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Hitchlearning: a general free-lunch

paradigm for single-image enhancement

by unifying inference and training

M| Check for updates

Jiaxin Liu"?*’, Yuchen Guo'**’, Lu Fang'*°0< & Qionghai Dai'*®

Deep learning (DL) has ushered in a suite of promising tools forimage processing, including denoising
(DN), deblurring (DB), and super-resolution (SR). However, traditional DL methods assume
independent and identically distributed (i.i.d.) data for model training and inference, which does not
hold in practice due to factors such as sample variation, variability in imaging conditions, and temporal
effects in living cells. This discrepancy prevents models, even when trained on extensive datasets,
from reaching their full performance potential during inference. This practical issue, unfortunately, is
still unexplored. To address this issue, drawing inspiration from the way biological intelligence adapts
through past experiences to shape future learning, we introduce HitchLearning—a revolutionary
paradigm that breaks away from the conventional separation of training and inference. In
HitchLearning, we leverage a single inference image to unsupervisedly optimize the model by aligning
the training images with it. Subsequently, we employ this optimized model for processing individual
inference images. This approach allows the model to adapt to the specific characteristics of each
inference image, leading to improved results in a manner reminiscent of a “free lunch.” We conducted a

thorough evaluation of our method across three distinct tasks within both supervised and
unsupervised frameworks, utilizing four diverse datasets. Compared to conventional training
methods, HitchLearning demonstrated average performance increases of 4.34 dB, 4.08 dB, and
0.54 dB for the DN, DN, and SR tasks, respectively. The experimental results unequivocally
demonstrate that our algorithm offers a universally applicable and cost-free optimization solution for

processing image and can be used in other fields as well.

Since the time of Galileo, imaging has been the “eyes of science”’. The
acquisition of high-quality biological images has assumed a pivotal role in
biological science research, as advancements in imaging technology have
provided essential tools for direct investigation™’. Traditional techniques
like widefield fluorescence and laser scanning confocal microscopy are
crucial in biology*®, and provide structural data® but face resolution limits’.
Advanced methods like confocal microscopy’™, multiphoton
microscopy'’, structured illumination*'*", light-sheet imaging®*"*, and
STED microscopy'”™ aim to increase resolution, aiding neuroscience
research. Nonetheless, these methods involve inherent physical resolution
constraints’, necessitating the continued development of advanced

techniques to enhance image quality through denoising, deblurring, and
resolution improvement.

DL excels in and provides a promising tool to image enhancement and
restoration™*". With large datasets, given in a supervised way™* ™" like low-
high quality image pairs, or unsupervised way’'~* like corrupted pairs, DL
may have good performance in many cases™****~*, However, it should
be noted that most DL algorithms assume independently and identically
distributed” (i.i.d.) training and inference data. Regrettably, this assumption
is frequently violated in real-world scenarios due to factors such as sample
variation (biological samples can exhibit significant differences even within
the same species or cell line, stemming from genetic variations,
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environmental factors, or developmental stages), variability in imaging
conditions (variations in lighting, exposure time, and focus can yield non-
iid data, and different microscopes or separate sessions with the same
microscope can introduce variability in captured images), and temporal
effects in living cells (time-lapse live-cell imaging can introduce non-i.i.d
data due to changes in cells or imaging conditions during the experiment),
ultimately resulting in less-than-optimal outcomes. In a simple experiment,
we found that the PSNR may drop by approximately 0.5 to 6 dB when a DL
model is applied to a different dataset. We require a novel approach to
address the non-i.i.d issue between training and inference and unlock the
model’s performance potential, developing effective single-image restora-
tion methods is pivotal to surmount these data and non-iid -related
challenges.

The detrimental effects of non-i.i.d. data stem from the segregation of
training and inference (as shown in Fig. 1a, traditional paradigm is a two-
stage framework), hindering the model’s ability to adjust to the distinct
attributes of individual inference images. To improve its performance, the
central challenge lies in effectively utilizing a single inference image to
optimize the model for the specific characteristics of the image. Inspired by
biological intelligence, where past experiences sculpt neural circuits for
future learning”', we introduce the Hitchlearning paradigm, which unifies
training and inference (as shown in Fig. 1a, HitchLearning paradigm is a
one-stage framework), by instantaneously adapting the model with any new
inference data and the existing training data. Our paradigm (Fig. 1a, b)
utilizes historical non-i.i.d. image data (Source) as prior experience, merging
this prior experience with a single new inference image (Target) to optimize
the model by aligning their distribution. In this way, the prior data provide
general information for the task, while the inference image gives detailed
features for the specific scenario. Traditional domain alignment strategies
need multiple target data and source data to achieve the goal using deep
neural network, while in our paradigm we only use single target data and
source to realize domain-alignment in Fourier domain (Fig. 1b, ¢). With the
adapted model, better performance can be achieved. Experiments demon-
strate HitchLearning is versatile, as it can be applied to both supervised and
unsupervised frameworks for deblurring, denoising, and super-resolution
across various datasets (Fig. 1b).

