation within the training datasets, we tested the ML models on a set
of knownbinders toCK1α andCK1δ, referred to as the validation dataset.
The validation datasets comprised of first, known binders in the literature
collected from Pharos database40 (15 and 254 binders for CK1α and
CK1δ, respectively; referred to as literature hits; Supplementary Data 3)
and second, binders identified from our previous screening campaigns
(206 and 231 binders for CK1α and CK1δ, respectively; referred to as
internal hits). The internal hits included had an IC50 < 1 μM in a bio-
chemical assay and Kd < 10 μM in a biophysical SPR assay. The blind
assessment of ML models was performed on an internal compound
collection of 140 K drug-like molecules with a diverse chemical space
coverage (referred to as blind assessment set or Broad CC) (Fig. 4).

Downsampling approach. The downsampling approach included
performing clustering of molecules using MiniBatch KMeans algorithm,
implemented in Sci-Kit Learn58, based on their molecular fingerprints
(FPs) generated from their SMILES (Simplified Molecular Input Line
Entry System) strings. Using KMeans, molecules were grouped into 100
clusters and a represented set ofmoleculeswere selected fromeach cluster
to generate a diverse, downsampled set of molecules. The number of
representative molecules selected from each cluster varied based on the
target number of molecules in the downsampled set.

Machine learning algorithms. In this study, five differentML algorithms
were used todevelopmodels for the binary classification tasks of identifying
an orthosteric binder versus not a binder. The algorithm included Random
Forest (RF)33, Support Vector Machine (SVM)38, Multi-Layer Perceptron
(MLP)34, and Extra Gradient Boosting (XGB)39, and a Graphical Neural
Network based tool called ChemProp35. We used open-source libraries to
implement each of thesemodels. For RF and SVM, we used Sci-Kit Learn58

and RapidsAI CuML implementations. For MLP, we used Sci-Kit Learn58

and Tensorflow59. For XGB, we used XGBoost39.
The cross-validation performance of RF models improved with

increased number of estimators andmaximum depth of the trees. For XGB
models, three parameters were tuned: the maximum depth, subsample,
colsample_by_tree, and alpha. ForMLP,we tuned epochs, L2 regularization
(alpha), and hidden layer sizes. Additionally, we experimented with dif-
ferent learning rates, optimizers, and activation functions and concluded

that the “Adam” optimizer and “ReLU”worked best. For the SVMmodels,
we found that the Radial Basis Function kernel outperformed the poly-
nomial kernel and that the higher the C (10+ ) and the lower gamma
( < 0.001), the better the performance.Moreover, a higher gammaand lower
C also caused SVM training to takemore time. TheChemPropmodels were
generated using the default, recommended parameters. The final set of
parameters used for training all ML models are given in Supplementary
Data 2.

Feature representation. We used two different feature representations
for the molecules to train all ML models except ChemProp35. These two
feature representations are: (1) 2048 bits Morgan Fingerprints (with
radius = 2, MFP2) and (2) MFP2 and six physicochemical properties
commonly used in drug discovery screenings (molecular weight, MW;
log of the calculated partition coefficient, log P; topological polar surface
area, TPSA; the number of hydrogen bond acceptors, HBA; the number
of hydrogen bond donors, HBD; and the number of rotatable bonds,
RBond). For training the ChemProp35 model, the molecules were
represented using features generated by the graphical neural network,
embedded in the ChemProp software package (https://github.com/
chemprop/chemprop).

MLperformanceevaluationmetrics.We evaluated the performance by
balanced accuracy, Matthew’s correlation coefficient (MCC), F1-score
and recall. The definitions are given below:

Precision = TP / (TP+ FP),
Recall/Sensitivity = TP / (TP+ FN),
Specificity = TN / (TN+ FP),
Balanced accuracy = (Sensitivity+ Specificity) / 2,
F1-score = 2 × Precision × Recall / (Precision + Recall),
MCC = (TP×TN – FP× FN) / sqrt ((TP+ FP) × (TP+ FN)×

(TN+ FP) × (TN+ FN))
Here, TP,FP,TN, andFNstand for truepositive rate, false positive rate,

true negative rate and false negative rate, respectively.

tSNE analysis. To analyze the chemical space covered by the set of
molecules (DELs, test, and blind assessment sets; Fig. 2 and Fig. 4), we
applied t-SNE, a statisticalmethod for visualizing high-dimensional data,
to the 2048-bit Morgan fingerprints of the molecules. The t-SNEmethod
clusters molecules in the two-dimensional embedding space according to
the relative pairwise distances between all compounds in the dataset. As a
result, the absolute distances between molecules in the embedding space
primarily convey how similar two molecules are relative to the other
molecules in the dataset.

