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Pre-trained molecular language models
with random functional group masking
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TianhaoPeng1,2,9, YuchenLi1,3, XuhongLi1, JiangBian1, ZekeXie4, NingSui5, ShahidMumtaz6,7, YanwuXu8,
Linghe Kong3 & Haoyi Xiong1,9

Recent advancements in computational chemistry utilize transformer-based models pre-trained on
SimplifiedMolecular Input Line Entry System (SMILES) sequences to predict molecular properties. To
improve upon existing methods, we proposeMLM-FG, a molecular language model with a novel pre-
training strategy that randomly masks subsequences corresponding to chemically significant
functional groups. This technique compels the model to better infer molecular structures and
properties by learning the context of these key units. Extensive evaluations across 11 benchmark
tasks demonstrate the superiority of MLM-FG, outperforming existing SMILES- and graph-based
models in 9 of the 11 tasks. Remarkably, MLM-FG surpasses even some 3D-graph-based models,
highlighting its exceptional capacity for representation learning without explicit 3D structural
information. These results indicate that MLM-FG effectively learns to interpret molecular properties
from SMILES, offering a powerful new tool for computational chemistry and related disciplines.

While deep learning has been widely explored in cheminformatics with
significant progress1,2, its potential is severely limited by the scale of labeled
data. To reduce the cost of data annotation while enabling generalizable,
transferable, and robust representation learning from unlabeled data,
researchers extend the pre-training strategies3 from images and texts to
molecular data4–8.

To work with machine learning algorithms, molecules can be
represented by a chemical notation language named SMILES9, which
explicitly representsmeaningful substructures such as branches and cyclic
structures. To enable pre-training, researchers use the variant of Trans-
formers to pre-train on large-scale unlabeled SMILES strings8,10,11. To pre-
train a molecular language model, given the SMILES string of every
molecule in the training dataset, existing methods usually adopt an
masked autoencoding strategy8,10–12. It first randomly selects a sub-
sequence of the SMILES string. Then the strategy masks the selected part
and trains models to predict the masked part. However, such random
masking strategy would ignore the key chemical substructures of mole-
cules, suchas rings and functional groups4,7. For instance, consider aspirin,
which is denoted by “O=C(C)Oc1ccccc1C(=O)O”. In this molecular
structure, critical functional groups such as the carboxylic acid
(“-COOH”) and the ester (“-COO-”) are at risk of being overlooked due to

randommasking. This oversight neglects their pivotal contributions to the
molecular activity and properties. To the end, these methods may fail to
learn the critical molecular properties, which are primarily relevant to the
chemical substructures of a molecule, from SMILES strings13,14.

Previous investigations have highlighted the limitations of SMILES
notation in terms of topology awareness, underscoring its inability to
explicitly encode the structural information of molecules15. Several works
have attempted to incorporate better molecular structural or grammatical
information fromSMILES strings16,17. To address this issue, structure-aware
pre-training methods utilizing Graph Neural Networks (GNNs) have
marked significant advancements. These approaches leverage graph-format
representations of molecules—such as the topological arrangement of
atoms in a 2D space—to enrich learning models with a deeper under-
standing of molecular structures4,6,7. More recently, 3D graph-based mole-
cular data representations have been introduced in GNN pre-training,
where the three-dimensional structures of molecules are used to boost the
performance of pre-trainedmodels by incorporating detailed structural and
topological information18,19. However, while topological information (2D
connectivity) is readily derived from SMILES, obtaining precise 3D struc-
tural information (conformations) presents challenges.While experimental
methods can determine the 3D positions of atoms and the angles between
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bonds, these approaches can be costly and time-consuming, especially for
the vast datasets typically used in pre-training. Alternatively, some studies
directly convert SMILES strings or 2D topology graphs into 3Dgraphsusing
computational tools like the Merck Molecular Force Field (MMFF94)20

function in RDKit18. Yet, such computationally derived 3D structures may
not always yield precise conformational information and can introduce
inaccuracies, particularly for flexible molecules or across diverse chemical
spaces without specific parameterization.

On the other hand, recent efforts on SMILES-based molecular models
have explored fragment-based encoding techniques to enhance molecular
representation learning. For example, Aksamit et al.21 introduced a hybrid
fragment-SMILES encoding method focused on improving ADMET
prediction22 by adjusting fragment frequency thresholds in tokenization.
This approach modifies the input representation by incorporating frequent
molecular fragments into the tokenization process. While this method
improves the performanceof SMILES-basedmolecularmodels forADMET
prediction, it relies on predefined fragment frequencies and fragment
libraries, which may limit its generalizability and effectiveness across other
diverse molecular property prediction tasks. Additionally, their approach is
primarily optimized subject toADMETprediction and does not address the
challenges of capturing structural information without altering the input
representation, potentially restricting its applicability to a broader range of
molecular modeling tasks. Given these challenges, including the difficulties
in obtaining consistently accurate 3D conformations at scale for pre-
training and the limitations of some fragment-based methods, it is rea-
sonable to question the added value of such automatic data format con-
versions and the precision of converted 3D graphs. Thus, it remains
challenging to pre-train a structure-aware molecular model when precise
structural information is not readily available.

To tackle the aforementionedchallenges,wepropose anovelmolecular
representation framework MLM-FG – a SMILES-based Molecular Lan-
guage Model, which randomly masking SMILES subsequences corre-
sponding to specific molecular Functional Groups to incorporate structure
information of atoms during the pre-training phase. Specifically, MLM-FG
employs transformer-based models trained on a large corpus of SMILES
strings for 100 million molecules. As shown in Fig. 1, given the SMILES

string for every molecule in the training dataset, MLM-FG first parses the
string and identify the subsequences corresponding to functional groups23

and key clusters of atoms in themolecules. ThenMLM-FGrandomlymasks
a certain proportion of subsequences and trains the model to predict the
maskedpart as thepre-training task.Ourworkdistinguishes itself fromboth
fragment-based encoding methods and graph-based approaches utilizing
GNNs. Compared to the hybrid fragment-SMILES encoding technique21,
which modifies the input representation by incorporating frequent mole-
cular fragments forADMETprediction, ourmethodmaintains the standard
SMILES syntax and introduces a novel pre-training strategy. By randomly
masking functional groups within SMILES sequences during pre-training,
our approach compels the model to learn to predict these substructures
based on contextual information, enhancing its ability to capture structural
relationshipswithout altering the input representation. In contrast to graph-
based methods4,6,7,18,19 that rely on explicit structural information repre-
sented in molecular graphs or 3D geometries—which may not always be
precise or readily available–our approach effectively infers structural
information implicitly from large-scale SMILES data, making it broadly
applicable across various molecular property prediction tasks.