Results

Hitchlearning facilitates distribution consistency

Training with single target image offers important but limited information,
whereas historical images are abundant. However, due to the non-iid. of
historical images and single target image, domain adaptation*” (DA) is
needed to bridge this gap. Here, we propose a simple yet effective strategy
based on Fourier domain adaptation” (FDA) for HitchLearning. Hit-
chLearning aligns source and target image distributions in the Fourier
domain by replacing the source’s amplitude spectrum with that of target
(Fig. 1c), without requiring complex networks, convolution operations, or
extensive data. This process enhances source-target distribution similarity,
providing consistent data for further analysis.

HitchLearning minimizes discrepancies between training and infer-
ence images. We employ Kullback-Leibler divergence (KLD) to quantify the
distribution shift from source image data before and after HitchLearning to
target image data**. Figure 2a depicts the fluctuations in Golji vs. Golji
transferred by F-actin and Microtubule vs. Microtubule transferred by ER,
indicating a reduction in KLD following the HitchLearning process.
Additionally, the processed images became visually similar to the target
images (Fig. 2b). The KLD results and the visual evidence show that Hit-
chLearning enables consistent distributions, which indicates that Hit-
chLearning can solve non-ii.d. problems.

Hitchlearning provides advanced one-image denoising techni-
ques for enhancing live-cell imaging

We employed a state-of-the-art model, NeighborZNeighbor”, as a foun-
dation for unsupervised denoising of live-cell images. We adapted the
Neighbor2Neighbor framework to include source and single target image

data, expanding its applications. Our study comprised seven distinct
experimental settings (Supplementary Table 1), each utilizing a differently
composed training dataset as described in Methods. We analyzed four
datasets: endoplasmic reticulum (ER), F-actin filaments (F-actin)* Golji,
and Microtubule®. ER and F-actin were imaged using multimodal SIM,
while the Golgi apparatus and microtubules were examined via confocal
microscopy. These datasets vary in structure, shape, and photographic style,
impacting noise levels and resolution. In our approach, Golji was the source
of F-actin and Microtubule was the source of ER. We divided the F-actin and
ER datasets into training and inference segments (details in Methods) using
only inference ground truth data for metric evaluations. All the datasets
were normalized from 0 to 1 to reduce scale differences and improve model
performance. The model underwent 10 trial runs to obtain average results
across the inference dataset, facilitating a comparison of the seven experi-
mental settings. Here, Src embodies the existing traditional deep learning
paradigm, while AllTrg symbolizes the theoretical maximum achievable
under this paradigm, albeit requiring extensive additional data collection.

To quantitatively evaluate our HitchLearning method, we used four
metrics: the mean-square error (MSE), mean-absolute error (MAE), peak
signal-to-noise ratio (PSNR), and structural similarity index measure
(SSIM). For the F-actin dataset, HitchLearning notably exceeded the theo-
retical performance ceiling, AllTrg, our benchmark for theoretical max-
imum performance, across all metrics. These results, averaged over ten runs,
are detailed in Fig. 3¢ and Supplementary Table 2. The Trg setting, which
used only a single inference image for training, failed dramatically, achieving
a PSNR of 11.64 dB and an SSIM of 0.15. In contrast, the SrcTrg setting
performed much better (35.63 dB PSNR and 0.97 SSIM), but still did not
match the AllTrg’s performance (35.95dB PSNR and 0.97 SSIM) that
requires the collection of a large amount of data and is akin to training and
testing on the dataset from the same domain, underscoring a significant gap
in challenging scenarios. Remarkably, HitchLearning achieved 36.03 dB
PSNR and 0.98 SSIM, demonstrating its superior ability to address the non-
iid problem in denoising tasks. Similarly, in the ER dataset, HitchLearning
also yielded the best results, as shown in Supplementary Fig. 1b and Table 3.
In addition to quantitative measures, visual comparisons (Fig. 3a and
Supplementary Fig. 1a, 4) further confirmed HitchLearning’s superiority
over the other six settings. To directly visualize the improvements in these
denoised images, we computed the pixelwise absolute difference between
the denoised and corresponding ground truth images shown under each
restored image.

Compared to the raw input inference images, the denoised images
revealed a multitude of finer structures, including F-actin filaments.
Moreover, we demonstrate that HitchLearning more precisely resolves
the densely crisscross regions of F-actin cytoskeleton (Fig. 3b) and the
line-scan profiles of F-actins inferenced from HitchLearning are closer
to the profiles of GT than those from Src (Fig. 3d). The statistical
analysis qualified that HitchLearning typically achieved better DN
imaging performance in terms of four metrics (Fig. 3e). This compar-
ison clearly demonstrated that HitchLearning effectively facilitates the
denoising of live-cell images, as evidenced by the reduced discrepancies
in the fine structural details. In summary, HitchLearning presents a
highly effective solution for addressing non-i.i.d challenges in image
denoising tasks.

