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AI reshaping financial modeling
Check for updates
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This perspective paper argues that, given the strong theoretical foundations and clear economic
interpretations of traditional financial models, the integration of artificial intelligence (AI) in finance
should prioritize enhancing thesemodels—by incorporating alternative data sources and recalibrating
key variables—rather than replacing them with opaque, albeit accurate, black-box models. We
summarize studies that follow this approach, with a focus on the cases of Capital Asset PricingModel
(CAPM), Markowitz Mean-Variance Optimization (MVO), and the Black-Litterman Model (BLM). We
demonstrate how AI, particularly Natural Language Processing (NLP) models, enables dynamic input
estimation, nonlinear pattern discovery, sentiment extraction from financial text and sentiment-aware
forecasting, and improved risk modeling, thereby addressing longstanding limitations in traditional
frameworks. In addition, we highlight how this approach to some extent preserves interpretability—
essential for regulatory compliance and investor trust—by tracing model decisions to intuitive, often
human-understandable sources of information. By augmenting rather than replacing financial theory,
this approach not only improves empirical performance but also enriches theoretical understanding,
marking a paradigm shift in how financial models are built, explained, and applied.

The artificial intelligence (AI) community’s interest infinancial applications
has surged over the past decade, reflected in the emergence of a number of
dedicated workshops and conferences specific on this topic, such as ACM
ICAIF (https://ai-finance.org/), IEEE AIxB (https://ieeexplore.ieee.org/xpl/
conhome/10771157/proceeding), FinNLP (https://aclanthology.org/
venues/finnlp/), EcoNLP (https://lt3.ugent.be/econlp/), and some IJCAI
special tracks. Broadly, published works adopt two main approaches to
applying AI in financial modeling. The first approach1–3 leverages the
expressive power of large-scale models—often with millions of parameters
—and advanced architectures or effective training techniques to capture
subtle patterns in the data and improve predictive accuracy. The second
approach4–7 integrates data-driven techniques with traditional financial
models, using AI to enhance “key variables” and complement existing
theoretical frameworks. We believe the latter to be more promising and to
have several benefits.

In particular, the rise of large language models (LLMs)8, large multi-
modalmodels (LMM)9, and large actionmodels (LAM)10 not only facilitates
financial services in general with greater efficiency and lower cost, but also
reshapes the more technical side of financial modeling, enabling quantita-
tive analysis of textual information such as news, social media, and reports,
providing novel insights for financial decision-making11. This perspective
therefore showcases how AI (natural language processing techniques in
particular) creates new possibilities for enhancing some of the fundamental
models in finance: the Capital Asset Pricing Model (CAPM), Markowitz’s

Mean-Variance Optimization (MVO), the Black-Litterman Model (BLM),
and beyond. Each of these canonical models had transformed our under-
standing of the basic elements in finance—CAPM by formalizing the
relation and trade-off between asset risk and return12, MVO by linking
portfolio properties with our utility13, and BLM by acknowledging the
practical subjectivity of risk and return14. In this article, we focus on AI
applications that adopt the two-layer approach: (1)AI is used to “mine”data
from novel sources, such as news, and (2) the results of what can be gen-
erated with AI are added to the existing frameworks to support their
accuracy and usefulness by discussing the aforementioned models in turn,
first introducing the core concepts and key variables in accessible terms for
readers with an AI background but limited finance knowledge, and then
enumerating recent progresses on enhancing the models with AI.

Modern AI methods address some longstanding limitations of these
models. For example, classic CAPMassumes a static linear relation between
an asset’s risk (β) and expected return (EðRÞ), which often fails to explain
real-world anomalies. AI-driven sentiment can have higher resolution than
survey-induced data, e.g., Index of Consumer Sentiment (https://www.sca.
isr.umich.edu/), and be used to dynamically adjust expected returns based
on investor mood, effectively creating a “sentiment-aware” CAPM that
better fits observed returns during different market conditions5. Similarly,
MVO traditionally relies on estimated asset returns and covariances that are
notoriously sensitive and unstable. Deep neural networks and semantic
models such as doc2vec or BERT embeddings can improve these estimates
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by extracting predictive signals from alternative datasets, including news
and socialmedia, thus leading tomore robust and adaptive portfolios15–17. In
BLM, which blends market equilibrium with investor views, AI enables
deriving those views objectively fromdata. By applying proper financial text
analysis, one can translate qualitative information (e.g., news sentiment or
earnings report tone) into quantitative views on asset returns, and feed them
into the optimization model18. These advancements maintain the elegant
foundations of the original models while infusing them with real-time
information and complex patterns that human analysts or simple statistical
models might miss.

