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We review how Large Language Models (LLMs) are redefining the scientific method and explore their
potential applications across different stages of the scientific cycle, from hypothesis testing to
discovery. We conclude that, for LLMs to serve as relevant and effective creative engines and
productivity enhancers, their deep integration into all steps of the scientificprocess should be pursued
in collaboration and alignment with human scientific goals, with clear evaluation metrics.

With recent Nobel Prizes recognising AI contributions to science, Large
LanguageModels (LLMs) are transforming scientific researchby enhancing
productivity and reshaping the scientificmethod. LLMs are now involved in
experimental design, data analysis, andworkflows, particularly in chemistry
and biology.

Recent advances in artificial intelligence (AI) have transformed mul-
tiple areas of society, the world economy, and academic and scientific
practice. Generative AI and Large Language Models (LLMs) present
unprecedented opportunities to transform scientific practice, advance Sci-
ence, and accelerate technological innovation. Nobel Prizes in Physics and
Chemistry were awarded to several AI leaders for their contributions to AI
and frontiermodels, such as Large LanguageModels (LLMs). This promises
to transform or contribute to scientific research by enhancing productivity
and supporting various stages of the scientific method. The use of AI in
science is booming across numerous scientific areas and is impacting dif-
ferent parts of the scientific method.

Despite the potential of LLMs for hypothesis generation and data
synthesis,AI andLLMs face challenges in fundamental science and scientific
discovery.Hence, our premise in ourperspective is thatAI, in general, has so
far been limited in its impact on fundamental science, which is defined here
as the discovery of new principles or new scientific laws. Here, we review
how LLMs are currently used—as a technological tool—to augment the
scientific process in practice and how theymay be used in the future as they
becomemore powerful tools and develop into powerful scientific assistants.
Combining data-driven techniques with symbolic systems, such a system
could fuse into hybrid engines that may lead to novel research directions.
We aim to describe the gap between LLMs as technical tools and “creative
engines” that could enable new high-quality scientific discoveries and pose
novel questions and hypotheses to human scientists. We first review the
current use of LLMs in Science, aiming to identify limitations that need to be
addressed when moving toward creative engines.

There is solid recognition and excitement for the transformative
potential of AI in Science. For example, leading machine learning con-
ferences (NeurIPS, ICML) have recently (2021–2023) arranged targeted
workshops onAI4Science. Some recent reviews and papers include1–38. This
demonstrates the energy and potential of using automated (i.e., AI tools) for
Science. This “dream” can be traced back to the times of Turing and the
emergence of Artificial Intelligence in the 1950s39. With recent advance-
ments in computational techniques, vastly increasedproductionof scientific
data, and the rapid evolution of machine learning, this long-held vision can
be transformed into reality. Yet, most current reviews and original papers
focus on specifically designed machine learning architectures targeting
particular application domains or problems.

For example, recent reviews have explored how to use variants of Deep
Learning, Geometric Deep Learning, or Generative AI in its generality
(including different architectures such as CNNs, GNNs, GANs, diffusion
models, VAEs, and Transformers) as a tool for assisting Science3,11,13,15,19,22.
For example, Wang et al. 1, reviews breakthroughs in how specific techni-
ques such as geometric deep learning, self-supervised learning, neural
operators, and language modelling have augmented Science in protein
folding, nuclear fusion, and drug discovery. An essential thread in their
review is the vital notion of representation, pointing out that different AI
architectures can support valuable representations of scientific data and
thereby augment Science. Recent papers demonstrate the appeal and the
potential of using AI-driven and augmented tools for automating
science1,4,13,40. Traditional scientific advancements have been primarily dri-
ven by hypothesis-led experimentation and theoretical development, often
limited by human cognitive capacities and manual data processing. For
example, the formulation of Newtonian mechanics required meticulous
observation and mathematical formalization over extended periods. Here,
the rise of AI4Science represents a paradigmatic revolution that could reach
beyond human cognitive limitations. AI-driven advancements promise to
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enable rapid processing and analysis ofmassive data sets, revealing complex
patterns that surpass human analytical capabilities. For example, Deep-
Mind’s AlphaFold dramatically transformed protein structure prediction, a
longstanding scientific challenge, using deep learning to predict protein
folding accurately. Furthermore, AI4Science could reverse the slowdown in
scientific productivity in recent years, where literature search and peer-
review evaluation41–43 are bottlenecks.

In contrast to previous reviews, here we first address the use of LLMs,
regardless of the specific underlying architecture, and their use as a tool for
the scientific process. We assess how different areas of science use LLMs in
their respective scientific process. This analysis sets the stage for asking how
LLMscan synthesize information, generate new ideas andhypotheses, guide
the scientific method, and augment fundamental scientific discoveries.
Here, we ask to what extent AI can be described as a “general method of
invention,”which could open up new paradigms and directions of scientific
investigations. Hence, complementary to a purely representational and
architectural viewpoint of AI4Science, we find it constructive to ask and
assess to what extent the nature of the scientific process, both its inductive
and deductive components, can and should be transformed by AI
techniques.

Current use of LLMs—from specialised scientific
copilots to LLM-assisted scientific discoveries
The ability of Large Language Models (LLMs) to process and generate
human-like text, handle vast amounts of data, and analyse complex patterns
with potentially some reasoning capabilities has increasingly set the stage for
them to be used in scientific research across various disciplines. Their
applications range from simple tasks, such as acting as copilots to assist
scientists, to complex tasks, such as autonomously performing experiments
and proposing novel hypotheses. We will first introduce the fundamental
concepts of LLMs and then review their various applications in scientific
discovery.

Prompting LLMs: from chatbot to prompt engineering
Current mainstream LLMs are primarily conditional generative models,
where the input, such as the beginningof a sentence or instructions, serves as
a condition, and the output is the generated text, such as a reply. This text is
typically sampled auto-regressively: the next token (considered the building
block of words) is sampled from a predicted distribution. See Fig. 1A.

Given LLMs’ capabilities in computation and emerging potential for
reasoning, which we define as the ability to solve tasks that require rea-
soning, they can be considered programming languages that use human

language as the code that instructs them to perform desired tasks. This
code takes the form of “prompts.” For instruct-tuned LLMs, the prompt
often consists of three parts: the system prompt and the user prompt, with
an LLM’s reply considered the assistant prompt. Hence, a chat is fre-
quently composed of <system > <user > <assistant > <user > <
assistant>, see Fig. 1B. The system prompt typically includes general
instructions for the LLMs, such as behaviour, meta-information, format,
etc. The user prompt usually contains detailed instructions and questions.
Using these prompts, the LLMs generate replies under the role of
“assistant.

Since LLMs do not have background knowledge about the user, and
prompts are their major input, designing a good prompt is often critical to
achieving the desired output and superior performance. Researchers have
shown that specific prompts, including accuracy, creativity, and reasoning,
can significantly improve output performance. Specifically, the chain-of-
thought (CoT)method44 can instruct LLMs to think step-by-step, leading to
better results. Beyond these, the Retrieval-augmented Generation (RAG)
method45 can incorporate a large amount of context by indexing the con-
tents and retrieving relevant materials, then combining the retrieved
information with prompts to generate the output. Due to the importance of
prompts and LLM agents, designing prompts is now often called “prompt
engineering,” and many techniques and tricks have been developed in this
area46,47, such as asking JSON format outputs, formulating clear instructions,
setting temperatures, etc47,48.