Hitchlearning significantly enhances the performance of bio-
image deblurring

When photographing living cells, the movements of cells caught motion
blur, out of focus caught defocus blur, etc. To better analyze cell growth and
morphology, it is essential to obtain deblurred cell images. We chose
MPRNet" as the base model for this task, when MPRNet was combined
with HitchLearning, deblurring with only one image became reality.
MPRNet is a supervised method, here, we use the deblurred image obtained
from Source model as the pseudo ground truth to train models in the
remaining settings. The data for the deblurring are generated by adding
motion blur to the raw images™. We use different blur kernels for the source
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Fig. 1 | HitchLearning paradigm mechanism. a Comparison of the traditional and
HitchLearning paradigms. The traditional machine learning paradigm has two
stages: the first stage (upper left) uses a large amount of training data to create a well-
performing model through various learning methods, and the second stage (upper
right) uses this trained model to infer a restored output. Our new paradigm, shown at
the bottom, unifies these stages by incorporating inference data during training. The
two-stage framework faces a non-i.i.d. problem due to the domain gap between
source and target data (middle left). In HitchLearning, this problem is alleviated by
using inference data to generate new source data during model training. b The
architecture of the HitchLearning paradigm. Domain alignment (blue) can utilize
any method to align the distribution of source and target images. The image
restoration learning method can be any approach (supervised, self-supervised, or

unsupervised) suitable for tasks such as image denoising, deblurring, and super-
resolution. The image restoration model is a well-trained model with strong per-
formance on a single target image. The blue dotted box illustrates our method’s
domain alignment in the Fourier domain, which requires only one target image,
unlike commonly used DNN methods that need multiple target data, increasing
costs. The black dotted box displays results of three tasks using our paradigm, with
the bar chart at the bottom showing the PSNR comparison of two main training
paradigms against HitchLearning across these tasks. ¢ A simple but effective dis-
tribution alignment method. Here, we use Fourier Domain Adaption (FDA) method
to obtain domain alignment, by doing this, the source image has a similar style to the
target and can be verified by the data shown in the Results.
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Fig. 2 | Evaluation of FDA mechanism. a Quantitative Analysis of Kullback-Leibler
Divergence (KLD) Reduction. A side-by-side comparison of the KLD values before
and after applying our proposed transformation method. On the left panel, the
analysis focused on F-actin as the target, while the right panel addresses the endo-
plasmic reticulum (ER) as the target. The data clearly illustrate a significant decrease
in KLD following the transformation process. This reduction is indicative of the
enhanced alignment between the source and target distributions, thereby affirming
the efficacy of our method in mitigating discrepancies between disparate datasets.
The graphical representation provides a compelling visual proof of concept for the
effectiveness of our approach in harmonizing data distributions in distinct biological
contexts. b Comparative Visualization of Domain Adaptation Algorithm
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Effectiveness. This figure demonstrates the outcomes (indicated by the red box) of
employing Frequency Domain Adaptation (FDA) for domain adaptation on a single
source image (highlighted in the blue box) across multiple target images (depicted in
the gray box). Following the transformation, the source image shows significant
visual alignment with each target image, affirming the adaptability and efficacy of the
FDA algorithm for accessing various target images. The figure’s details emphasize
subtle shifts in visual characteristics, highlighting the transformative capacity and
flexibility of the approach. Specifically, the left panel depicts the transformation of
the Golji apparatus to F-actin, while the right panel illustrates the transformation of
Microtubule to the endoplasmic reticulum (ER) attributes.

datasets (Golji and Microtubule) and target datasets (F-actin and ER) to
generate blurry datasets.

As previously discussed, we assessed the performance of seven training
settings for the deblurring task on both the F-actin and ER datasets. In this
comparison, HitchLearning outperformed all the other settings across the
four metrics for both the F-actin and ER datasets, with the exception of a
slight decrease in the PSNR metric for the ER dataset under the Finetune
setting, as shown Supplementary Tables 4, 5. Notably, HitchLearning
exhibited significant improvements over Src and AllTrg in the F-actin
dataset, with average PSNR enhancements of 6.34 dB and 1.02 dB, respec-
tively. Similarly, on the ER dataset, HitchLearning improved the PSNR by
1.82 dB and 0.06 dB compared to Src and AllTrg, respectively. Although
Finetune slightly outperformed HitchLearning in terms of the PSNR by
0.13 dB, HitchLearning achieved a notably greater SSIM, indicating a more
substantial improvement. The visual results of the F-actin and ER datasets,
which vary in structural complexity, are displayed in Fig. 4a and Supple-
mentary Fig. 2a, 5. Despite a minor reduction in deblurring effectiveness
with increasing complexity, HitchLearning consistently delivered the best

visual outcomes among all the settings. These results, encompassing both
quantitative metrics and visual analysis, demonstrate that HitchLearning
can surpass models trained with extensive i.i.d data, even with the use of just
a single inference image.