Another critical benefit of the latter approach is improved explain-
ability of model outputs. Although complex machine learning models are
often considered “black boxes,” the finance industry demands transparency
and interpretability for trust and regulatory compliance. The field of
explainable AI (XAI) has theorized a series of explanation types, such as
explanation-by-illustration, explanation-by-simplification, explanation-by-
examples, explanation-by-reasoning, etc19. In our context, a strong type is
explanation-by-models, and that enhanced models usually remain (more)
understandable afterAI integration. For instance, if a stock’s expected return
is adjusted upward due to bullish news sentiment, one can tracewhich news
topics or phrases drove that change, linking the AI’s inference back to
familiarfinancenarratives18,20 or similar patterns inhistory21. This synergyof
canonical financial models with AI creates a powerful combination: the
theoretical rigor of well-understood financial models together with the
predictive power and abundance of AI-driven insights. Yet full interpret-
ability in finance goes well beyond tracing a single cause or factor through a
familiar equation. Regulators and practitioners increasingly expect model-
level transparency: the capacity to explain to a non-expert why an auto-
mated decision changed when inputs or market regimes shift. Codifying
multiple aspects ofmodel behavior into businesses creates an audit trail that
satisfies upcoming AI governance rules, e.g., EU AI Act Article 15 (https://
artificialintelligenceact.eu/article/15/).

In the following sections,we expandonCAPM,MVO, andBLM, and a
list of other importantmodels in finance.We then discuss insights obtained
and future research opportunities in AI for financial modeling.

Enhancing CAPMwith AI
CAPM and related models
CAPM is a cornerstone of asset pricing theory that provides a simple for-
mula for the expected return of an asset. In CAPM, the expected excess
return (return above the risk-free rate) of asset i is proportional to the excess
return of the market portfolio:

EðRiÞ � Rf ¼ βi EðRmÞ � Rf

� �
; ð1Þ

whereRf is the risk-free rate,Rm is the return of themarket, and βimeasures
asset i’s sensitivity to market movements12. Intuitively, βi is like the asset’s
volatility in relation to the market: a stock with β = 1.2 is 20%more volatile
than the market and, according to CAPM, should earn 20% higher excess
returns than the market on average to compensate for that extra risk.

Since Rf is usually externally set by, e.g., a central bank, there are only
two “key variables” in CAPM: EðRmÞ and βi. AI can be used to calibrate
them. For example, it has been observed that stocks with high β did not
always earn proportionally higher returns, a phenomenon known as the
“flat security market line” in certain periods5. The oversimplification to a
single risk factor by CAPM has motivated many modifications, such as the
Fama-French factor models, adding factors such as company size, value,
industry, momentum, profitability, investment22,23, and machine-learned
structures16. The commercially popular MSCI Barra Risk Model further
considers cross-asset connectedness more systematically:

EðRiÞ ¼ αi þ
XK
k¼1

βik f k; ð2Þ

where αi is the stock-specific intercept for stock i (in practice often set to
zero), βik is the exposure (factor loading) of stock i to factor k, fk is the return
of factork (systematic factor).Thekey variablesareoften set as static because
thesefinance theories donot specify how to decide a regime shift and rely on
re-estimation to updatewith newdata. In the Barra RiskModel,αi(t), βik and
fk are key variables that require a lot of domain knowledge.

AI and new data for asset pricing
AI offers a powerful alternative to construct an asset pricing model: instead
of relying on a small number of predefined factors, machine learning
algorithms can mine vast datasets for return-related patterns. Recent
research in asset pricing also demonstrates that nonlinear models (like tree
ensembles and neural networks) can significantly improve the measure-
ment and decomposition of asset risk premia by considering dozens or even
hundreds offirmandmacroeconomic characteristics simultaneously16. This
was understood to bemainly due to the complexity of nonlinearmodels, but
the discovery of new “factors” also played an important role. For example, a
machine learning model might learn that a small technology stock with
improving sentiment on social media and positive earnings surprises tends
to have higher expected returns on top of the CAPM beta estimated using
other methods. In this case, the machine learning model goes beyond
“sentiment-aware” CAPM by extracting more contextual sentiment than
prior lexicographic methods24. For example, the supposition that “AI
quantifies investor psychology (fear, greed)” is oversimplistic and has been
analyzed for many years with mixed results. Deeply context-aware signals
are emerging as the new frontier.