While carefully designed prompts can accomplishmany tasks, they are
not robust and reliable enough for complex tasks requiringmultiple steps or
non-language computations, nor can they explore autonomously. LLM
agents are developed for these requirements, especially for complex tasks.
LLM agents are autonomous systems powered by LLMs, which can actively
seek to observe environments, make decisions, and perform actions using
external tools49. In many cases, we need to ensure reliability, achieve high-
performance levels, enable automation, or process large amounts of context.
These tasks cannot be accomplished solely with LLMs and require inte-
grating LLMs into agent systems. Early examples include AutoGPT50 and
BabyAGI51, where LLMs are treated as essential tools within the agent
system (Fig. 1C). In scientific discovery, LLM agents become even more
critical due to the complexity of science and its high-performance
requirements. Many tools have also been developed to provide easy access
to these prompting and agent methods, such as LangChain52 and
LlamaIndex53. Automated prompt design methods, such as DSPy54 and
TextGrad55, are also beingdeveloped to designprompts andLLMagents in a
data-driven way.

Fig. 1 | Auto-regressive generation, dialogue prompting, and agent frameworks
in large language models. A LLMs generate sentences in an auto-regressive manner,
sampling tokens from a predicted distribution at each step. B A typical prompt for
LLMsconsists of a systemprompt and auser prompt.TheLLMwill then respond as an

assistant. A multi-round dialogue will repeat the user and assistant contents. C LLM
agents are systems that use a large language model as its core reasoning and decision-
making engine, enabling it to interpret instructions, plan actions, and autonomously
interact with external tools, environments, or other LLM agents to fulfil a given goal.
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LLMs as practical scientific copilots
The ability of LLMs toworkwith a large body of text is being exploited in the
practice of science. For example, LLMs assist in proposing novel ideas,
writing scientific papers and generating computer code, thereby improving
productivity; they also adapt texts for diverse audiences ranging from
experts to broader audiences, thus supporting communication in science.

Furthermore, LLMs can sift through vast bodies of scientific literature
to identify relevant papers, findings, and trends. Such reviewing of the
relevant literature helps investigators quickly digest and identify gaps in
enormous bodies of scientific knowledge. These capabilities can also miti-
gate discursive barriers across different scientific fields, supporting inter-
disciplinary scientific collaborations and knowledge sharing. Recently,
chatbots have emerged in several disciplines as virtual assistants answering
scientific queries posedby scientists. Such tools exploit the power of LLMs to
extract anddetect patterns, data, and knowledge.These techniquesmay also
serve as important tools in science education and communication.

These examples demonstrate the rise of LLMs in extracting and sharing
information and the exciting open research frontier of the potential of
reasoning that they represent in different scientific domains56–58. For
instance, Caufield et al. proposed the SPIRESmethod59, which uses LLMs to
extract structured data from the literature. Beyond data extraction, LLMs
have also shown evidence of outperforming annotation tasks60,61, enabling
scientists to scale data annotation. Some domain-specific models also show
superior performance in classification, annotation, and prediction tasks62–64.
With the help of RAGmethods45, LLMs candirectly apply their information
extraction anddistillation capabilities to large amounts of text data.With the
combination of diverse capabilities of LLMs interconnected through LLM-
agents, the recent “AI co-scientist65” demonstrates impressive ability in
generating novel research ideas by leveraging existing literature, engaging in
internal LLM-agent debates, and refining its outputs. This process leads to
constructive progress when applied to real scientific tasks.

Moreover, LLMs are currently used to automate the experimental
design and the execution of experiments. For example, Boiko et al. 66 pro-
pose an autonomous LLM capable of performing chemical experiments.
This work employs an LLM planner to manage the experimental process,
such as drawing patterns on plates or conducting more complex chemical
syntheses. Compared to hard-coded planners, the LLM-based planner is
more flexible and can handle unexpected situations. Similar kinds of loop
and tool usage are also shown in ref. 67, which includes literature tools,
consulting with humans, experimental tools, and safety tools.

In the biological domain, for instance, the CRISPR-GPT68 represents a
significant advancement in biological research. It utilizes LLMs to automate
the design of gene-editing experiments, enhancing both the efficiency and
precision of genetic modifications, which is pivotal in speeding up genomic
research and applications. Another advance in the application of LLMs in
the biological domain is BioDiscoveryAgent69. These tools augment scien-
tists’ capabilities and accelerate scientific discovery.

The capabilities described thus far capture the current use of LLMs as
knowledge engines. Summarising, extracting, interfacing, and reasoning
about (scientific) text, alongside automating experimental design and
execution. While immensely useful, it remains an open frontier on how to
do this safely and efficiently. It largely depends on how prompting is per-
formed and how LLM agent systems are designed.

Foundation models for science
A key observation when using LLMs as clever text engines or exploiting the
underlying machine learning (neural) architecture for solving specific sci-
entific problems was the importance of scale. Larger models trained on
larger amounts of data, or spending larger amounts of computation during
inference time yielded an increase in performance56,70,71. The discovery of
such scaling laws72 demonstrated that LLMs’ performance improves as the
number of parameters increases. Thus, we can expect the above trends to
grow in importance as these systems are trained on ever larger amounts of
data. Emergent behaviours, such as reasoning were suggested whenmodels
increased in scale73. Concurrent with the appreciation of scaling laws came

the realisation that instead of using LLMs for specialised problems or as text
engines, one could potentially train them on large amounts of data, not
necessarily text, but differentmodalities of scientificdata. This is the ideaof a
foundation model. These are large-scale pre-trained models that, when
trained with enough data of different types, such models “learn” or
“encapsulate” knowledge of a large scientific domain. The notion of foun-
dationmodels refers to their generality in that they can be adapted to many
different applications, unlike task-specific engineered models solving a
specialised task such as protein folding. Notably, the famous transformer
architecture that fuels LLMs has become the architecture of choice when
constructing the foundationalmodels in different domains of science. These
self-supervised models are usually pre-trained on extensive and diverse
datasets. This enables them to learn from massive unlabelled data since
masking parts of the data and then requiring the model to predict the
occluded parts provides foundation models with their learning objective.
This technique is used when training LLMs on large amounts of text. The
idea is thus exploited in scientific domains where multi-modal data is used
to train self-supervised foundation models. Once trained, the model can be
fine-tuned for various downstream tasks without requiring additional
training. Consequently, the same model can be applied to a wide range of
downstream tasks. The foundationmodel lossly compresses or encapsulates
a large body of scientific “knowledge” inherent in the training data.

Leveraging these ideas, there has been a rise in the number of foun-
dation models of science. For example, the Evo and Evo 2 models enable
prediction and generation tasks from the molecular to the genome scale74.
While Evo is trained onmillions of prokaryotic and phage genomes, Evo 275

includes massive eukaryotic genomes, and both demonstrate zero-shot
function prediction across DNA, RNA, and protein modalities. It excels at
multimodal generation tasks, as shownbygenerating syntheticCRISPR-Cas
molecular complexes and transposable systems. The functional activity of
Evo-generated CRISPR-Cas molecular complexes and IS200 and IS605
transposable systems was experimentally validated, representing the first
examples of protein-RNA and protein-DNA co-design using a language
model. Similarly, scGPT is for learning single cell transcriptional data76,
ChemBERTencodesmolecular structures as strings,which then canbe used
for different downstream tasks such as drug discovery and material
science77. Similarly, OmniJet-α is the first cross-task foundation model in
particle physics, enhancing performance with reduced training needs78.
Additionally,multiple physics pretraining (MPP) introduces a task-agnostic
approach to modelling multiple physical systems, improving predictions
across various physics applications without extensive fine-tuning79. The
LLM-SR80 implements similar symbolic regression methods iteratively,
generating and evaluating hypotheses, using the evaluation signal to refine
and search for more hypotheses.