To test whether HitchLearning outperforms the traditional Src in the
deblurring task, we compared the restored images obtain from these two
paradigms. The visual results shown in Fig. 4b demonstrated that Hit-
chLearning achieved more precise cellular structures than Src. Moreover,
the four metrics also reveal that our HitchLearning paradigm has a better
performance.

Hitchlearning empowers the single-image super-resolution of
live-cell images

To address the single-image super-resolution (SISR) challenge™*”****"*, we
employed SwinIR™ for SISR tasks on the F-actin and ER datasets, using Golji
and Microtubule as the respective sources. SwinIR, noted for its shallow and
deep feature extraction capabilities coupled with high-quality image super-
resolution, leverages the Swin Transformer for improved performance in
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image restoration tasks. In our experiments, we tailored the input module of
SwinlR to facilitate source-to-target domain transfer, enhancing the model’s
efficacy in single-image super-resolution tasks. Since SwinlR is a supervised
model, we first generated low-resolution (LR) images of Golji and Micro-
tubule by downsampling the raw Golji and Microtubule images and sub-
sequently used Golji and Microtubule as source to train the model to
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generate pseudo super-resolution (SR) images of F-actin and ER, respec-
tively, finally, these pseudo-SR images were used to train the model under
the remaining settings.

Metric comparisons reveal that HitchLearning achieves optimal per-
formance across all the metrics in both the F-actin and ER experiments, as
detailed in Supplementary Tables 6, 7. In the F-actin experiment,
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Fig. 3 | Systematic denoising analysis of F-actin. a Representative denoised (DN)
images inferred from noisy images of F-actin. Following each noisy image, seven DN
renditions produced under different settings are presented. Directly beneath each
DN image is its corresponding difference image, juxtaposed against the ground truth
(GT). The Mean Absolute Error (MAE) is quantified and annotated at the top left
corner of each difference image. b Higher-magnification views of F-actin (marked in
yellow rectangular regions in (a). This sequence of images demonstrates the com-
parative effectiveness of the denoising process, with insets providing a close-up view
of the enhanced structural details after denoising. ¢ Statistical comparison of the
seven settings in terms of the PSNR, SSIM, MSE and MAE for F-actin. This analysis
comprehensively contrasted the performance of seven distinct settings, and Tukey

box-and-whisker plots with significance analysis are shown (Methods). d Intensity
profiles along the lines indicated by the arrowheads in the images of Noise (blue), GT
(white), Src (orange) and ours (green). e The comparison of four metrics between the
traditional (Src) and HitchLearning (ours). These side-by-side comparisons facil-
itate the assessment of denoising algorithm performance in preserving structural
integrity while reducing noise. This set of images underscores the advanced cap-
ability of our paradigm to maintain critical biological structures amidst substantial
noise reduction. Through a combination of visual results and quantitative analysis
across seven settings, our innovative paradigm, HitchLearning, demonstrated
superior performance in single-image denoising tailored for live-cell imaging. Scale
bar, 4 um (a), 2 um (b) for magnified images.

HitchLearning not only outperformed Src and AllTrg by 0.84dB and
1.99 dB, respectively, but also surpassed the second-best model by an
average of 0.05 dB in PSNR, signifying substantial improvements. The visual
results, depicted in Fig. 5a-c and Supplementary Fig. 6, show that Hit-
chLearning produces superior SR images for both the F-actin and ER
datasets compared to Src, however, performance slightly diminishes as
complexity increases. The SRs obtained via HitchLearning demonstrated a
marked enhancement in image details (Fig. 5d). In the Trg setting, the
performance is notably poor, which suggests that relying on a single infer-
ence image is insufficient for effective model training. However, in our
HitchLearning paradigm, this problem can be mitigated by utilizing another
dataset. These findings underscore the efficacy of our method in addressing
the non-iid nature of training and inference datasets.

As exemplified in Fig. 5e, the line-scan profiles from Src are closer to
those of GT. However, as the complexity of the structure increases, the
profiles obtained by Hitchlearning and Src decrease, while Hitchlearning
consistently outperforms Src. Representative colored frames (Fig. 5f and
Supplementary Fig. 3) show that HitchLearning resolves the crisscrossing
regions of F-actin and ER cytoskeleton well, and it goes beyond the tradi-
tional Src paradigm.