Compound selection for experimental validation. ML models, sepa-
rately trained to predict CK1α andCK1δ orthosteric binderswere applied
on the blind assessment set of 140 K drug-like compounds (referred to as
“BroadCC set”). The selection of compounds for experimental validation
in SPR assay out of the predicted binders was performed using following
two criteria, to ensure model diversity and chemical diversity. First, we
selected a set of molecules with the highest predicted confidence values
from each ML model. Second, all predicted binders were clustered based
on structural similarity and the twomolecules with the highest-confident
predictions were picked from each cluster. The number of compounds
included for testing from each of these categories was constrained by the
throughput of the SPR assay. The combined set of compounds resulting
from the aforementioned steps was further filtered to remove any
duplicates. The final set of predicted binders selected for testing in SPR
was 237, 284, and 284 compounds predicted by models trained using
MS10M, 1HGB, and DD11M DEL data, respectively. All compounds
were tested for binding to both CK1α and CK1δ. The ML model and
chemical diversity of the compounds selected for testing in SPR, and their
physicochemical properties are illustrated in Fig. 4 and Supplementary
Fig. 6, respectively.
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DEL+ML GitHub repository. We released the pretrained MLP and
ChemProp model checkpoints for all DEL libraries in this study (https://
github.com/broadinstitute/DEL-ML-Refactor). The corresponding fea-
ture extractor and t-SNE visualization script are also provided. Users can
follow the README in the repository to use our pretrained models to
score their molecules. We also released the model training data from
HG1B DEL for the community to conduct future research.

Protein production and assay methods
Protein preparation and QC. Human CK1δ (1-294)-FLAG-Avi was
expressed in E.coli and purified as previously described60. Human His-
TVMV-CK1α(1-304)-FLAG-Avi was expressed in Trichoplusia ni
(insect) cells. The cell pellet was resuspended in lysis buffer (30 mMTris,
250 mM NaCl, 5% glycerol, pH 8.0 containing Roche EDTA-free pro-
tease inhibitor tablets) using sonication. The cell lysate was first purified
using nickel affinity chromatography. Protein bound to the column was
eluted using a 10–250 mM imidazole gradient in a lysis buffer. After
adding TVMV protease (1 mg per 50 mg protein), the sample was dia-
lyzed against the dialysis buffer (30 mM Tris, 15 mM NaCl, pH 8.0)
overnight at 4 °C. The dialyzed sample was then analyzed using SDS-
PAGE to determine if the His-tag was removed entirely. The digested
sample was further purified using cation exchange chromatography
(SEC) by loading on a Mono S 10/100GL column (Cytiva Life Sciences).
Bound protein was eluted from the column using 0 to 1MNaCl gradient
in 30 mM Tris, pH 8.0. Fractions containing the cleaved CK1α were
concentrated until the sample volume was suitable for size-exclusion
chromatography using a HiLoad 16/60 Superdex 200 pg (Cytiva Life
Sciences). The SEC running buffer was 30 mM TRIS, 250 mM NaCl,
and pH 8.0.

Site-specific biotinylation of the Avi-tagged protein was carried out
using a commercialBirAkit (AvidityBirA500) following themanufacturer’s
protocol. SEC purification using a Superdex 75 10/300 GL column (Cytiva
Life Sciences) was performed to remove ATP and buffer exchange into
30mMHEPES pH 7.5, 300mMNaCl, 0.5mM TCEP, and 5% glycerol for
storage at−80°C.

SPR to measure the affinity of BAY6888. SPR was performed on
Biacore S200 using streptavidin (SA) chip and the running buffer: 10 mM
HEPES pH 7.5, 150 mMNaCl, 5 mMMgCl2, 0.5 mM TCEP, 0.05% P20,
5% DMSO. Both proteins were immobilized to ~1000 RU. Since
BAY6888 has slow kinetics, a single-cycle setup was used with a contact
time of 120 s, a dissociation time 900 s, and a 30 μL/min flow rate.
BAY6888 was prepared in a dose-response series in a 5-point, 3-fold
dilution at a top concentration of 100 nM. Three injections of the buffer
were performed before injections of BAY6888 to ensure a stable back-
ground. The SPR results were consistent with historical results showing
BAY6888 had aKDof approximately 2 nMagainst bothCK1α andCK1δ.