Extensive experimental evaluations across 11 benchmark classification
and regression tasks in the chemical domain demonstrate the robustness
and superiority of MLM-FG. Our findings reveal that MLM-FG outper-
forms existing pre-training models, either based on SMILES or graphs, in 9
out of the 11 downstream tasks, ranking as a close second in the remaining
ones. Remarkably, MLM-FG also surpasses 3D graph-basedmodels, which
explicitly incorporatemolecular structures into their inputs, highlighting its
exceptional capacity for representation learning even without explicit 3D
structural information. These results show that pre-trained transformer
encoders specialized in molecular SMILES demonstrate robust perfor-
mance, matching or even exceeding existing supervised or unsupervised
language models and GNN benchmarks in accurately forecasting a broad
spectrum of molecular properties.

Results
In this section, we present a series of comprehensive experiments designed
to illustrate the efficacy of MLM-FG. These experiments include
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Fig. 1 | An illustration of the proposedMLM-FG framework. (1)MLM-FG adopts
12-layer multi-head transformer blocks (in either RoBERTa or MoLFormer archi-
tectures) with a hidden state dimension ofDh= 768 for pre-training and fine-tuning,
(2) MLM-FG follows a functional group-aware random masking strategy to pre-

train the model on a large corpus of 10 to 100 million SMILES sequences from
PubChem, and (3) MLM-FG fine-tunes the pre-trained models to support a wide
range of molecular machine learning applications.
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performance comparisons across various downstream tasks and visual
analysis of pre-trained representations. To assess the impact of model
architecture and data size, we utilized two transformer-based models for
pre-training on a corpus consisting of millions of molecules. These models
are based on the MoLFormer8 and RoBERTa architectures.

Moreover, we conducted a comparative analysis of MLM-FG with
models pre-trained using different strategies and methods derived from
existing literature. These include models based on both molecular graphs,
such as MolCLR4, GROVER24, and GEM18, and SMILES e.g., MoLFormer8.
Notably, two recentworks–GEM18, incorporating the explicit 3D structures
of 20millionmolecules in pre-training, andMoLFormer8, pre-trained using
SMILES strings of 1.1 billion molecules, are two strong baselines in the line
of research for molecular graph-based and SMILE-based solutions. Please
note that the hybrid fragment-SMILES tokenization method by Aksamit et
al.21 was not included in our experimental comparison. This exclusion is due
to two key differences that make direct comparisons less meaningful in the
context of our study: (1) their work focuses exclusively on ADMET pre-
diction tasks, whereas our evaluation spans 11 diverse molecular property
benchmarks, and (2) their hybrid fragment-SMILES encoding fundamen-
tally alters the input sequence format by incorporating fragments into the
tokenization process. In contrast, all approaches compared in our work,
includingMLM-FG,maintain standard SMILES notation as input, with our
method applying random functional group masking directly to these
standard SMILES strings. Given these differences in both evaluation scope
and input representation, we focused our comparisons on existing models
that align more closely with our methodology and objectives, which center
on pre-training strategies for standard SMILES inputs.

Performance of MLM-FG on downstream tasks
Before fine-tuning MLM-FG to downstream tasks, we use 10 million, 20
million, and 100 million unlabeled molecules sampled from PubChem25, a
public access database that contains purchasable drug-like compounds, to

pre-train MLM-FG on two transformer-based models. Subsequently, we
conduct experiments on multiple molecular benchmarks from the
MoleculeNet26, including seven classification tasks and five regression tasks.
Classification accuracy is reported as Area Under the Receiver Operating
Characteristic Curve (AUC-ROC), and regression errors are reported as
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).
Following the previous work8,18,27, we adopt the scaffold split28 to split the
datasets, which splits molecules based on their molecular substructure. By
separating structurally distinct molecules into different subsets, scaffold
splitting poses amore significant challenge and offers a robust test of model
generalizability compared to random splitting methods. While conducting
multiple runs with different random seeds or multiple random scaffold
splits would be ideal for a more comprehensive robustness assessment, our
current study adhered to the standard scaffold splits provided by Molecu-
leNet or utilized in the cited baseline papers. This approach ensures a fair
and direct comparison with established reported results in the field.

We choose seven classification tasks from theMoleculeNet benchmark
with six baselinemodels to evaluate and compare the performance ofMLM-
FG. Based on the experimental results shown in Table 1, MLM-FG,
employing either MoLFormer or RoBERTa architectures, surpasses all of
the baselines in five (BBBP, ClinTox, Tox21, HIV, and MUV) out of seven
benchmarks and comes a close second in the other two (BACE and SIDER).
For example, on ClinTox, MLM-FG (RoBERTa, 100M) achieves an AUC-
ROCof 0.9606 compared toMoLFormer’s 0.9451, and onMUV, it achieves
0.7990 versusMoLFormer’s 0.7599.This result demonstrates the superiority
of MLM-FG in dealing with the prediction of molecular properties; espe-
cially compared within SMILES-based solutions, MLM-FG delivers high
classification accuracy. GEM outperforms MLM-FG in BACE and SIDER
datasets, which could be attributed to its utilization of explicit 3D structural
information of molecules.