Discussion

The field of image restoration has undergone a significant transformation
with the advent of deep learning. The introduction of convolutional neural
networks™ (CNNs) and advanced architectures has led to substantial
advancements in denoising, super-resolution, and deblurring. Deep neural
networks, especially CNNs, have excelled in capturing complex image
patterns and learning restoration processes directly from training data. The
ability of these methods to automatically learn complex mappings has
notably enhanced image restoration, often surpassing traditional methods.
However, these advancements have come with challenges. Supervised
methods*"* demand large quantities of low-quality and high-quality image
pairs, while self-supervised’ ~***” and unsupervised methods*>** aim to
reduce this requirement. However, a common limitation across these
methods is the separation of training and inference phases, leading to the
non-iid problem when the inference dataset distribution differs from the
training dataset, adversely affecting model performance. Moreover, con-
ventional methods typically require numerous training images from the
same distribution, a requirement not always feasible, especially in biology.
To address these issues, we introduce a novel deep learning paradigm that
combines the target image with any available data for training, demon-
strating effective performance, as shown in our results.

At its core, HitchLearning is a transfer learning paradigm, yet tradi-
tional frameworks demonstrate inadequacy for our specific challenges.
Current transfer learning methods predominantly rely on deep learning
models employing complex operations, such as convolution™ and gen-
erative adversarial networks™”. Recent studies have shown that such
models require extensive image data for training, a demand often imprac-
tical in real-world applications. Our paradigm offers a solution to this
limitation. By utilizing any existing image dataset as source data and
transforming it to match the distribution of a single target image, we can
train the model using both the transformed source images and the target

image, effectively restoring the image with a single inference. This approach
ensures that only one image is sufficient for successful outcomes. Our results
demonstrate that HitchLearning is effective in aligning the distributions of
different datasets and in accomplishing transfer learning with a single
inference image.

In this study, we evaluated the efficacy of our method across three
tasks—denoising, deblurring, and super-resolution—and within both
supervised and unsupervised frameworks on four datasets. Our find-
ings demonstrate that our approach consistently yields the best overall
results. Specifically, in denoising and super-resolution tasks, Hit-
chLearning achieves superior performance both quantitatively and
visually. In deblurring, while Finetune for ER marginally outperforms
HitchLearning, the difference is minimal, and visually, HitchLearning
yields excellent results. These outcomes illustrate the broad applic-
ability of our paradigm across various tasks and datasets, regardless of
whether supervised or unsupervised models are employed. We further
simulated variations in feature extraction capacity by altering the
model’s depth and architectural design. Experimental results (Sup-
plementary Fig. 7 and Tables 8-10) demonstrate that HitchLearning
consistently performs well across models with different feature
extraction capabilities, further indicating its robustness and broad
applicability.

We further provide a theoretical analysis of HitchLearning by exam-
ining its generalization behavior through the lens of the target-domain error
bound proposed by Ben-David et al.”’. Let h denote the true restoration
function, and f the hypothesis learned by HitchLearning. The expected risks
of f on the source domain D and the target domain D' are defined
respectively as:

€(f) = Eoop [IH(x) = f(X)]]
(f) = Eop [Ih(x) = f()I]

where x represents the raw input data. According to Theorem 1 in ref. 63, if
the hypothesis space H containing f is of VC-dimension d, then with
probability at least 1 — J for every f € H, the expected target domain error
€,(f) in D' is upper-bounded by:

e <e()+ ﬁ (a logZ% + log%) + dyy (D, D)+ A

where &,(f) is the empirical risk on the source domain, dy(D°,D")
denotes the divergence between source and target distributions with
respect to H and A is the minimum joint error achievable by any
hypothesis in H across both domains. This decomposition highlights
three critical factors that influence generalization to unseen domains:
(1) the empirical risk on the source domain, (2) the distributional
divergence between domains, and (3) the inherent difficulty of the task,
captured by the joint error term. HitchLearning is specifically designed
to address the second component, domain discrepancy, by aligning the
source and target distributions at the input level prior to training. This
alignment is accomplished through Frequency Domain Adaptation
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Fig. 4 | Systematic deblurring analysis of F-actin and ER. a Representative
deblurred (DB) images derived from blurry F-actin. Subsequent to each blurry
image, seven distinct Deblurred (DB) renditions, realized through varied settings,
are exhibited. Beneath each DB image, the corresponding difference image is pre-
sented, strategically aligned against the ground truth (GT) for direct comparison.
The Mean Absolute Error (MAE) for each difference image was meticulously
quantified and annotated at the upper left corner, facilitating a precise evaluation of
the deblurring efficacy. Scale bar, 4 pum. b Comparison of DB images of ERs inferred

by Src and ours. Blur and GT images are shown for reference. Lower row shows the
magnified images of the boxed regions in the upper images. Scale bar 1 um.