Although sentiment has been known for a long time by finance
researchers, a major change in the AI era is that it will be derived from
analysis of news and social media rather than traditional surveys or ad hoc
proxies, allowing more complex behavioral patterns to be discovered. For
example, Calomiris and Mamaysky used machine learning to classify the
context of millions of news articles (e.g., distinguishing news about eco-
nomic policy vs. firm-specific news) and show that news context helps
predict volatility and returns across global markets25. Their work indicates
that markets react differently to news depending on the semantic content,
which a basic CAPM cannot accommodate.

LLMs push this idea further by reading and “understanding” text at
scale from non-sentiment angles, expanding new data beyond social media
to quarterly reports and Federal Reserve (Fed) Statements. A recent study26

demonstrated an LLM-based forecasting system that incorporates news
events into time-series predictions: the LLM agent filters relevant news and
assesseshow those events should shift a forecast, effectively reasoning like an
analyst reading the headlines. Such a system could adjust a stock’s expected
return upward if, say, a new product announcement is received positively in
the media, or downward if legal troubles dominate the news cycle. In the
context of CAPM, one could then build an “LLM-augmented CAPM”
where the model’s expected return EðRiÞ isn’t just a weighted average of
EðRmÞ and Rf, but is dynamically adjusted by an AI reading the news.
Formally, this might appear as:

EðRiÞ ¼ αiðNews SentimentiÞ þ γiðLLM FactorsiÞ þ
XK
k¼1

βik f k; ð3Þ

where αi and γi are adjustment terms derived using different AI tools for
asset i. If those factors are positive (e.g., overwhelmingly good news), the
stock is expected to outperform the standard CAPM prediction. Empirical
experiments support this kind of augmentation. For example, Colasanto
et al.27 used a fine-tuned BERT model to generate sentiment scores and
showed that portfolios constructed to exploit these sentiment signals
achieved higher returns.

In summary, AI enriches CAPM by providing: (1) dynamic inputs:
sentiment and textual indicators to adjust factors and betas in real time; (2)
proprietary factors: machine learning can uncover nonlinear structures
from big data as proprietary factors by letting the data speak, avoiding the
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“factor zoo” problem that well-theorized factors’ effectiveness quickly
decays. However, the error induced by LLMs needs to be controlled; (3)
behavioral context: AI quantifies investor psychology (fear, greed) and how
it impacts pricing, thus blending behavioral finance with CAPM’s risk-
return framework; In the next section, we turn to the domain of portfolio
optimization, where AI is having an equally profound impact.

Enhancing MVO and BLM with AI
MVO and BLM
In this subsection, we briefly introduce the background knowledge ofMVO
and BLM. MVO laid the foundation for modern portfolio management by
formalizing the trade-off between risk and return13. In this framework, an
investor chooses portfolio weights for a set of assets to maximize expected
return for a given level of risk (variance), or equivalently tominimize risk for
a given target return. The outcome is the famous efficient frontier—a curve
of optimal portfolios inmean-variance space.Thekey equation at the coreof
this dual-objective optimization is:

maximize
XN
i¼1

μiwi

zfflfflfflffl}|fflfflfflffl{return item

� δ

2

XN
i¼1

XN
j¼1

wiσ ijwj

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{risk item

subject to
PN
i¼1

wi ¼ 1; i ¼ 1; 2; . . . ;N: wi ≥ 0:

ð4Þ

where δ is an indicator of risk aversion, wi denotes the weight of the cor-
responding asset in the portfolio, μi is equivalent to the CAPM EðRiÞ and
denotes the expected return of asset i, σij is the covariance between returns of
asset i and j. The optimized weights of an efficient portfolio are therefore
given by the first-order condition of Eq. (4):

w� ¼ ðδΣÞ�1μ; ð5Þ

whereΣ is the covariancematrix of asset returns andμ is a vector of expected
returns μi. At the risk level of holdingw*, the efficient portfolio achieves the
maximum combinational expected return. Apparently, there are three key
variables (μ, Σ, δ) here that together decide the portfolio holding weights.