Wechoosefive regression tasks fromtheMoleculeNetbenchmarkwith
six baseline models to evaluate the performance of MLM-FG. Based on the

Table 1 | Comparison of classification accuracy (AUC-ROC) between fine-tuned MLM-FG and existing pre-trained/self-
supervised baselines on multiple classification benchmarks

BBBP BACE ClinTox Tox21 SIDER HIV MUV
No. molecules 2039 1513 1478 7831 1427 41,127 93,087
No. prediction tasks 1 1 2 12 27 1 17

Pre-trained models from existing literature

MolCLR-gin 0.9307 0.7873 0.8005 0.7644 0.5826 0.7768 0.7386

MolCLR-gcn 0.8432 0.7194 0.7997 0.7179 0.5353 0.7616 0.6701

GROVER-base 0.9022 0.7700 0.6847 0.7187 0.5579 0.6950 0.6265

GROVER-large 0.8861 0.7795 0.6082 0.7155 0.5283 0.6956 0.5132

GEM 0.9103 0.8603 0.8506 0.7791 0.6279 0.7500 0.7253

MoLFormer 0.9037 0.8275 0.9451 0.7734 0.5826 0.7630 0.7599

MoLFormer and RoBERTa models without pre-training

MoLFormer (from scratch) 0.8636 0.7728 0.7317 0.7461 0.5667 0.6991 0.6863

RoBERTa (from scratch) 0.8711 0.7445 0.8858 0.7369 0.5285 0.5575 0.6674

RoBERTa models pre-trained by random subsequence masking

RoBERTa (10M, rand. subseq) 0.8572 0.8253 0.9284 0.7533 0.6111 0.7006 0.6234

RoBERTa (20M, rand. subseq) 0.9068 0.8135 0.9011 0.7635 0.5799 0.7477 0.6481

RoBERTa (100M, rand. subseq) 0.9048 0.8248 0.9167 0.7852 0.5860 0.7683 0.6909

MoLFormer and RoBERTa models pre-trained by MLM-FG

MLM-FG (MoLFormer, 10M) 0.8980 0.8044 0.9669 0.7765 0.5811 0.7633 0.6829

MLM-FG (MoLFormer, 20M) 0.8976 0.8088 0.9436 0.7793 0.5992 0.7801 0.7185

MLM-FG (MoLFormer, 100M) 0.9055 0.8040 0.9270 0.7893 0.5786 0.7690 0.6017

MLM-FG (RoBERTa, 10M) 0.8870 0.8265 0.9258 0.7545 0.6054 0.7106 0.6103

MLM-FG (RoBERTa, 20M) 0.9378 0.8458 0.8919 0.7603 0.5908 0.7594 0.6428

MLM-FG (RoBERTa, 100M) 0.9237 0.7981 0.9606 0.7896 0.6042 0.7807 0.7990

Bold values mean they are the best in the column.
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experimental results shown in Table 2, we can conclude that MLM-FG
exceeds the performance of all baselines in four out of five benchmarks
(ESOL, FreeSolv, Lipo, and QM7) and attains comparable results on the
QM8 dataset. Especially, MLM-FG showcases notable performance gains
over the second-best model on ESOL dataset with 41.01% improvement. In
particular, theQM8dataset involve prediction of several quantum-chemical
measures, which is considered challenging without 3D information8.While
GEMandMoLFormer leadMLM-FGon theQM8dataset, the performance
of MLM-FG is still noteworthy given that GEM incorporates explicit 3D
information and MoLFormer was pre-trained on a dataset ten times larger
than ours (1.1 billion vs. 100 million molecules). The quantitative differ-
ences should be viewed in this context.

We hypothesize that MLM-FG’s advantage is more pronounced on
datasetswhere the targetmolecular properties are strongly influencedby the
presence, absence, or specific arrangement of well-defined functional
groups. In such cases, explicitly training the model to recognize and
understand the context of these FGs, as MLM-FG does, provides a more
direct learning signal. For instance, properties like toxicity (ClinTox, Tox21
in Table 1) or biological activity (HIV, MUV in Table 1) are often linked to
specific pharmacophoric FGs, potentially explaining MLM-FG’s strong
performance on these tasks.

Ablation study
To comprehensively evaluate the effectiveness of MLM-FG, we conducted
ablation studies to dissect the contribution of key treatments, including pre-
training strategies,model architectures, and the size of pre-training datasets,
to the overall performance.

The comparison between the functional group-based random mask-
ing, random subsequence masking, and training from scratch, underscores
the effectiveness of the unique masking approach proposed by MLM-FG.
Notably, MLM-FG demonstrated a significant performance improvement,
for instance, achieving error reductions in the ESOL dataset to 0.3432 using
functional group-based masking, compared to 0.4909 with random sub-
sequencemasking and 0.9721when trained from scratch.Moreover, we can
observe a clear performance improvement from the vanilla MoLFormer to
the MoLFormer models pre-trained by MLM-FG in the most datasets for
both classification and regression tasks. This observation confirms the
advantage of the proposed functional group-aware random masking
strategy, even with less molecules for pre-training. In addition, the com-
parisons between MoLFormer and RoBERTa models highlight a distinct
advantage for the more extensive RoBERTa model in the most cases. For
instance, in the regression tasks such as FreeSolv, RoBERTa models pre-
trained by MLM-FG posted superior results (e.g., error of 1.7430 for the
RoBERTa 10M) when compared to the MLM-FG pre-trainedMoLFormer
models under similar conditions (error of 5.5461 for MoLFormer 10M).

Expanding the dataset size typically leads to improvedperformance for
MLM-FG, as demonstrated across various benchmarks. For example,
RoBERTamodels pre-trained withMLM-FG achieve an accuracy of 0.6103
on the MUV dataset when utilizing 10 million molecules for pre-training.
Meanwhile, this accuracy increases to 0.6428with a dataset size of 20million
molecules and further rises to 0.7990when leveraging the entire 100million
molecules for pre-training. Moreover, training with just 10 million mole-
cules on the ESOL dataset yields an error of 0.3432, which represents a
significant improvement over MoLFormer models trained from scratch
(0.9721). However, as seen with the MLM-FG (MoLFormer) variants on
ESOL, on expanding the training set to 20 million and 100 million mole-
cules, we see a performance dip (0.4407 and 0.5135, respectively). This
phenomenon, where more data does not monotonically improve perfor-
mance, can be attributed to factors such as those discussed by Nakkiran
et al.29, including potential overfitting to idiosyncrasies in larger pre-training
corpora or fixed model capacity. It might also indicate inefficiencies in
handling larger datasets without fine-tuning the methodology accordingly.
Thus, while increased dataset sizes generally improve the accuracy ofMLM-
FG, the specific nature of the data, the model architecture, the pre-training
techniques, and their interactions also play a critical role in extracting the
maximal benefit from larger datasets.