¢, d Statistical comparison of the traditional and HitchLearning in terms of PSNR,
SSIM, MSE and MAE for F-actin (c) and ER (d). Combining visual results with a
comprehensive quantitative analysis across seven distinct settings, our novel para-
digm, HitchLearning, achieves unparalleled performance in single-image deblurring
specifically for bioimaging applications.

npj Artificial Intelligence | (2025)1:5


www.nature.com/npjAI

https://doi.org/10.1038/s44387-025-00004-y

Article

Inferenced by Src b
MAE=0.0577

Low o

MAE=0.0835 *~ %

-
' L4 .
-
5 Y

Complexity
Upscaling 2x

Inferenced by ours

MAE=0.0212

—— Src —— ours —— Src

o
S

Intensity (AU)
)
3
o

o
o
S

Fig. 5 | Systematic super-resolution analysis for F-actin and ER. a, b Representative
SR images reconstructed by Src (a) and ours (b) from raw images from ER and
F-actin. ¢ The corresponding GT images. Scale bar, 1 um for ER and F-actin.

d Comparison of SR images of ERs inferred by Src and ours. LR and GT images are
shown for reference. right row shows the magnified images of the boxed regions in the
left images. Scale bar 5 um; 1 um for magnified images. e Intensity profiles of F-actin
(2x upscaling) along the lines indicated by the two arrowheads in the images of (a) Src
(orange), (b) ours (green) and (c) GT (white). The arrows indicate that the structures
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reconstructed by ours are closer to GT than those reconstructed by Src.
fRepresentative SR images of F-actin generated by HitchLearning. Bottom: a fraction
of the corresponding LR image. Scale bar, 2 um. Through a combination of visual
assessments and quantitative analysis across seven distinct settings, our innovative
paradigm, HitchLearning, was demonstrated to achieve the most effective perfor-
mance in Single-Image Super-Resolution (SISR) specifically for live-cell imaging. For
comparison purposes, the low-resolution (LR) images were resized to match the
dimensions of the super-resolution (SR) images.
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(FDA), which reduces degradation-specific discrepancies such as noise
patterns, blur kernels, and spectral distortions.

The core idea behind HitchLearning is to approximate the iid.
assumption fundamental to most learning-theoretic guarantees. By nar-
rowing the distributional gap between source and target data, Hit-
chLearning facilitates more stable training and improved generalization to
unseen domains. In the ideal case, when source and target domains are fully
aligned, the distributional distance, measured using metrics such as the
Kullback-Leibler Divergence (KLD), will be very small, thus minimizing the
upper bound of the target-domain error. It is also worth noting that the
performance of the underlying base model f plays a significant role in the
final outcomes. Differences in model architecture or learning capacity can
affect both the empirical risk and the alignment quality, which may in part
explain the variability in performance observed across different models.

Although our paradigm has performed well in low-vision tasks such as
image denoising, image deblurring and image super-resolution, there are
still several limitations. First, performance varies across datasets due to
differences in raw data quality, with some exhibiting higher degradation and
greater restoration difficulty, which inherently impacts results. Despite this,
HitchLearning achieves notable PSNR improvements on F-actin and ER,
indicating its robustness under challenging conditions. This suggests that
although absolute performance may fluctuate with dataset difficulty, relative
gains remain substantial. Moreover, experiments show that HitchLearning
more effectively reduces distributional discrepancies—reflected by a greater
reduction in Kullback-Leibler divergence—between F-actin and Golgi than
between ER and Microtubule. The performance gain for F-actin was also
more pronounced than that for ER, suggesting that uneven improvements
may hinder downstream tasks. Addressing how to consistently minimize
inter-dataset differences remains an important direction for future research.
Second, the compatibility of our paradigm with various image restoration
models varies. Essentially, the better the inherent performance of a
restoration model is, the greater its compatibility with our paradigm. This is
primarily due to the differing abilities of the models.

We recognize that employing KLD as a measure of distributional
consistency entails certain limitations, particularly in capturing complex,
high-dimensional alignment characteristics. In future work, we plan to
investigate the theoretical properties of the feature alignment process in
HitchLearning, particularly how the implicit constraints introduced during
alignment affect feature across different model architectures. Additionally,
we aim to explore more principled metrics for distribution compatibility
beyond KLD, and consider model-agnostic alignment strategies that can
better adapt to architectures with differing feature representations.