Incorporating diverse scientific data modalities, which represent dif-
ferent “languages” to interact with observations beyond natural language, is
crucial. There are twomajor approaches emerging: (1) End-to-end training
on domain-specific modalities: Models like ChemBERT77 (using chemical
SMILES strings) and scGPT76 (using single-cell data), as mentioned above,
are directly trainedon these specializeddata types. (2) Separate trainingwith
compositional capabilities: This involves training separate encoders for new
modalities or enabling LLM agents to utilize tools that interact with these
modalities. For instance, models like BiomedCLIP81 connect biological
images with natural language, while PaperCLIP82 and AstroCLIP83 link
astronomical images and spectral data to textual descriptions. Furthermore,
frameworks like ChemCrow84 leverage the tool-using abilities of LLMs to
connect with non-natural-language modalities, such as chemical
analysis tools.

Yet, as with text-based LLMs, several challenges remain. These include
potential biases in datasets, which can bias the performance and output of
thesemodels. Since science ismainly about understanding systems, the scale
and opaqueness of these models make interpretation a particularly chal-
lenging problem. Also, several observations, such as their capability for
generalisation,multi-modality, and apparent emergent capabilities, have led
to intense discussions at the research frontier on the extent to which these
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foundation models can reason within and beyond their training regimes.
The text-basedLLMs (ormodels incorporatedwith textmodality) discussed
above are constructed using these techniques. Examples include GPT-4
(OpenAI)85, BERT (Bidirectional Encoder Representation from
Transformers)86, CLIP (Contrastive Language-Image Pre-training,
OpenAI)87, and DALL-E from OpenAI88.

These foundation models have the potential to achieve profes-
sional human-level performance or even surpass human capabilities
when trained using reinforcement learning, particularly with feedback
from reliable formal systems. For example, AlphaProof 89 has become
state-of-the-art in automated theorem-proving systems, achieving
mathematical capabilities comparable to human competitors at IMO
2024. Approximately one million informal mathematical problems
were translated into the formal language LEAN, a mathematical proof
verification language, enabling the LLM to be trained through rein-
forcement learning. Solutions generated by the LLM in LEAN are
either proved or disproved by the LEAN compiler, with the resulting
correct or incorrect solutions serving as feedback to refine the LLM.
While this approach has been explicitly applied within the mathema-
tical domain, it demonstrates significant potential for training LLMs to
surpass human performance in highly complex and deductive rea-
soning. Although developing formal systems for general tasks remains
challenging, reinforcement learning methods are employed to build
foundationmodels with enhanced deductive capabilities, leading to the
rise of reasoning models such as OpenAI o1/o370, Deepseek R156, and
others. In scientific domains such as physics, external and reliable
feedback mechanisms are already used to improve answer quality90,
highlighting the potential for creating domain-specific foundation
models.

In conclusion, the rise of foundation models will continue to affect
and disrupt science due to their powerful nature, scaling properties, and
ability to handle very different data modalities. However, for our pur-
poses, the question remains of what extent foundationmodels could be a
proper gateway to making fundamental scientific discoveries. To what
extent can foundation models be creative and reason outside their
training domains?

Toward large language models as creative sparring
partners
What is required for an AI to be able to discover new principles of scientific
laws from observations, available conjectures, and data analysis? Broadly,
can generative AI develop to become a “creative engine” that can make
fundamental scientific discoveries and pose new questions and hypotheses?
Einstein famously stated, “If I had an hour to solve a problem, I’d spend
55min thinking about the problemand5min thinking about solutions”. This
underscores the importance of carefully considering the question or pro-
blem itself, as posing hypotheses effectively can be the most intellectually
demanding part of Science. As a first approximation, the ability to pose
novel hypotheses is—at least for us humans—what appears to be essential
for making novel discoveries. Thus, what is required for an AI to advance
beyond a valuable tool for text generation and engineered systems for sol-
ving a particular problem? Or could foundation models provide a possible
path forward?

In our view, if LLMs are to contribute to fundamental Science, it is
necessary to assess what putative roles LLMs can play in the core of the
scientific process. To this end, we discuss belowhowLLMs can augment the
scientific method. This includes how LLMs could support observations,
automate experimentation, and generate novel hypotheses. We will also
explore how human scientists can collaborate with LLMs.

Augmenting the scientific method
As a first approximation, scientific discovery can be described as a reward-
searching process, where scientists propose hypothetical ideas and verify or
falsify them through experiments91. Under this Popperian formulation,
LLMs can assist scientific discovery in two ways (Fig. 2): On the one hand,
LLMs could assist in the hypothesis-proposing stage, helping scientists find
novel, valuable, or potentially high-reward directions or even propose
hypotheses that human scientists might have difficulty generating. On the
other hand, LLMs have the potential to make experiments more efficient,
accelerate the search process, and reduce experimental costs.

At the stage of proposing hypotheses, scientists choose unknown areas
to explore, which requires a deep command of domain knowledge, incor-
porating observational data, and manipulating existing knowledge in novel

Fig. 2 | Illustration of the scientific discovery process: Scientific research can be
formulated as a search for rewards in an abstract knowledge space. By synthesizing
existing knowledge—represented by blue disks (human-discovered) and stars
(human-machine discovered))—in novel ways, new knowledge (indicated by red
stars) can be explored. For specific research, scientists or LLMs need to traverse the
hypotheses-experiment-observation loop, where hypotheses are proposed based on
existing knowledge (including LLM knowledge, and additional literature provided
via RAG methods), observation, and the creativity of LLMs. Then, with aid of

external tools such as programming languages, formal validations, and other
methodologies, experiments are conducted to test the hypotheses or gather data for
further analysis. The experimental results can be observed and described through the
observation process, facilitated by domain-specific models and the multi-modality
capabilities of language models. All these parts–observation, proposing hypotheses,
conducting experiments, and automation–can be assisted by LLMs and LLM-agents,
considering the non-trivial implementations of scientific environments in silico.
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ways45,92. Their expertise and creativity could carry the potential for pro-
posing novel research hypotheses.

Then, at the verification stage, experiments are conducted to obtain
relevant information and test hypotheses. This requires the ability to plan
and design experiments effectively. Given LLMs’ planning capabilities and
potential understanding of causality93–95, they can help scientists design
experiments. By incorporating tool-using abilities96, LLMs can directly
implement experiments. LLM agents can perform complex workflows and
undertake repetitive explorations that are time-consuming for human sci-
entists. This allows us to search for novel results efficiently, which is key to
scientific discovery97,98.

This process often involves a trial-and-error loop for a research topic or
question.Thus, scientificdiscovery requires the following steps: observation,
hypothesis proposal, experimentation, and automating the loop (see Figure
2 and Table 1 for detailed illustrations).

Expanding or narrowing the observation process
Scientists rely upon observational results for guidance in proposing
hypotheses, designing and refining experiments, evaluating experimental
results, and validating their hypotheses. In general, observations act as
dimension reduction methods99, which include annotating, classification,
and information extraction.

General purpose LLMs, such as GPT-4, Llama, can be good observers
for language and image data for general purposes. Their in-context and
zero-shot learning capabilities can be used as universal classifiers to extract
specific information from these data, such as annotation and evaluation. In
domains like NLP and Social Science, annotating and evaluating language
data at scale is a fundamental task for downstream experiments. Trained
humans or crowd-workers have oftendone such jobs.However, LLMs, such
as ChatGPT, can perform higher or comparable performance levels relative
to crowd-workers on annotation tasks, especially on more challenging
tasks60,61.