Pre-trained representations visualization
The pre-training representation visualization results provide comprehen-
sive insights into the learned molecular representations by MLM-FG.

Our first visualization analysis intends to connect the weights of the
molecules and the distribution of their learned representations. These
representations, extracted from the downstream datasets without fine-
tuning, encompass 312,879 unique molecules. As shown in Fig. 2, our
experimentmaps these presentations onto a 2Dspace usingUMAP30,where
each point in the visualization is color-coded based on its corresponding
molecular weight (g/mol). It can be seen in Fig. 2 that even without task-
specific fine-tuning, MLM-FG is capable of distinguishing between light-
weighted and heavily-weighted molecules, indicating that the pre-training
representation of MLM-FG has successfully captured molecular property
information. While other pre-training methods also show some separation
bymolecular weight in their raw pre-trained embeddings, the key impact of
MLM-FG’s functional group-aware masking may lie in learning more
nuanced structural relationships relevant for specific downstream tasks,
which become more evident after fine-tuning. The improved performance
on these tasks (Tables 1 and 2) is the primary validation of this benefit.

Table 2 | Comparison of regression errors (RMSE or MAE)
between fine-tuned MLM-FG and existing pre-trained/self-
supervised baselines on multiple regression benchmarks

RMSE MAE

ESOL FreeSolv Lipo QM7 QM8
No. molecules 1128 642 4200 6830 21,786
No. prediction tasks 1 1 1 1 12

Pre-trained models from existing literature

MolCLR-gin 1.4717 2.7116 0.7411 96.5469 0.0205

MolCLR-gcn 1.5074 2.7273 0.9033 93.5973 0.0235

GROVER-base 0.8813 1.7772 0.6664 101.2853 0.0228

GROVER-large 0.8831 2.7143 0.7063 114.3004 0.0234

GEM 0.7614 2.4581 0.6861 65.0067 0.0179

MoLFormer 0.6613 4.4485 0.4457 69.0700 0.0177

MoLFormer and RoBERTa models without pre-training

MoLFormer (from
scratch)

0.9721 3.3689 0.9500 68.6214 0.0279

RoBERTa (from scratch) 0.9513 3.6014 0.9910 66.8488 0.0244

RoBERTa models pre-trained by random subsequence masking

RoBERTa (10M, rand.
subseq)

0.4909 4.4444 0.4515 68.4687 0.0219

RoBERTa (20M, rand.
subseq)

0.4596 3.1672 0.4560 70.1688 0.0207

RoBERTa (100M, rand.
subseq)

0.4301 2.4527 0.4430 76.6563 0.0232

MoLFormer and RoBERTa models pre-trained by MLM-FG

MLM-FG
(MoLFormer, 10M)

0.3432 5.5461 0.4919 67.7549 0.0221

MLM-FG
(MoLFormer, 20M)

0.4407 3.7525 0.4325 66.2175 0.0226

MLM-FG
(MoLFormer, 100M)

0.5135 3.2596 0.4272 69.3677 0.0212

MLM-FG
(RoBERTa, 10M)

0.5707 1.7430 0.4892 66.9334 0.0212

MLM-FG
(RoBERTa, 20M)

0.6668 1.9143 0.6711 64.1665 0.0220

MLM-FG
(RoBERTa, 100M)

0.3901 3.0487 0.3984 74.8177 0.0202

Bold values mean they are the best in the column.
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Yet another visualization study has been conducted to analyze the 2D
graph and 3D geometric information content in the pre-training repre-
sentation of MLM-FG. This study specifically focused on the comparisons
between SMILES-based transformer models, including the standard MoL-
Former as well as its variants and RoBERTa pre-trained using MLM-FG.

For each model, given a SMILES string as the input, we extracted attention
vectors for every atomic token, analyzed attentions across different atomic
token pairs, and constructed attention matrices for these atoms. We sub-
sequently compare these attention matrices with the corresponding
matrices representing covalent bond connectivity and 3Ddistances between

Fig. 2 | Visualization ofmolecular representations learned byMLM-FG viaUMAP.Representations are extracted from the downstreamdatasets without finetuned,which
contains 312,879 unique molecules. Each point is colored by its corresponding molecular weight(g/mol).
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atom pairs. Figure 3 showcases the adjacency matrix, 3D distance matrix,
and attention matrices for the molecule “CP(Br)C=O”. It shows that the
attention matrices obtained by MLM-FG show a notable correlation with
the 3D distance matrix of the molecule, especially when comparing to
MoLFormer and MoLFormer/RoBERTa’s variants pre-trained by other

strategies. This suggests an enhanced structural awareness. The domain-
aware nature ofMLM-FG, stemming from its training to predict functional
groups, likely guides it to learn attention patterns that better reflect these
spatial relationships. Table 3 presents the results for the cosine similarity
between the 3D distance matrices and attention matrices, averaged over

Fig. 3 | Visualization of the learned attention map
and corresponding molecular structure (bond con-
nectivity and 3D distance in Angstrom) for SMILES
“CP(Br)C=O”.
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50,000 molecules, showcasing the performance of various models. Com-
pared to MoLFormer, MoLFormer trained from scratch, and RoBERTa
trained from scratch, MLM-FG with both MoLFormer and RoBERTa
architectures pre-trained for 100M steps exhibits superior correlation in
capturing the relationship between attention matrices and 3D distance
matrices, an empirical finding further supporting its ability to learn struc-
turally relevant representations.