Methods

HitchLearning

The central dilemma of HitchLearning is how to utilize a single test image to
construct a high-performance model with thousands of parameters. The
fundamental approach is to use a single test image to finetune a well pre-
trained model, despite the several advantages of fine-tuning, these draw-
backs, such as loss of original knowledge and training time and resource
requirements, cannot be ignored in fine-tuning. Moreover, when the dis-
tribution of the inference image is quite far from the training dataset, the
fine-tuning method may lose effect. Here, we propose a simple new para-
digm that involves utilizing old image resources to provide additional
information for new test images to address these issues. The focus of Hit-
chLearning is how to take advantage of the amount of information already
available to pave the way for a new task to achieve a better result; since the
gap is the non-i.i.d. problem, we first came up with the idea of trying to align
the distributions of two datasets. There are many domain adaptation
methods available; however, by analyzing the restoration problem carefully,
we find that the core objective is to align the distribution of the noise and
blur, which can be easier to separate in the Fourier domain. Then, we
harness the Fourier Domain Adaptation method in our work to make the
distributions of the two datasets consistent. The main idea of the FDA is to
Fourier transform the image and replace the amplitude of the high-

frequency region of the source domain image with that of the target domain
image with the phase invariant.

Neighbor2Neighbor model for denoising

The Neighbor2Neighbor methodology is a self-supervised approach
designed to train Convolutional Neural Network (CNN) denoisers using a
single observation of noisy imagery. The proposed training strategy
encompasses two components. The initial phase involves generating pairs of
noisy images through the utilization of random neighbor subsampling
techniques. In the subsequent phase, these sub-sampled image pairs are
employed for self-supervised training, complemented by a regularized loss
introduced to address the nonzero ground-truth gap existing between the
paired, subsampled, noisy images. This regularized loss algorithm integrates
a reconstruction segment with a regularization segment as follows:

L:NeighborZNeighbo‘r =L rec + £reg

where

Ly = lIfo(g1 (7)) — &)1

-5(0) = (@) — &)

Ly =7v-|Ifo(&,(»))

Here, f 5(-) is the denoising network with an arbitrary network design (here
we use UNet), y is the inference image, g,(-) and g,(-) represent the
neighbor subsampler, and y is a hyperparameter controlling the strength of
the regularization term. To ensure learning stability, we halt the gradients of
81(fo(y)) andg, (f,(»)), and incrementally increase the parameter y to its
predetermined value throughout the training process.

The MPRNet model for deblurring

The proposed image restoration framework is a tri-stage process designed
for progressive restoration. The first two stages rely on encoder-decoder
subnetworks to learn broad contextual information. The final stage, in
recognition of the position-sensitive nature of image restoration, employs a
subnetwork that operates on the original input image resolution, ensuring
preservation of fine textures. This is not a simple cascade; supervised
attention modules are integrated between each stage to rescale feature maps,
and a cross-stage feature fusion mechanism is used to consolidate inter-
mediate features. In each stage, MPRNet has access to the input image,
which is divided into nonoverlapping patches for different stages. In each
stage, a residual image is predicted, which when added to the degraded
input, yields the final restored image. MPRNet is optimized end-to-end with
the following loss function:

LMPRNet = ZZ:l |:‘Cchar (Xs7 Y) + /\‘Cedge (Xs7 Y):|

S represents the stage, X, is the restored image that is obtained by
adding the residual image to the input in each stage, Y is the ground-truth,
and A is set to 0.5 as a parameter controls that the relative importance of
Chabonnier loss £ ,,,(-) and edge loss L, (-) defined as follows:

char edge

[’chur =\ HXS - Y||2 + &

‘cedge = \/HA(XS) - A(Y)HZ + &

A denotes the Laplacian operator, and ¢ is a constant empirically set
to 1073,
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SwinIR model for super-resolution

SwinlR consists of three modules: shallow feature extraction, deep feature
extraction and high-quality (HQ) image reconstruction modules. SwinIR
employ the same feature extraction modules for all restoration tasks but uses
different reconstruction modules for different tasks. Given a low-quality
input, SwinIR use a convolution layer to extract shallow feature Fy. Then, a
deep feature extraction module consisting of residual Swin Transformer
blocks and a convolution layer is used to extract the deep feature Fpp.
Specifically, intermediate features F;, F», ..., Fx and the output deep feature
Fpr are extracted block by block. Then, the high-quality image Irsq is
reconstructed by aggregating shallow and deep features to a reconstruction
module with the loss as follows:

ﬁSWinIR =X - Y||1

Theloss is simply a £, pixelloss,and X, Y represent the restored image
and ground-truth respectively.

The shallow feature mainly contains low frequencies, while the deep
feature focuses on recovering lost high frequencies. With a long skip con-
nection, SwinlR can transmit low-frequency information directly to the
reconstruction module, which can help the deep feature extraction module
focus on high-frequency information and stabilize training.