While conceptually elegant, applying MVO in practice is challenging
because it is very sensitive to the key variable estimations. For example,
estimation errors in μ are pernicious: if one asset’s return is overestimated
even slightly, the optimizer will tend to over-allocate to that asset. Classical
approaches often use historical averages for μ and covariances for Σ, but
financial returns are noisy and non-stationary, so naive estimates lead to
unstable portfolios15. In fact, out-of-sample tests showed that simple heur-
istics like equal-weighting often beat mean-variance optimized portfolios
unless estimation is improved or constraints are imposed. This brings new
opportunities for AI intervention: building on top of the discussions on
(time-varying) expected return estimation, AI can further help model
complex risk structures and investor risk profiling.

The BLM14, in a sense, is an early effort to parameterize μ and Σ.
Assume that the equilibrium returns are normally distributed as
req � N ðΠ; τΣÞ, where Σ is the covariance matrix of asset returns, τ is an
indicator of the confidence level of theCAPMestimation ofΠ. Similarly, the
market views on the expected returns held by an investor agent can also be
normally distributed as rviews � N ðQ;ΩÞ. Subsequently, the posterior dis-
tributionof theportfolio returns (providing the views) is alsoGaussian. Ifwe
denote this distribution by rBL � N ðμBL;ΣBLÞ, then μBL and ΣBL will be a
function of the aforementioned variables:

μBL;ΣBL

� � ¼ f ðτ;Σ;Ω;Π;QÞ: ð6Þ

For example, μBL ¼ Πþ ΣP>ðPΣP> þΩÞ�1ðq� PΠÞ, where P, q, Ω are
auxiliary matrices encoding the structure, level, and uncertainty of views.
This construct enables more meaningful and explainable use of AI in

adjusting expected return estimations.Again,whilenormaldistributions are
useful starting points, data quality issues (e.g., outliers) can destroy this type
of analysis. AI can be used in the robustness checks and forming of robust
methods in BLM's analysis framework.

Interface with expected return
A major way that AI improves portfolio optimization is by making better
predictions about asset returns (the vector μ). Beyond the CAPMmodeling
discussed in the previous section, μBL also introduces view-related variables.
This is precisely where AI can step in: to systematically generate views from
data (including textual data) andat the same time calibrate their uncertainty.
Previous studies have done this by measuring the average sentiment as well
as the opinion divergence of sentiment time series on a daily basis4,18.

More specifically, consider an AI system that reads all news about
companies in the S&P 500 each day. It could produce a sentiment score for
each company (positive or negative), and if there is nonews, the scorewould
be zero. We can treat those sentiment scores as signals about short-term
returns: a strongly positive score might imply the stock is likely to outper-
form the market in the near term. This becomes a view in the Black-
Litterman sense: “Stock A’s return will be +x% above equilibrium.” If we
have such a signal for every stock,we essentially haveN views (whereN is the
numberof assets).Directly usingNviewswouldbe toomany, but often these
signals are noisy. BLM can handle this by assigning a low confidence to any
single-stock view derived from one day of news. Collectively, however, the
signals containuseful informationandwill tilt the portfoliomodestly toward
stockswith betternews andaway from thosewith badnews.Colasanto et al.2
7 implemented a version of this idea: they computed sentiment from
Financial Times news articles for various stocks and treated the sentiment-
implied return as a view in a “dynamic”BLM. In their approach, after a news
article is published about company X, they simulate X’s stock price path
under different sentiment scenarios (using a Monte Carlo method) to
estimate the impact on price. The difference between this sentiment-
adjusted price and the current price yields a viewonX’s expected return (for
the next few days). These views are then fed into a Black-Litterman opti-
mizer that updates the portfolio hourly. The authors report that including
the sentiment-based views led to improvedportfolio performance relative to
ignoring sentiment, demonstrating that the AI-induced views are useful27.