Discussion
This work proposes the MLM-FG framework that incorporates functional
groups – as prior information on molecular structures – and leverages a
functional group-aware random masking strategy to pre-train molecular
language models on large-scale SMILES databases, yielding enhanced per-
formance and generalization capability for downstream tasks. Our model
has been evaluated across 12 datasets, including 7 classification and 5
regression tasks, outperforming the existing state-of-the-art models in 9 of
these datasets. Notably, 5 of these datasets involve predictions on multiple
sub-tasks of molecular properties, with up to 27 sub-tasks. We also validate
the impact of data scale and model type, pre-training on MoLFormer and
RoBERTa models across datasets of 10 million, 20 million, and 100 million
molecules, followed by an analysis of downstream task performance. We
employeAUC,RMSE, andMAEmetrics to ensure a fair comparison among
molecule analysis methods. Currently, there is limited research on lever-
aging Transformer architectures with added external knowledge for mole-
cule data analysis. As a publicly available tool, MLM-FG offers a powerful
resource for molecule analysis and further advanced applications.

Several key findings of this work could be summarized as follows.
• Compared to 2D/3Dmolecular graphs, SMILES strings lack of explicit

structural information and are with limited topological awareness. In
the meanwhile, the proposed MLM-FG framework overcomes these
limitations by incorporating functional group-aware randommasking
during pre-training, which enables implicit learning of structural
features and functional group interactions from SMILES data,
ultimately leading to more accurate predictions of molecular
properties.

• The functional group-aware random masking strategy proposed by
MLM-FG demonstrates a significant performance improvement
compared to masking strategies used in MoLFormer, random
subsequence masking, and training from scratch. Furthermore, our
analysis indicates that the attention patterns between atomic tokens
extracted fromMLM-FGshowanotable correlationwith the actual 3D
distances between atoms, suggesting amore accurate representation of
molecular structures.

• It has been observed that leveraging a larger model like RoBERTa or
pre-training with a larger volume of data typically results in enhanced
performance in downstream tasks, especially in the experiments for
classification tasks. However, it is important to note that in many
scenarios, employing larger models with more data may actually hurt
the performance29.

The MLM-FG model represents a significant advancement in mole-
cular modeling by capturing essential structural information through
functional group-aware masking within SMILES strings. This capability
enhances the prediction of molecular properties and may aid in under-
standing of structure-activity relationships, making it a valuable tool across

drug discovery andmetabolomics studies. In drug discovery, MLM-FG can
be applied to virtual screening of large compound libraries to identify
potential drug candidates, help prioritize compounds that aremore likely to
interact with specific biological targets, and aid in optimizing design of lead
compounds. Additionally, MLM-FG may facilitate drug repurposing by
screening existing drugs for new therapeutic targets, broadening the utility
of known compounds. In metabolomics studies, MLM-FG may help
identify unknown metabolites, providing valuable insights into metabolic
processes and potential therapeutic targets. Overall, MLM-FG emerges as a
transformative tool in computational chemistry with broad implications
and applications across the life sciences. Integrating MLM-FG into various
research workflows can accelerate innovation and yield more efficient and
targeted outcomes in their respective fields.

The MLM-FG model, despite its innovations in molecule analysis,
confronts several challenges. Firstly, it cannot model very long SMILES
sequences. Those exceeding 512 tokens are truncated (less than 0.01% in the
pre-training datasets), potentially leading to loss of information. While
recent decoder-only language models have addressed long-context training
and inference31,32, applying these techniques to molecular language models
remains a key area for our future work. However, please note that earlier
works, such asMoLFormer8, set 202 as the token limit, which still delivered
reasonable performance. Secondly, our focus is on molecular modeling,
limiting our ability to extend to predicting chemical reactions between
molecules and molecular generation. Additionally, the performance of
MLM-FG could be further improved through incorporating 3D informa-
tion of molecules in pre-training, fine-tuning, and testing. Moreover, data
re-sampling of pre-training datasets and advanced fine-tuning strategies
could enhance MLM-FG in downstream tasks. The specific masking ratios
used in our functional group-aware strategy are hyperparameters, and their
optimization could lead to further performance gains; this remains an
avenue for future work. Another potential challenge relates to the definition
and identification of functional groups; while RDKit provides a standar-
dized approach, ambiguities in FG definitions (e.g., in complex conjugated
systems or overlapping SMARTS patterns) could introduce noise or com-
plexity for the model. Our future work would address these issues for
potential performance enhancements.

Methods
This section provides a comprehensive overview of the design features
associated with each component of MLM-FG. We introduce the model
architecture of MLM-FG and the pre-training strategy.

Model architectures
In this work, we presentMLM-FG, an approach for large-scale pre-training
of molecules based on the Transformer blocks, which incorporates multi-
layer and multi-head transformer blocks. Specifically, MLM-FG offers the
same architectural configuration as the one shared by MoLFormer and
RoBERTa, employing a 12-layer transformer and a hidden state dimension
of Dh = 768. Consider an input SMILES sequence denoted as s = (s1, s2,…,
sL), where L represents the length of the sequence. MLM-FG first tokenizes
the sequence and subsequently feeds them into the transformer. This pro-
cess enables us to extract token embeddings h ¼ ðh1; h2; . . . ; hlÞ 2 RL×Dh ,
where Dh represents the dimension of the hidden representations for the
tokens. Then the model takes the series of token embeddings as input and
transform them into a lower-dimentional vector to output the embeddingof

Table 3 | Comparisons of cosine similarity between the 3D distance matrix and attention matrix, averaged over 50,000
molecules: These values indicate the degree of correlation

MoLFormer MoLFormer (from scratch) RoBERTa (from scratch) MLM-FG (MoLFormer, 100M) MLM-FG (RoBERTa, 100M)

0.5039 0.2174 0.8130 0.3306 0.8424

For instance, The attentionmatrices ofMoLFormer exhibit higher similarity with the 3D distancematrices than those ofMLM-FG (MoLFormer, 100M). This discrepancymay be attributed to the pre-training
of MoLFormer with 1 billion SMILES strings, highlighting the potential impact of pre-training data size on the alignment of attention and 3D geometric information. The commendable performance of the
RoBERTa architecture (for either training from scratch or MLM-FG’s variant) underscores the distinct benefits associated with larger-scale architectures.
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the SMILES sequence. The total number of trainable parameters in MLM-
FG (MoLFormer) is approximately 48.1M and MLM-FG (RoBERTa) is
approximately 93.8M.