Image preprocessing and training

Here, we used F-actin and ER from the figshare repository as the target
dataset, Golji and Microtubule from the Zenodo repository are used as the
sources for F-actin and ER, respectively. Although we have the ground
truths of all four datasets, we only use the ground truths of source datasets in
super-resolution task for training, in other conditions, we only use the
ground truths to compute the evaluation metrics. There are 51 cells in the
F-actin datasets with 12 shots per cell, and we randomly choose 10 cells of
the data volume (approximately 20%) as the test dataset, which means that
120 images are used as the test dataset and 492 images are used as training
dataset. For ER, we used the same strategy. ER contains 68 cells with 6 shots
per cell, we choose 13 cells (approximately 20%) as test set and 55 cells as
train set, that is, 78 images were used as the test set and 330 images were used
as the training set. For the source, 388 images of Golji and 618 images of
Microtubule were used.

In the denoising, beblurring and super-resolution tasks, Golji was set as
the source of F-actin, and Microtubule were set as the source of ER. In these
tasks, we remove only the background of images by merely subtracting the
10% minimum value of the whole image, setting the negative values to 0 and
then normalizing the image to the range 0 to 1. Specifically, in the deblurring
task, we do not have the real blurred images of these datasets; then, we
generate blurred images by adding motion blur to each image at different
angles and values.

In our training protocol, as detailed in Supplementary Table 1, we
employ seven distinct configurations. AllTrg, PartTrg, and Trg involve
training the model with datasets matching the distribution of the inference
dataset called the target. These settings differ in terms of the volume of
imagery utilized: AllTrg employs the entire training set, PartTrg uses a
subset of 10 images, and Trg leverages the inference image itself. In contrast,
Src, the conventional approach, trains the model with datasets that typically
do not match the inference dataset’s distribution, called the source. Finetune
refines the model trained under the Src setting using the inference image.
Finally, SrcTrg and HitchLearning integrate both the source training data
and the inference image in the training process.

Assessment metrics calculation

In this work, we utilized four key metrics for image quality evaluation: the
mean absolute error (MAE), mean squared error (MSE), peak signal-to-
noise ratio (PSNR), and structural similarity index measure (SSIM). These
metrics jointly allowed for robust and comprehensive assessment of the
quality of image reconstruction methodologies.

The MAE is a widely used statistical metric for evaluating the accuracy
of predictions in regression analysis. The average of the absolute differences
between the predicted values and observed (actual) values was calculated.
The MAE provides a straightforward interpretation of the average magni-
tude of errors in predictions without considering their direction and is
calculated as

m,n

MAE = - > 1(i,j) — K(irj)

nii=t

where I and K are the original and compared images, respectively, m and n
are the dimensions of the images; and 7 and j are the pixel positions.

The MSE quantifies the average of the squares of the error between the
original and compared images and is a common metric used in statistical
analysis, particularly in the context of regression analysis and forecasting.
The method for evaluating the performance of an estimator involves cal-
culating the average of the squares of the errors—that is, the average squared
difference between the estimated values and the actual value, calculated as

MSE = (ﬁ) mZ [1(i.j) = K ()]

ij=1,1

where I and K are the original and compared images, respectively; m and n
are the dimensions of the images; and i and j are the pixel positions.

The PSNR is commonly employed in image processing to measure the
quality of reconstructed images, particularly for assessing the quality of
reconstructed or compressed images in comparison to their original,
uncompressed versions. The PSNR is based on the mean squared error
(MSE) between the original image and a compressed or reconstructed image
and provides a measure of reconstruction quality. It is defined as

PSNR = 20 xlog,,(MAX_I) — 10 X log,,(MSE)

where MAX I is the maximum possible pixel value of the image.

The SSIM quantifies image quality by comparing image luminance,
contrast, and structure; this metric has a decimal value between -1 and 1, and
a value of 1 is only reachable when two sets of data are identical. The SSIM
was developed to provide a more accurate and consistent assessment of the
perceived quality of an image. The SSIM is based on the understanding that
the human visual system detects structural information in a scene; thus, a
measure of structural information can provide an indication of perceived
image quality. A higher SSIM index indicates greater structural similarity
between two images. It is calculated using the following formula:

(Zyxyy + 51) X (20xy + cz)

SSIM =
(,uxz +u,’+ cl) x (oxz +0,7 + cz)

where x and y are the two images being compared; ¢1, and y, are the averages

L 2 . Lo
ofxand » respectlvetly, o,” and 0,” are the variances of x and y, respectively;
and o, is the covariance of x and y.

Data availability

Training and test datasets for denoising, deblurring and super-resolution are
publicly available at figshare repository (https://doi.org/10.6084/m9.
figshare.13264793) and the Zenodo repository (https://zenodo.org/
records/4624364# YF3jsa9Kibg) for target data and source data respectively.

Code availability

The pytorch codes of HitchLearning, three tasks model, as well as some
example images for are publicly available at https://github.com/LiuJiaxin-1/
HitchLearning.
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