Besides language processing, scientists must also describe complex
behaviours at scale qualitatively. LLMs show potential in describing such
complex black-box systems, wherewe observe only their inputs and outputs
without knowledge of their underlying mechanisms. Although deciphering
such systems can often become a stand-alone research question, having a
qualitative description can still be helpful when faced with large-scale data.
With LLMs, black-box systems, such as language input-output, mathema-
tical input-output pairs, fMRI data100, or observational data, can be descri-
bed using natural language100.

Beyond text and text-represented systems, different data modalities
represent different “languages” to interact with observations, and domain-
specific modalities are extremely important for scientific discovery. Scien-
tific research often involves other data types, including image, video, audio,
table101,102, or even general files103, as well as domain-specific modalities like
genomic sequences, chemical graphs, or spectra76,77,82,83. Multi-modality

LLMs can play the observer role vis-a-vis these data. However, most multi-
modality LLMs are still struggling to handle some domain-specific data
formats, such as genomic data or chemical compounds, which may require
converting and where information may be lost during the conversion
process.

For highly specialised domains, domain-specific LLMs trained on
specialised data can achieve superior performance within their respective
fields (representing the end-to-end approach discussed earlier). For exam-
ple, with the same number of parameters, BioGPT64 outperforms GPT-2
medium104 when trained on domain-specific data. Even with fewer para-
meters, models like PubMedBERT62 can perform at a level comparable to
GPT-2 medium. In the chemical domain, LLMs have been pre-trained on
chemical SMILES data105, enabling them to infer molecular properties and
biological activities51. LLM-inspired models are also useful for case-specific
tasks. In106, transformers are trained on cellular automata to study the
relationship between complexity and intelligence. This highlights the
importance of exploring domain-specific and case-specific LLM and the
opportunities for further exploration in this area.

Experimentation and automation
The experiment is a critical part of all research steps, including making
observations and validating the hypothesis. Both humans and LLMs need
external tools to implement experiments. Specifically, this involves calling
external functions or directly generating and running code. LLMs that have
been fine-tuned for tool usage85,96 can generate structured entities (often in
JSON) that contain the function name and inputs to be implemented by
external functions. These functions are versatile and can include simple
calculations, laboratory control functions, external memory, requests for
assistance fromhuman scientists, etc. LLMs can alsodirect programmingby
generating and running code for complex experiments requiring fine-
grained control or enhancing the calculation abilities of LLMs107,108. Beyond
this, generated programmes can also call other functions or be saved into a
function library, enabling the combinatory development of complex
actions109.

For complex experiments, planning becomes important, which involves
setting up an objective and decomposing it into practical steps. This is critical
to solving complex tasks while sustaining coherent behaviour. While the
planning capabilities of LLMs are questioned in many studies, certain tools
and methods still demonstrate valuable assistance. The chain-of-thought
(CoT)44 method significantly improves various tasks by decomposing a
question into steps. In complex taskswithmore steps, where LLMs seek long-
term objectives and interact with environments, they can generate plans in
natural language based on given objectives110. It is also important to adapt to
observations and unexpected results. For this reason, methods like
Reflexion111, ReAct112 combine theCoT and planning, dynamically update its
plans, manage exceptions, and utilizes external information. And it also
overcomes hallucination and error propagation in the chain-of-thought.

Table 1 | How LLMs can assist scientific methods at different stages

Scientific Method Solutions

Observation - Replacing human evaluation and annotations60,61

- Simplifying observed data by providing qualitative descriptions100,115

- Domain-specific LLMs can perform better on classification and prediction tasks62–64

Hypotheses - Literature review: using an LLM’s own trained knowledge142,143,201, or using the RAG method to access up-to-date information45,92,121.
- Novelty: hallucinations of LLMs can sometimes benefit novelty202; using the role-play method, LLMs can increase their novelty136; LLMs can also
propose novel ideas iteratively121.

- Observation-based Hypotheses: LLMs can propose hypotheses based on100,115,116,139,141.

Experiment - Implement experiment: LLMs can use external tools85,96, API calls66, or directly write code203 to implement experiments.
- Experiment planning: chain-of-thought44, ReAct112.
- Safety: Hardcoded pipeline for safety67; Human confirmation50

Automation - LLM agent: LLM-based planner66, multi-LLM agent109

- Scaling: complex tasks116–118; knowledge accumulation109

- Enhance: Iteratively optimising proposed hypotheses121, and experiments112.
- Human-in-the-loop
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Automation is a significant aspect of LLM-assisted research, serving as
a key contributor to accelerating scientific discovery. Automation involves
repetition and feedback loops113. LLMs can be seen as a function—prompt
in, reply out—with human users as the driving force behind making LLMs
produce output. To automate such a system, the key is to replace the human
user. For instance, an LLM-powered chemical reaction system can perform
Suzuki and Sonogashira reactions by incorporating an LLM-based planner,
which replaces the human user. The planner reasons through the given task
and determines the next steps, including searching the internet for infor-
mation on both reactions, writing Python code to calculate experimental
parameters, and finally calling external tools to conduct the experiments. At
each step, the results, i.e., the search outcomes and calculation results, are fed
back to the LLM-basedplanner to automate the system66. Another approach
is to replace the human user with multiple LLMs and allow them to com-
municate with each other114. Since such automation is not fully hard-coded
and the core of this automation is also an LLM, they can exhibit some
emergent behaviour66,114, adapting unexpected situations, which is vital for
exploring new knowledge. Specifically, automated LLMs can help in three
dimensions of scientific discovery: scaling, enhancing, and validation.

Scaling. Automated LLM agents can scale previously challenging
experiments for large-scale studies. Examples include inferring under-
lying functions from input-output pairs115. The LLMs perform multiple
rounds of trial and error to find the correct function. This approach can
extend to neuron interpretation of GPT-2 using GPT-4, which has bil-
lions of parameters116. This method involves two layers of loops: the trial-
and-error process and the application to all the billions of neurons117,118.
Both layers are time-consuming for human scientists, and LLMs make
such studies feasible. Another example is when LLMs are used to infer the
functionality of human brain voxels from fMRI activation data, their
proposed functions are first validated by calculating the probability of
observing the activation data given a specific functional hypothesis.
Subsequently, the hypotheses with the high probability are selected to aid
in generating new hypotheses and improving overall performance100. Lab
experiments can also be parallelized with the help of LLMs, which further
accelerate the experiment speed and increase the potential for scaling the
scope of experiments110,119.

Enhancing. The scientific methods, such as hypothesis generation,
experiments, and observations, can all be enhanced by automation.
One direct application is using LLMs as optimisers: by iteratively
providing historical solutions and scores, LLMs can propose new
solutions and ultimately achieve superior performance120. In both the
hypothesis-validation loop and in experimental trials, failed cases
constitute valuable feedback. When evaluators and reflection are
incorporated into the workflow, LLMs can improve their decisions,
showing significant performance improvements compared to simply
using LLMs111. Iteration can also enhance the hypothesis generation
stage. By comparing hypotheses with existing literature on related
topics, LLMs can iteratively improve novelty by using this literature as
a source of negative examples121. Another enhancement comes from
accumulating knowledge, which is critical to research success. Many
exploration tasks require accumulating knowledge and developing new
strategies based on this knowledge122. For example, Voyager109 uses
GPT-4 to examine the space of the Minecraft game. This study consists
of three main parts: an automatic curriculum to propose exploration
objectives, an iterative prompting mechanism to write code to control
the game, and a skill library to accumulate the knowledge and skills
gained during the exploration, which is then reused in future
explorations. Equipped with all these components, this LLM-assisted
explorer can explore the game more efficiently. While game environ-
ments in silico are a non-trivial departure from real worlds in situ, they
are not too dissimilar from the biochemical simulation engines123 that
scientists rely on today. However, the current “physics” engines in-
game systems are still inconsistent with the physical sciences, and new

simulation software technologies are needed to allow for any AI-based
exploration of multi-physics environments113. From a macroscopic
viewpoint, scientific discovery can also be considered a quality-
diversity search process124,125, and this Voyager study has shown how
LLMs can assist diversity search in a new way by proposing objectives,
iteratively solving problems, and contributing to and utilising litera-
ture (skill library).