Pre-training datasets
Following many other pre-training based approaches, ours MLM-FG is
structured into two main phases: pre-training and fine-tuning. During the
pre-training phase, which is not tailored to any particular task, MLM-FG is
trained on a vast corpus of range from 10 million to 100 million SMILES
sequences sampled from PubChem25. These molecules were obtained via
random sampling from the PubChem database and were not explicitly
stratified by property or structure, beyond standard filtering common for
creating such pre-training sets. Summary statistics of these pre-training
datasets (e.g., molecular weight distributions, atom type frequencies) and
FGcoverage statistics have beenprovided in the SupplementaryTables. The
self-supervised training phase enables MLM-FG to discern sequential dis-
tributions and substructures in molecule sequences, thereby gaining a
holistic grasp of their structural and functional insights.

Functional group-aware pre-training strategy
Pre-training strategies inmolecular representation learning highly correlate
with molecule formats. For pre-training with unlabeled data, the prevalent
approach involves reconstructing randomly masked tokens in SMILES
strings. Given that molecules with similar structures may have vastly dif-
ferent properties, this method might overlook the complex interrelations
amongmolecular features and potentially distort molecular semantics. Our
objective is to weave chemical domain knowledge, specifically regarding
substructures, into the pre-training process.

Rather than randomlymasking subsequences or tokens in SMILES, we
mask the cluster of tokens in SMILES that represent these substructures.
During the pre-training phase, we start by identifying the substructures that
correspond to specific molecular functional groups with RDKit18, which
uses a predefined, rule-based set of SMARTS patterns for this identification.
A list of commonly encountered functional groups or references to RDKit’s
definitions have been provided in the Supplementary Information. Thenwe
randomly select a subset of these identified substructures, followed by
masking the associated tokens within these substructures. If multiple
functional groups are candidates for masking based on the rules below, the
specific group(s) to be masked are chosen randomly, without a predefined
priority. Based on the count of these functional groups within a molecule,
our masking strategy adaptively adjusts. If a molecule does not contain any
functional groups, atom masking is employed as the default strategy. This
ensures that the model still learns general structural aspects of molecules
lacking specific functional groups. For molecules with fewer than 10 func-
tional groups, we mask only one functional group. This approach is
designed topreserve the overall structural integrityof themoleculewhile still
introducing the model to the complexity of functional groups. In cases
where a molecule contains more than 10 functional groups, we randomly
mask 10% of these groups. This strategy introduces a higher level of com-
plexity and variability, challenging themodel to better generalize its learning
across amore diverse set of molecular substructures. This adaptive strategy,
based on functional group counts, aims to provide a consistent yet chal-
lenging learning signal across diverse molecules. It leverages general che-
mical knowledge (the importance of FGs) rather than introducing
detrimental dataset-specific biases, with the randomness in selection pro-
moting generalization.

Themodel leverages self-supervised learning to predictmasked atoms,
thereby acquiring structural information about molecules. This methodical
selection and masking process is instrumental in guiding the model to
understand and predict the underlying structural characteristics of mole-
cules, enhancing its ability to infer molecular properties and functionalities
based on structural cues. By integrating domain knowledge aboutmolecular
substructures into our pre-training strategy, we enable themodel to develop
amorenuancedand accurate representation ofmolecular structures, paving
the way for more effective learning and prediction in downstream tasks.

Setups of MLM-FG in experiments
MLM-FG approach gives rise to several model variants distinguished pri-
marily by their underlying architecture and the size of the pre-training
dataset.This section introduces thekeyvariants leveraged inour experiments,
which include MLM-FG (MoLFormer) and MLM-FG (RoBERTa). Specifi-
cally,MLM-FG (MoLFormer) utilizes theMoLFormer architecture designed
to capture complex molecular representations using rotary positional
embeddings and an efficient linear attention mechanism. The MoLFormer
models were pre-trained using three different dataset sizes: 10 million, 20
million, and 100 million molecules. These variations allow for an under-
standing of how the scale of the pre-training data impacts the effectiveness of
model embeddings on downstream tasks, such as molecular property pre-
diction. In addition, MLM-FG (RoBERTa) builds upon the RoBERTa
architecture, renowned for its robustness in handling masked language
modeling tasks due to its bidirectional encoder representations. Similarly to
MoLFormer, RoBERTamodelswere pre-trained ondatasets of 10million, 20
million, and 100 million molecules. These multiple pre-training data scales
enable evaluations of the RoBERTa model’s performance adaptability and
efficiency when applied to different molecular prediction applications.

Both variants of MLM-FG, based MoLFormer and RoBERTa trans-
formers, are instrumental in drawing comparative insights between differ-
ent transformer-based architectures and dataset sizes. The insights gained
from these variants help delineate the potential benefits and limitations
inherent in each architecture, fostering an advanced understanding of their
applicability within molecular informatics.

Setups of baseline methods for comparisons
The models we are comparing against are based on cutting-edge meth-
odologies derived from contemporary literature. These methods are as fol-
lows. MolCLR-gin and MolCLR-gcn are two 2D molecular graph-based
models designed to leverage molecular graphs. They are equipped with dis-
tinct features focusing on graph-based learning paradigms and trained on 10
million unlabeled molecules. The total number of trainable parameters in
MolCLR-gin is approximately 2.2M and in MolCLR-gcn is approximately
0.8M. In addition, GEM is A 3Dmolecular graph-based model built upon a
geometry-based approach. It incorporates innovative strategies based on
molecular geometry in a 3D space for pre-training on 20 million unlabeled
molecules. The total number of trainable parameters in GEM is approxi-
mately 0.107M. Furthermore, GROVER-base and GROVER-large are two
methods that integrateMessagePassingNetworks into theTransformer-style
architecture. They predict contextual properties based on atomic embed-
dings, encoding contextual information into node embeddings. The dataset
forGROVERpre-training includes10millionmolecules.The totalnumberof
trainable parameters in GROVER-base is approximately 48M and in
GROVER-large is approximately 100M. Finally, MoLFormer is another
model based on SMILES representations. This model employs pre-trained
representations to capture molecular information encoded as SMILES
strings. The pre-training dataset contains 1.1 billion molecules, and the total
number of trainable parameters in MoLFormer is approximately 48.1M.