ADP-Glo kinase assay. The kinase biochemical assay was performed
using a commercial ADP-Glo kinase assay kit (Promega #V9101) fol-
lowing the manufacturer’s protocol. The assay buffer used was 50 mM
HEPES pH 7.5, 50 mMNaCl, 10 mMMgCl2, 0.5 mMTCEP, 0.01%(w/v)
BSA, 0.01% (v/v) Triton X-100, 1% DMSO. The substrate used was a
synthesized peptide (KRRRALpSVASLPGL) which was 30 μM in the
assay reaction. The concentration of CK1α and CK1δwas 10 nM and the
concentration of ATP was 500 μM. The ATP hydrolysis activity of CK1α
and CK1δ was measured in solution and after immobilization on
streptavidin coated Dynabeads (ThermoFisher #65001). Both proteins
are biochemically active under both conditions thus the subsequent DEL
screening was performed using immobilized protein.

Protein Immobilization for Primary and Confirmation SPR assays.
SPR measurements were collected at 25 °C using a Series S sensor chip
pre-immobilized with streptavidin (SA) preconditioned with three
consecutive injections of 1 M NaCl in 50 mM NaOH, per manufacturer

conditioning instructions. First, the sensor chip was equilibrated in a
running buffer of 20 mM HEPES pH 7.5, 150 mM NaCl, 5 mM MgCl2,
0.5 mM TCEP, 0.05% (v/v) Tween 20 and 5% DMSO. Next, the bioti-
nylated avi-tagged CK1α and CK1δ proteins were captured at 5 μL/min
to density levels depending on the molecular weight of the compounds
tested. (For the primary screen, the final surface density of biotinylated
CK1α and CK1b was approximately 2500 RU; for the confirmation
screen, the final surface density was about 7400 RU).

Primary SPR assay. The primary assay was performed on the Biacore
8 K SPR instrument (Cytivia). The SPR running buffer was 20 mM
HEPES pH 7.5, 150 mMNaCl, 5 mMMgCl2, 0.5 mMTCEP, 0.05% (v/v)
Tween 20 and 5% DMSO. Selected compounds were injected at a flow
rate of 30 μL/min in 2 doses (10 μM and 30 μM). Association and dis-
sociation phases were monitored for 60 s and 120 s, respectively. All data
were double referenced against a SA surface and blank injections of
buffer. The Biacore Insight Evaluation Software was used to process and
analyze the data. Primary hits were selected for testing in the confirma-
tion assay based on two criteria: a %Rmax > 10 RU’s and a 2-3 increase in
response going from 10 μM to 30 μM compound concentration.

ConfirmationSPRassay. The confirmation assaywas performed on the
Biacore S200 SPR instrument (Cytiva). The SPR running buffer was
20 mM HEPES pH 7.5, 150 mM NaCl, 5 mM MgCl2, 0.5 mM TCEP,
0.05% (v/v) Tween 20 and 5%DMSO. The primary hits were tested in a 6-
point, two-fold concentration series with a top concentration of 50 μM.
Some compounds were retested at different top concentrations that were
adjusted based on their affinities. Each dose was injected sequentially
from low to high concentration in a multi-cycle kinetic format (flow rate
30 μL/min, contact time 60 s, dissociation time 120 s). Three buffer
injections were performed before each compound to ensure a stable
background. The control compound BAY6888 tested at a top con-
centration of 100 nM in a 5-point two-fold serial dilution. BAY6888 was
run last as a control in a single-cycle kinetics mode (flow rate 50 μL/min,
contact time 120 s, dissociation time 600 s). Affinities were calculated
using a 1:1 equilibrium binding fit.

Data availability
All data (results) for this study is provided as supplementary files. Addi-
tionally, the training data for HitGen library are made available via https://
github.com/broadinstitute/DEL-ML-Refactor.

Code availability
A code repository is available at https://github.com/broadinstitute/DEL-
ML-Refactor.
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