Validation. Automated LLM agents are critical for validating hypothesis.
Beyond scaling and enhancing performance, research often involves
multiple rounds of the hypothesis experiment loop to meet scientific
discovery’s rigor and safety requirements. This loop is essential given the
probabilistic nature of LLMs126 and the hallucination problem of
LLMs127,128. Experiments show that repeatedly verifying the results from
LLMs’ observations and proposed hypotheses increases the likelihood of
obtaining reliable results129,130. A promising direction is leveraging formal
systems to validate results and hypotheses by translating generated
hypotheses and answers into formal languages, such as LEAN or
Prover9131,132. For instance, in ref. 131, LLMs first generate multiple
answers. These answers are then translated into the LEAN language and
verified using the LEAN compiler to choose the correct responses. With
these filtered answers, LLMs can aggregate toward a final answer.
Another example involves using Python code to aid validation. While
general programming languages are often not considered formal systems,
they can still disprove certain hypotheses. In ref. 133, LLMs were
prompted to solve the Abstraction and Reasoning Corpus (ARC) tasks134,
which involve identifying underlying laws and making predictions based
on new initial states. LLMs initially propose hypotheses, which are then
translated into Python code. This Python code is used to disprove
incorrect hypotheses. Although these non-formal systems cannot fully
validate hypotheses, they partially perform validation and improve pre-
dictive accuracy. While humans could also conduct such translation and
validation processes, the high speed of hypothesis generation by LLMs
makes automated approachesmore suitable. A limitation, however, is the
reliance on LLMs to translate hypotheses into formal languages, which
may introduce errors in the process. This suggests the need for caution
when interpreting results, even if they have been tested using formal
systems.

Expanding the literature review and the hypothesis horizon
In brief, advancing beyond current knowledge includes using LLMs to
explore unknown territories in knowledge space, encompassing human
discoverable, human-machine discoverable, non-human-machine dis-
coverable, and the entirety of the knowledge space, as illustrated in Fig. 2.
Namely, to performhypothesis generation anddevelop predictivemodels of
more complex systems.Hence, can LLMsdoopen-endedExploration of the
Hypothesis Space? Can LLMs also explore complex environments in an
open-ended way? These are open-ended challenges addressing the
(unknown) limits of the capabilities of LLMs and Generative AI.

Proposing hypotheses is a crucial step in scientific discovery, perhaps
the most important since it often involves significant creativity and inno-
vation. Scientists propose hypotheses to explore unknown topics or address
research questions. This step often involves novel ideas, recombining
existing literature, and key insights. Experiment design and subsequent
verification are based on these hypotheses. Thus, hypothesis proposing is a
central step that connects observation and experiments.

Evidence indicates that LLMs can propose novel ideas, such as drug
combinations135, with designed prompting, thus underscoring the impor-
tance of prompting, as discussed previously. An example is the use of LLMs
for drug discovery: In ref. 135 LLMs are prompted to propose novel com-
binations of drugs for treatingMCF7 breast cancer cells while incorporating
additional constraints suchas avoidingharmtohealthy cells andprioritizing
FDA-approved and readily accessible drugs. The experiment results
demonstrate that LLMs can effectively propose hypothetical drug combi-
nations.More advanced techniques can also improvenovelty, such as asking
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LLMs to role-play as scientists136 or iteratively provide feedback on existing
similar ideas66. This is further exemplified by the Virtual Lab project137,
where AI agents, powered by LLMs, were used to design novel nanobody
binders against SARS-CoV-2 variants. LLMs effectively functioned as
hypothesis generators, facilitating rapid and innovative scientific discovery
that translates to validated experimental results in real-world applications.
Although some human evaluations show that LLM-generated ideas have
lower novelty138, the fast speed at which LLMs propose ideas can still be
valuable. With proper instruction and background knowledge, LLMs can
act as zero-shot hypothesis generators139. LLMs can also generate hypoth-
eses semantically or numerically based on observations about the under-
lying mechanisms for language processing and mathematical tasks140,141.
With neuron activation heatmaps, GPT-4 can propose potential explana-
tions for neuron behaviour116.

Besides directly proposing hypotheses, a significant part of creativity
combines existing knowledge,making literature research critical.With their
vast stored compressed knowledge142,143, LLMs can be viewed as databases
queried using natural language123. This not only accelerates the search but
also breaks down barriers of domain terminology, making it easier to access
interdisciplinary knowledge. For accessing more up-to-date and domain-
specific information, LLMs can help scientists by using the RAG method
and accessing internet information, see Fig. 2. Generally, text embedding is
used for semantically searching vector databases45,92. For example,
STORM144 proposes an LLM-powered literature review agent that, for a
given topic, actively searches literature on the internet from different per-
spectives and automatically generates follow-up questions to improve depth
and thoroughness. Another important example is Deep Research145,146,
which integrates internet browsing and reasoning to deliver more in-depth
and relevant literature review results. LLMs can propose novel hypotheses
by retrieving related literature as inspiration, finding semantically similar
content, connecting concepts, and utilising citations based on research
topics andmotivation121. Alternatively, itmay require additional ingredients
or experiments to extrapolate and search outside current knowledge
domains.

This case also highlights the importance of the hypothesis-experiment-
observation loop, where each step is critical: hypotheses rely on observa-
tions, experiments require hypotheses and planning, and observations
depend on experiments. Such a self-dependent loop is typical in scientific
discovery and can be initiated either by starting with a tangible step in the
hypothesis-experiment-observation process or by allowing human
intervention.

Human scientists in the loop
While we showcase the capabilities of LLMs in assisting scientific discovery,
human scientists remain indispensable. During the literature review stage,
with the help of LLM agents, humans can contribute by providing deeper
perspectives or guiding the focus toward the needs of human scientists144. In
the reasoning processes, by identifying uncertain reasoning and thoughts,
humans can correct LLMs. This significantly improves the accuracy of the
chain-of-thought method, making the LLMs more reliable147. Human sci-
entists can be involved in further improving safety and reliability. For
example,ORGANA110, an LLM-powered chemical task robot, uses LLMs to
interact with humans via natural language and actively engages with users
for disambiguation and troubleshooting. Beyond this, humans can assist
LLMs to enhance performance with a reduced workload. For example, by
involving humans in the hypothesis-proposing stage to select generated
hypotheses, LLMs can perform similarly to humans133. At the experiment
stage, many lab experiments still require human implementation and cor-
rection of invalid experimental plans67, and LLMs can request human help
on these experiments66.

While the methods described above focus on LLMs as drivers of sci-
entific enquiry, we must clarify that human-in-the-loop is more aptly cast as
LLM-in-the-loop, emphasising “assistance” or augmentation as the practical
value-added dimension of LLMs. The opportunities described in this paper
show potential to shift this mode of scientific practice to be more reliant on

AI-driven approaches, but not without significant advances in AI for Science
approaches with respect to physics-infused ML and causal reasoning and in
rigorous testing systems for LLMs interacting with the natural world.