These methods are included for comparison due to their representa-
tion of state-of-the-art molecular modeling techniques, each offering dis-
tinct advantages. MolCLR-gin and MolCLR-gcn focus on 2D graph
representations, GEM provides a 3D approach, GROVER integrates Mes-
sage Passing Networks with Transformer architectures for contextual
analysis, and MoLFormer utilizes SMILES representations with extensive
pre-training. Comparing against these varied advanced models allows a
comprehensive evaluation of our proposed models’ effectiveness and
improvements in predictive accuracy.

Hyper-parameters and training details
In theMLM-FG, bothMoLFormer and RoBERTa comprise 12 layers, each
equipped with 12 attention heads. For pre-training, we initialized with a
learning rate of 3 × 10−5, gradually reducing it using a LambdaLR scheduler,
and utilized the AdamW optimizer with a batch size of 1024 across 16
NVIDIA V100 GPUs. We conducted 50 epochs for datasets of 10M and
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20Mmolecules and reduced the epoch count to 20 for the 100M dataset to
balance computational demands and training depth. For the 100M dataset,
one epoch of pre-training requires 6 hours and utilizes 16 GPU. In com-
parison, the 20M dataset takes 1.5 h, and the 10M dataset takes 0.7 hours
under the same settings. In the fine-tuning phase, we maintained the
learning rate at 3 × 10−5 but switched to the FusedLAMB optimizer for
better efficiency, with a smaller batch size of 64 to ensure precise model
adjustments tailored to specific tasks.

Data availability
Thedatasets used forpre-trainingandfine-tuning arederived fromprevious
studies. These datasets are publicly available via download links as follows. -
PubChem: https://pubchem.ncbi.nlm.nih.gov/- QM8: https://moleculenet.
org/datasets-1- ESOL: https://moleculenet.org/datasets-1- FreeSolv: https://
moleculenet.org/datasets-1- MUV: https://moleculenet.org/datasets-1-
BBBP: https://moleculenet.org/datasets-1- BACE: https://moleculenet.org/
datasets-1- ClinTox: https://moleculenet.org/datasets-1- Tox21: https://
moleculenet.org/datasets-1- SIDER: https://moleculenet.org/datasets-1-
HIV: https://moleculenet.org/datasets-1.

Code availability
We built MLM-FG using Python and PyTorch. The code repository of
MLM-FG, readme files and tutorials are all available at https://github.com/
Tianhao-Peng/MLM-FG. The checkpoints of pre-trained models are
available for download at https://drive.google.com/drive/folders/
16vOW0rzMJJAC0iNFbzb6E_40yQ3lbLaF.

Received: 22 March 2025; Accepted: 31 July 2025;

References
1. Huang, B. & Von Lilienfeld, O. A. Communication: understanding

molecular representations inmachine learning: the role of uniqueness
and target similarity. J. Chem. Phys. 145, 161102-1–161102-6 (2016).

2. David, L., Thakkar, A., Mercado, R. & Engkvist, O. Molecular
representations in ai-driven drug discovery: a review and practical
guide. J. Cheminform. 12, 56 (2020).

3. Devlin, J., Chang, M., Lee, K. & Toutanova, K. BERT: pre-training of
deep bidirectional transformers for language understanding. In:
Burstein, J., Doran,C.&Solorio, T. (eds.)Proc. 2019Conferenceof the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), 4171–4186 https://doi.org/10.18653/v1/n19-1423
(Association for Computational Linguistics, 2019).

4. Wang, Y., Wang, J., Cao, Z. & Farimani, A. B. Molecular contrastive
learning of representations via graph neural networks. Nat. Mach.
Intell. 4, 279–287 (2022).

5. Zhu, J. et al. Dual-view molecule pre-training. In KDD '23: Proc. 29th
ACMSIGKDDConference on Knowledge Discovery and DataMining,
3615–3627, https://arxiv.org/abs/2106.10234 (2023).

6. Li, P. et al. Learn molecular representations from large-scale
unlabeled molecules for drug discovery. CoRR abs/2012.11175
https://arxiv.org/abs/2012.11175 (2020).

7. Rong, Y. et al. Self-supervised graph transformer on large-scale
molecular data. In: Larochelle, H., Ranzato,M., Hadsell, R., Balcan, M. &
Lin, H. (eds.) Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual https://proceedings.
neurips.cc/paper/2020/hash/94aef38441efa3380a3bed3faf1f9d5d-
Abstract.html (2020).

8. Ross, J. et al. Large-scale chemical language representations capture
molecularstructureandproperties.Nat.Mach. Intell.4, 1256–1264 (2022).

9. Weininger, D. Smiles, a chemical language and information system. 1.
introduction to methodology and encoding rules. J. Chem. Inform.
Comput. Sci. 28, 31–36 (1988).

10. Wang, S., Guo, Y., Wang, Y., Sun, H. & Huang, J. Smiles-bert: large
scale unsupervised pre-training for molecular property prediction. In
Proc. 10th ACM International conference on bioinformatics,
computational biology and health informatics, 429–436 (Association
for Computing Machinery (ACM), 2019).

11. Broberg, J., Bånkestad, M. M. & Hellqvist, E. Y. Pre-training
transformers for molecular property prediction using reaction
prediction. In ICML 2022 2nd AI for Science Workshop (2022).

12. Irwin, R., Dimitriadis, S., He, J. & Bjerrum, E. J. Chemformer: a pre-
trained transformer for computational chemistry.Machine Learning:
Science and Technology 3, 015022 (2022).

13. Zhang, Z., Liu, Q., Wang, H., Lu, C. & Lee, C. Motif-based graph self-
supervised learning for molecular property prediction. In Advances in
Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, (eds
Ranzato,M. et al.)December6-14, 2021, virtual, 15870–15882 (Neural
Information Processing Systems Foundation, Inc, 2021).

14. Sun, M., Xing, J., Wang, H., Chen, B. & Zhou, J. Mocl: Contrastive
learning on molecular graphs with multi-level domain knowledge.
CoRR https://arxiv.org/abs/2106.04509 (2021).

15. Zhang,S. et al. Applicationsof transformer-based languagemodels in
bioinformatics: a survey. Bioinform. Adv. 3, vbad001 (2023).

16. Zhang, K., Mann, V. & Venkatasubramanian, V. G-matt: single-step
retrosynthesis prediction using molecular grammar tree transformer.
AIChE J. 70, e18244 (2024).

17. Mann, V. & Venkatasubramanian, V. Predicting chemical reaction
outcomes: a grammarontology-based transformer framework.AIChE
J. 67, e17190 (2021).

18. Fang, X. et al. Geometry-enhancedmolecular representation learning
for property prediction. Nat. Mach. Intell. 4, 127–134 (2022).

19. Atz, K., Grisoni, F. & Schneider, G. Geometric deep learning on
molecular representations. Nat. Mach. Intell. 3, 1023–1032 (2021).

20. Halgren, T. A. Merck molecular force field. i. basis, form, scope,
parameterization, and performance of mmff94. J. Comput. Chem. 17,
490–519 (1996).

21. Aksamit, N., Tchagang, A., Li, Y. & Ombuki-Berman, B. Hybrid
fragment-smiles tokenization for admet prediction in drug discovery.
BMC Bioinform. 25, 255 (2024).

22. Norinder, U. & Bergström, C. A. Prediction of admet properties.
ChemMedChem:Chemistry EnablingDrugDiscovery1, 920–937 (2006).

23. Nic, M. et al. International union of pure and applied chemistry
compendium of chemical terminology (the Gold Book). Research
Triangle Park, NC: IUPAC. https://doi.org/10.1351/goldbook (2019).

24. Rong, Y. et al. Grover: self-supervisedmessage passing transformer on
large-scale molecular data. arXiv preprint arXiv:2007.02835 2, 17 (2020).

25. Kim, S. et al. Pubchem 2019 update: improved access to chemical
data. Nucleic Acids Res. 47, D1102–D1109 (2019).

26. Wu, Z. et al. Moleculenet: a benchmark for molecular machine
learning. Chem. Sci. 9, 513–530 (2018).

27. Hu, W. et al. Strategies for pre-training graph neural networks. In
International Conference on Learning Representations (ICLR 2020).

28. Ramsundar, B., Eastman, P.,Walters, P. &Pande, V.Deep learning for
the life sciences: applying deep learning to genomics, microscopy,
drug discovery, and more (“O’Reilly Media, Inc.”, 2019).

29. Nakkiran, P. et al. Deep double descent: Where bigger models and
more data hurt. J. Stat. Mech. Theory Exp. 2021, 124003 (2021).

30. McInnes, L., Healy, J., Saul, N. & Großberger, L. Umap: uniform
manifold approximation andprojection. J.OpenSour. Softw.3 (2018).

31. An, S. et al. Make your llm fully utilize the context. Adv. Neural Inform.
Process. Syst. 37, 62160–62188 (2024).

https://doi.org/10.1038/s44387-025-00029-3 Article

npj Artificial Intelligence |            (2025) 1:28 9

https://pubchem.ncbi.nlm.nih.gov/
https://moleculenet.org/datasets-1
https://moleculenet.org/datasets-1
https://moleculenet.org/datasets-1
https://moleculenet.org/datasets-1
https://moleculenet.org/datasets-1
https://moleculenet.org/datasets-1
https://moleculenet.org/datasets-1
https://moleculenet.org/datasets-1
https://moleculenet.org/datasets-1
https://moleculenet.org/datasets-1
https://moleculenet.org/datasets-1
https://moleculenet.org/datasets-1
https://moleculenet.org/datasets-1
https://moleculenet.org/datasets-1
https://github.com/Tianhao-Peng/MLM-FG
https://github.com/Tianhao-Peng/MLM-FG
https://drive.google.com/drive/folders/16vOW0rzMJJAC0iNFbzb6E_40yQ3lbLaF
https://drive.google.com/drive/folders/16vOW0rzMJJAC0iNFbzb6E_40yQ3lbLaF
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://arxiv.org/abs/2106.10234
https://arxiv.org/abs/2106.10234
https://arxiv.org/abs/2012.11175
https://arxiv.org/abs/2012.11175
https://proceedings.neurips.cc/paper/2020/hash/94aef38441efa3380a3bed3faf1f9d5d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/94aef38441efa3380a3bed3faf1f9d5d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/94aef38441efa3380a3bed3faf1f9d5d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/94aef38441efa3380a3bed3faf1f9d5d-Abstract.html
https://arxiv.org/abs/2106.04509
https://arxiv.org/abs/2106.04509
https://doi.org/10.1351/goldbook
https://doi.org/10.1351/goldbook
www.nature.com/npjAI


32. Tang, J. et al. Quest: query-aware sparsity for efficient long-context
llm inference. In International Conference on Machine Learning,
47901–47911 (PMLR, 2024).

Acknowledgements
The authors would like to thank the anonymous reviewers for their
constructive feedback which helped improve the manuscript. The authors
declare that no funds, grants, or other support were received during the
preparation of this manuscript.

Author contributions
All authors have made contributions in this paper. T.P. designed studies
conducted experiments and wrote part of the manuscript.
Y.L., X.L., J.B., Z.X.,N.S., S.M., andY.X. involved in thediscussionandwrote
part of the manuscript. L. K. oversaw the research progress, involved in the
discussion and wrote part of the manuscript. H. X. oversaw the research
progress, designed the study and experiments, involved in the discussion,
and wrote the manuscript. T.P. and H.X. made the equal technical
contributions to this work.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s44387-025-00029-3.

Correspondence and requests for materials should be addressed to
Haoyi Xiong.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’snoteSpringerNature remainsneutralwith regard to jurisdictional
claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s44387-025-00029-3 Article

npj Artificial Intelligence |            (2025) 1:28 10

https://doi.org/10.1038/s44387-025-00029-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjAI

	Pre-trained molecular language models with random functional group masking
	Results
	Performance of MLM-FG on downstream tasks
	Ablation study
	Pre-trained representations visualization

	Discussion
	Methods
	Model architectures
	Pre-training datasets
	Functional group-aware pre-training strategy
	Setups of MLM-FG in experiments
	Setups of baseline methods for comparisons
	Hyper-parameters and training details

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