Challenges and opportunities
While LLMshave shown signs of delivering promising results and of having
positive impacts on scientific discovery, investigators have recognised their
limitations, such as hallucinations, limited reasoning capabilities, and lackof
transparency. Compared to everyday usage, when applied to scientific
domains, these limitations require careful consideration, as scientific pro-
cesses and discoveries require high standards of truthfulness, complex
reasoning, and interpretability. The scientific community’s increasing
recognition and communication of these limitations of LLMs is essential to
enabling solutions while also limiting expectations. Such rigour is a cor-
nerstone of science and engineering, and a requirement if LLMs are to play a
practical role.

Beyond all this, LLMs also affect scientific research at the scientific
community level.Whilemany papers and reviews involve LLMs’ assistance,
LLMs still face challenges in producing qualified reviews.

The scientific communitymust alsodecidehowmuch it leaves toLLMs
to drive science, even when associations with ‘reasoning’, mostly currently
undeserved, are made in exchange for the potential to explore hypothesis
and solution regions that might otherwise remain unexplored by human
exploration alone. See Table 2 for a concise overview of these challenges and
corresponding mitigation strategies.

Hallucinations as putative sources of unintended novel
hypotheses
Hallucinations produced by LLMs, also called confabulation or delu-
sion, refer to artificially intelligent systems generating responses that
contain false or misleading information presented as fact. This is
analogous to hallucination in human psychology, though, for LLMs, it
manifests as unjustified responses or beliefs rather than perceptual
hallucinations148. Hallucinating LLMs can make unsupported claims,
thus failing to meet a prior set of standards. While some “incorrect”
LLM responses may reflect nuances in the training data not apparent
to human reviewers149, this argument has been challenged as not
robust to real-world use150.

In scientific discovery, hallucination becomes a critical hurdle when
applying LLMs to literature review, data processing, or reasoning. Various
methods have been developed to mitigate hallucinations151. Using RAG
methods, LLMs can reference accurate source contexts and up-to-date
information, which can reduce hallucinations152.

Knowledge graphs can also provide some relief to reduce
hallucinations64. A self-RAGmethod can also reduce hallucinations, where
the LLMs generate and verify the reference contexts, and outputs are also
verified by the LLMs themselves148,153 proposes an even simpler solution:
create answers for the same query multiple times and vote for the final
answer. This method can significantly improve the accuracy of outputs.
Repetition from prompt variation and reiteration can also detect
hallucinations–by finding contradictions154. By repeatedly generating the
same context, LLMsmay sometimes generate contradictory content, which
can be fixed by the LLMs themselves iteratively.

Anothermethod tomitigate hallucinations is through self-verification.
This often involves decomposing the generated content into multiple fact
checkpoints. For example, the Chain-of-Verification method uses separate
LLM agents to verify them individually and update the original answer155.
Such a verification process can also adopt RAG methods for greater
reliability156.

An important origin of hallucinations is the auto-regressive generation
process of mainstream LLMs, where errors may accumulate during
generation146. Hence, as discussed above, a general way to mitigate hallu-
cinations is to decompose the end-to-end generation process using chain-
of-thoughts, the RAG method, multiple agents, feedback, and
iteration loops.
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While significant research efforts target the challenge of how to control
or limit hallucinations,wemay ask towhat extent hallucinations are a bugor
a feature. For example, could hallucination provide a gateway to creativity in
that it could represent a steady stream of novel conjectures? An LLM could
thenbe used tofilter such a string of hallucinatedhypotheses and rank them
to recommend which ones to test. This remains unexplored territory, as far
as we can tell.

Another approach to treating hallucinations is to move beyond a
binary perspective of trust versus distrust. Instead, similar to statistical
confidence, we may quantify the extent to which research conducted by
LLM agents can be trusted. Current studies primarily focus on confidence
measurements at the foundation model level157–159 and the output level160.
Some research has also proposed multidimensional assessments of LLM
trustworthiness161. Additionally, efforts have been made to enable LLMs to
express their confidence levels157,162. However, confidence measurements at
the LLM agent level are primarily limited to success rates rather than
trustworthiness, particularly when dealing with open-ended tasks. More-
over, existing measurements predominantly rely on post-hoc quantifica-
tions, which restrict their applicability in scientific research163. Therefore,
predictive trustworthiness quantification frameworks for LLM agents that
collectively consider foundation models, tasks, tools usage, workflow, and
external feedback are needed.

The value of reasoning and interpretation in AI-led science
While LLMs have been suggested to perform reasoning on some tasks, they
exhibit severe defects in logical reasoning and serious limitations with
respect to common sense reasoning. Notably, while LLMs can correctly
answer “X is the capital of Y”, they struggle to accurately determine that “Y’s
capital is X.” This is known as the “reversal curse”164. Another example is
shuffling the order of conditions in a query, which may reduce the perfor-
mance of LLMs.When the conditions are provided logically, the LLMs can
often perform correct inferences but may fail when the conditions do not
follow a specific order165. LLMs can also fail at simple puzzles, such as
determining the odd-numbered dates on a list of famous people’s
birthdays166, or in simple questions like “Alice has N brothers, and she also
has M sisters. How many sisters does Alice’s brother have?” Many LLMs,
while achieving high performance on other benchmarks, have shown a
lower success rate on this task167. When faced with unseen tasks, which are
common forhumanscientists in research, LLMsexhibit a significant drop in
accuracy even on simple questions, such as performing 9-base number
addition orwritingPython codewith indexing starting at 1 insteadof 0. This
suggests that LLMsmay rely more on pattern matching than on reasoning,
contrary towhatmany assume168–170. Consequently, caution is advisedwhen

applying LLMs to novel reasoning tasks, and incorporating human over-
sight into the process is recommended170,171. Another crucial aspect of rea-
soning is planning capability. As discussed earlier, planning is essential for
implementing experiments.While techniques such as ReAct and Reflection
demonstrate some planning capabilities in LLMs, their effectiveness
remains questionable. Current state-of-the-art LLMs often fail at simple
planning tasks172, such as Blocksword, and are unable to verify the cor-
rectness of their plans172. In contrast, humans generally excel at creating
effective plans for such tasks. However, studies also indicate that integrating
LLMs with traditional methods or solvers can enhance planning success
rates, reduce research time172, and provide more flexible ways to interact
when developing plans173.

Some reasoning improvement methods, such as self-correction, can
also fail. When LLMs receive feedback without new information or correct
labels, self-correction can often lead to compromised performance174. Such
self-correction prompts may even bias the LLMs, causing them to turn
correct answers into incorrect ones. To mitigate this problem, directly
including all requirements and criteria in the query prompt is suggested
insteadof providing themas feedback.This result also indicates that tomake
corrections, effective feedback needs to include external information, such
as experimental results and trustworthy sources174.

While some progress has been made, more advanced methods are
needed to address these reasoning-related challenges. One crucial aspect to
consider is consistency – when different LLM agents generate different
responses to the same query, the result is considered inconsistent. Notably,
the self-consistent method175 uses LLMs to answer the same question
multiple times and chooses themost frequent answer. The answers also help
people estimate uncertainty175, given that LLMs often behave too
confidently176. Similar methods have also been proposed in ref. 153. Other
methods use different LLM agents to suggest different ideas and then
conduct a multi-round debate to arrive at a final answer177. As illustrated in
Fig. 2, these LLM-agent methods can benefit all steps in the hypothesis-
experiment-observation loop.

A straightforward but challenging route to scientific discovery is to
fine-tune or directly train a model. In ref. 178, the authors propose an
innovative solution to the Reversal Curse through “reverse training,”which
involves training models with both the original and reversed versions of
factual statements. Considering the requirements for rigor and prudence in
scientific research, attention must be given to the limitations of reasoning
tasks. This is particularly important given that LLMs often exhibit reduced
performance in reasoning correctness when encountering novel tasks—a
frequent occurrence in scientific research, where the focus is on exploring
unknown knowledge.

Table 2 | Challenges and opportunities in applying LLM in scientific discovery

Challenges Solution & Opportunities

Hallucinations LLMs may generate false or misleading information148 RAG: external source204, knowledge graph205, self-RAG206

Repeat: sampling and majority vote153,154

Verification: verify the generated content and refine the results155,156

Reasoning - Reversal curse164

- Order of conditions165

- Alice in Wonderland167

- Limited self-correction174

- Internal reasoning166

Consistency methods:
self-consistency175, multi-agent vote153, multi-agent debate177, Tree-
of-Thoughts207

- Learning: Buffer-of-thoughts178

- In-context learning

Transparency &
Interpretability

- Traditional methods like gradient-based methods are a
challenge to apply to LLM due to the scale

- Self-explanation is also not trustworthy181,208

Probing methods: Logit Lens method179, Patchscope209

Interpret data & other systems: explain black-box functions100,115,
understand complex neural networks116.
Providing symbolic understanding with the help of in-context
examples and knowledge80.

Scientific Community - LLMs are not yet good reviewers189,191,192

- LLMs are widely used in paper and review writing189–192
LLMs can mitigate the disadvantage of non-native English
speakers195,210–212

LLMs can help inter-disciplinary research195

There is much room for AI4Science as a field to fill in gaps under the listed themes, especially as LLM researchmatures over the next several years; consistent with all innovations in scientific practices and
engineering standards, the demonstration-through-validation of said innovations requires time and resources several fold greater than are available in “safer” domains (where LLMs are currently
embedded).
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The challenge to understand LLMs, and the opportunity to
understand by using GenAI and LLMs
A comprehensive scientific interpretation stimulates discussion and fur-
ther discoveries among scientists. This is especially important for LLM-
assisted scientific discovery—given that current LLMs are mostly black
boxes, it becomes difficult to trust LLM outputs. To understand LLMs’
behaviour, LLMs’ language capabilities can be leveraged. There are two
types of methods. First, LLMs’ hidden states can be used in what are
known as probing methods. The Logit Lens method179 applies the
unembedding layer to hidden states or transformed hidden states,
enabling semantic understanding of LLMs’ hidden states. Representation
engineering methods180 can further detect and control emotion, dis-
honesty, harmfulness, etc., at the token level, allowing people to read their
hidden activities. Besides these, dictionary learning methods can also be
used to understand LLMs’ hidden states and activations, leading to a fine-
grained understanding of LLMs.

The second method is to ask LLMs to explain their reasoning. For
instance, the CoT method or reasoning models56 can explain the thought
process before generating results or ask LLMs to explain their reasoning
after generating results. However, the self-explanation of LLMs is also
questionable. Their explanations are often inconsistent with their beha-
viours, and we cannot use their explanations to predict their behaviours in
counterfactual scenarios181. This suggests that LLMs’ self-explanation may
not accurate and not generalizable. Beyond this, LLMsmay also hallucinate
in their self-explanations, including content that is not factually grounded181,
making their self-explanations even less trustworthy.

Despite the many difficulties in understanding LLMs, they present a
significant opportunity for understanding other systems—they can be used
to understand data, interpret other systems, and then prompt humans. By
directly showing input and output pairs to LLMs, including language input-
output pairs115, mathematical function input-output pairs, or experimental
data, LLMs canbemade toexplain these black-box systems, including, fMRI
data, complex systems like GPT-2, or, potentially, papers written by human
scientists that are becoming increasingly difficult to reproduce because of
various forces at play (e.g., an increasing number of publications and
dubious incentives). This indicates thepotential of applyingLLMs to explain
data and other systems, even though understanding them may still be
challenging116.

This capacity to interpret systems is not limited to human language.
Foundation models in specific scientific domains offer domain-grounded
interpretability, distinct from the pitfalls of LLM self-explanation. Pre-
trained on vast, specialized data, thesemodels learn the “language” inherent
in that data. For instance, scGPT in single-cell biology demonstrates this: its
learned representations align with established biological knowledge, and it
utilizes attention-map visualizations to enhance transparency, elucidating
gene interactions that are subsequently validated by domain-specific
evidence76. Although the faithfulness of attentionweight interpretability has
been questioned in various cases182,183, it remains widely used in many AI-
for-science applications184. Models, including LLMs that use transformer
architectures, often inherently benefit from such emergent interpretability
for both feature attribution and interaction highlighting.

These approaches support viewing complex domain representations,
such as Gene Regulatory Networks (GRNs), as a form of decipherable
“domain language.” Understanding these intrinsic languages through
models whose interpretations are rooted in verifiable domain semantics,
rather than potentially unreliable self-explanations, provides a robust
method for advancing scientific discovery in specialized fields.

The impact on scientific practice and the community
An open question is howmuch human science and scientists will be willing
to let AI, through technology like LLMs, drive scientific discovery. Would
scientists be satisfied letting LLMs set the agenda and conduct experiments
with little to no supervision, or do we expect to supervise AI always, driven
by the fear of multiple levels of misalignment? This is a misalignment
between human scientific interests and the actual practice of science,

possibly forcing AI and LLMs to produce data as humans do, with its
advantages or disadvantages, including constraining the search space and,
therefore, the solution space.

Beyond the individual deployment of the scientific method, scien-
tific discovery also happens at the community level, where scientists
publish their work, share ideas, and collaborate. We can consider the
scientists and even entire scientific community as an agent that learns
from experiments and research publications in a manner similar to
reinforcement learning processes185. However, learning from failed
research (or negative results) is just as important as learning from suc-
cessful studies186,187, yet it is currently undervalued188. This may be
because failed research is far more common than successful research.
However, with themassive text-processing capabilities of LLMs, we now
have the opportunity to systematically share and learn from failures.
Therefore, we advocate for journals and conference to encourage the
publication of failed studies and negative results.

This learning process also depend on human values emphasising
communication, mutual understanding, and peer review. Evidence shows a
significant adoptionof LLM-assistedpaperwriting andpeer review in recent
years. Estimates indicate that 1% to 10% of papers are written with LLM
assistance189.In computer science, up to 17.5% of research papers are esti-
mated to be assisted by LLMs, a figure that mainly reflects the output of
researchers with strict time constraints190. Beyond papers, estimates also
show that around 7–15% of reviews are written with LLM assistance191,192.

While LLMs can provide feedback that shows a high degree of overlap
with human reviewers, they are not proficient at assessing the quality and
novelty of research193. This limitation is especially significant for high-
quality research194. Beyond this, LLM-assisted reviews tend to assign higher
scores to papers than human reviewers evaluating the same papers191. Upon
closer examination, LLMs also exhibit a homogenisation problem – they
tend to provide similar critiques for different papers193,195.

Despite LLMs displaying limitations at tasks such as peer reviewing
and raising ethical concerns in directly generating academic content, they
may still benefit scientific communication. For example, most researchers
today are non-native English speakers, so they can benefit from LLMs’
language capabilities that fit their diverse demands for proofreading195,
helping alleviate the current bias towards Western Science. On another
application, LLMs’ code explanation capabilities may help scientists
understand poorly documented code,making existing knowledge andwork
more accessible to a broader rangeof scientists195.With significant growth in
using LLMs for writing papers, such impacts will become increasingly
important190.

Conclusions
In this perspective paper, we reviewed the rapid development and inte-
gration of large language models (LLMs) in scientific research, highlighting
the profound implications of these models for the scientific process. LLMs
have evolved from tools of convenience—performing tasks like summar-
ising literature, generating code, and analysing datasets—to emerging as
pivotal aids in hypothesis generation, experimental design, and evenprocess
automation. As AI advances, foundation models have emerged, repre-
senting adaptable, scalablemodels with the potential to apply across diverse
scientific domains, reinforcing the collaborative synergy between humans
and machines.

LLMs have reshaped how researchers approach the vast amounts of
scientific information available today. By efficiently summarising literature
and detecting knowledge gaps, scientists can speed up literature review and
idea generation. Furthermore, LLMs facilitate interdisciplinary research,
bridging the knowledge divide by summarising complex ideas across fields,
thereby fostering collaborations previously limited by domain-specific
language and methods. Beyond these benefits, the massive text-processing
capabilities of LLMs create new opportunities for utilizing failed research
failed research, which has received limited attention. Therefore, we
encourage the scientific community to promote the publication of negative
results and failed research.
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The utility of LLMs in designing experiments is another notable
advancement. Models like CRISPR-GPT in biology exemplify this by
automating gene-editing experiment designs, significantly accelerating
genomics research. Moreover, LLM-powered autonomous systems like
BioDiscoveryAgent indicate a shift towards AI-driven experimental pro-
cesses that can augment researchers’ efficiency and, more importantly,
enable scientific exploration previously constrained by resource limitations.

So, Large Language Models (LLMs) present two contrasting roles in
scientific discovery: accuracy in experimental phases and creativity in
hypothesis generation. On the one hand, scientific research requires LLMs
to be reliable, accurate, and capable of logical reasoning, particularly for
experimental validation. On the other, there is value in promoting creative
“hallucinations” or speculative ideas at the hypothesis stage, which mirrors
human intuition and expands research boundaries196.

Besides the general foundation models like GPT-4, Claude and
Deepseek, domain specific foundationmodels have shown special potential
for applying LLMs in scientific research. Notable examples such as Evo and
ChemBERT showcase the success of domain-specific adaptations in geno-
mics and chemistry, where they excel in predicting gene interactions and
molecular properties. These foundationalmodels also highlight a promising
approach by treating genomic, chemical, and other scientific data as new
modalities for LLMs, similar to how images, videos, and audio are con-
sidered as modalities. Integrating these modalities often follows two main
strategies: end-to-end training, where models like ChemBERT develop
deep, intrinsic capabilities on specialized data, potentially exceeding human
performance on specific tasks; and compositional approaches, which offer
greater flexibility by leveraging intermediate modalities common to human
scientists (like vision and text) or specialized tools. While end-to-end
methods provide depth, compositional flexibility is crucial for adapting to
diverse and rapidly changing scientific demands. Consequently, combining
and scaling these scientific modalities, particularly when models can be
seamlessly inserted into various scientific workflows, has the potential to
profoundly transform scientific research.

Despite the promise, current limitations pose significant hurdles to
fully realising LLMs as independent scientific agents. Among these are
reasoning limitations, interpretability issues, and challenges like “halluci-
nations”—where LLMs generate plausible-sounding but inaccurate infor-
mation. While helpful in generating hypotheses, these models require
careful oversight to prevent misleading or unverified information from
influencing scientific processes.

The challenges of reasoning and hallucinations pose serious concerns
regarding theuse of LLMs in scientific discovery. Insteadof treatingLLMsas
simply trustworthy or untrustworthy in a binary manner, we suggest an
analogy to statistical confidence, using a continuous value—it may term as
algorithmic confidence—to quantify the trustworthiness of an LLM agent
system in scientific research. We further suggest that all LLM-assisted
research should either be verified by humans or undergo algorithmic con-
fidence testing.

The interpretability of LLMsalso remains a complex issue. Their black-
box nature can obstruct transparency, limiting trust in outputs that affect
high-stakes scientific decision-making. Consequently, researchers continue
to explore methods such as probing, logit lens techniques, and visualisation
of neuron activations to demystify the decision-making processes within
these models. Increased interpretability will be critical as we strive for
ethically responsible and scientifically sound applications. On the other
hand, it is essential to recognize that LLMs are showcasing their potential to
explain other black-box systems through their language and reasoning
capabilities.

Integrating LLMs into scientific workflows brings ethical considera-
tions, particularly regarding transparency and fairness. For instance, LLMs
hold the potential for democratising access to scientific information, aiding
researchers from non-English speaking backgrounds in publication and
collaborative research. However, they also risk perpetuating biases present
in training data, thereby influencing scientific outputs and potentially
reinforcing existing disparities in research. Another concern involves the

over-reliance on AI in scientific processes. As we incorporate LLMs deeper
into workflows, human oversight becomes essential to maintaining scien-
tific rigor and addressing potential misalignments between AI-generated
outputs and human-defined research goals. The question of how much
autonomy AI should have in guiding scientific inquiries raises ongoing
debate about accountability and the evolving role of human oversight.

To harness LLMs as creativity engines, moving beyond task-oriented
applications to generate new scientific hypotheses and theories is para-
mount. For LLMs to contribute meaningfully to fundamental scientific
discoveries, theymust be equipped to recognize patterns and autonomously
generate novel, insightful questions—a hallmark of scientific creativity. This
would require advancements in prompt engineering, automated experi-
mentation, iterative reasoning, and building an AI that evolves its approach
based on experimental feedback. However, a significant gap in general
reasoning capabilities separates current models from domain-specific
superhuman systems like AlphaGo/AlphaZero197,198. AlphaGo leveraged a
critical symmetry where an “answer” (a move) inherently generates a new
“question” (the next board state challenge)—a dynamic largely absent in
today’s reasoning models, yet key for mastering novel tasks. For scientific
discovery, developing this symmetry is crucial, as the ability to ask questions
is as important as answering them; though some preliminary work has
explored this199, it remains an unsolved and highly challenging problem.

The evolution of LLMs and foundationmodels signals a transformative
era for science. While current applications largely support scientists in
managingdata and expeditingworkflows, the futuremay see thesemodels as
integral components of the scientific process. By addressing challenges in
accuracy, interpretability, and ethical concerns, we can enhance their relia-
bility and pave the way for responsible AI in scientific contexts.

Looking ahead, the collaboration between AI and human scientists
will likely define the next generation of discovery. As we refine foundation
models to becomemore adaptable and creative, they may transition from
merely assisting to potentially leading explorations into uncharted sci-
entific domains. The challenge lies in responsibly developing thesemodels
to ensure they complement and elevate human expertise without com-
promising scientific integrity. Ultimately, LLMs and foundation models
may come to represent a synthesis of human and artificial intelligence,
each amplifying the strengths of the other. With continued research and
ethical vigilance, LLMs have the potential to accelerate and deepen sci-
entific discovery, heralding a new era where AI not only supports but
inspires new frontiers in science200. This includes embracing and learning
from scientific failures and leveraging them to drive comprehensive
exploration. As LLMs evolve, they may reshape scientific methodologies,
impacting how science values discovery and reproducibility and may
ultimately redefine the purpose of scientific inquiry. However, the sci-
entific community must also decide how much it leaves to AI to drive
science, even when associations with ‘reasoning’, mostly currently
undeserved, are made in exchange for the potential to explore hypothesis
and solution regions that might otherwise remain unexplored by human
exploration alone.
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