In another example28, AI essentially automates what a team of
analysts might do: reading news and adjusting forecasts, but does so for
dozens of sectors simultaneously and continuously. Importantly, AI
can help determine the confidenceΩ for each view in a principled way.
For instance, a sentiment signal could be back-tested to see how pre-
dictive it has been historically. If a particular news sentiment measure
for a stock has a track record of correctly signifying direction 70%of the
time, we might give it a higher confidence (lower Ω) than a sentiment
measure that is only right 55% of the time. Due to the instability of
sentiment indicators, however, most real-world sentiment-based
investment strategies use a ranked portfolio approach, e.g., investing in
the 10 strongest assets and shorting the 10 weakest based on expected
return estimations. It has been proven that sentiment is also highly
regime-dependent; for instance, it reacts more strongly in bad times
than in good times.

Interface with risk
AI can also improve estimates of risk (Σ) in two ways: (1) by identifying
regime change and (2) by stabilizing near-term risk. Machine learning and
natural language processing offer data-driven methods to capture how
correlations change in different regimes29. For example, a regime-switching
model or a neural network can be trained on historical correlation patterns
conditioned onmarket volatility, interest rates, or sentiment, to dynamically
adjust the covariancematrix in stress scenarios.A supplementary example is
that an increaseoften follows the contagion effects of asset correlations in the
number of news articles about financial crises. By incorporating such text-
derived features, anAImodel canmodify the portfolio risk and recommend
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a more sophisticated allocation when volatility is not accurately manifested
in prices.

Another interesting development is a deep reinforcement learning
portfolio manager and the use of XAI tools to interpret its behavior post
hoc30. The agent learns to reduce exposure ahead of volatile periods (cap-
turing some of the market timing that static mean-variance cannot). This
study highlights that the agent’s policy can be learned amapping akin to “if
news sentiment deteriorates and volatility spikes, shift allocation from
stocks to bonds”, whichmirrors what a prudent humanmanager might do.

Covariance matrices, especially for many assets, are difficult to
estimate accurately due to data sparsity. Techniques like shrinkage
estimators (Ledoit-Wolf) have been used in practice to get a more
stable Σ. An alternative source of information is the semantic
knowledge about assets and their relationships. An insightful example
is the use of natural language processing to leverage textual descrip-
tions of assets as a guide to constructing the dependency model15. For
example, company descriptions, industry classifications, or business
summaries contain semantic clues about which companies are related
(e.g., two banks or two tech firms might be more fundamentally linked
than a bank and a utility company). By processing these descriptive
documents, one can derive a prior network of relationships among
assets. This “semantic prior” then constrains or guides the selection of
the vine copula structure for the asset returns. This approach exem-
plifies how AI can extract knowledge and complement numerical
financial data. Notably, semantic relationships might hold even when
historical correlations break down (e.g., a policy change affecting an
entire sector), potentially making portfolios more resilient to market
regime shifts. More broadly, this idea falls under knowledge-based
investing, where ontologies and knowledge graphs constructed from
text sources (like SEC filings or financial encyclopedias) inform
investment decisions. As AI continues to be more powerful, we expect
to see more integration of explicit knowledge (e.g., cause-effect rela-
tions mentioned in text, supply chain links, or management senti-
ment) into quantitative asset allocation frameworks to achieve both
better performance and robustness.

Interface with risk aversion
One corollary of MVO and BLM is that investors with different risk
preferences will have different optimal portfolios. AI’s proven capability
in user profiling and personality analytics31 can greatly empower these
financial models. Recent advances show that AI can transform risk-
attitude profiling by stitching together rigorous evidence on why per-
sonality matters for financial behavior with state-of-the-art methods for
how to infer those traits at scale. Behavioral experiments reveal that
extroversion, low neuroticism, and spontaneous-rational decision styles
jointly drive larger risky-asset holdings32, while nationally representative
panel data confirm that openness and conscientiousness predict faster
net-worth growth and greater equity participation, whereas neurotic
individuals favor precautionary cash33. Crucially, deep-learning artifacts
such as the wlpHAN/SPDFiT34 now detect those Big-Five signatures
from ordinary text—tweets, MD&A filings, even brief essays—with 10-
20 percentage-point gains over prior NLP models. Integrating such
high-precision, text-derived personality vectors into the BLM engines
(e.g., the CNN-based pipeline6) allows AI systems to infer investors’
latent risk tolerance continuously and non-intrusively, update priors as
fresh digital traces arrive, and tailor portfolio recommendations
accordingly. In short, AI bridges the empirical link between personality
and risk-taking and delivers it to practice by automating trait extraction,
fusing it with market and demographic data, and producing more
granular, behaviorally informed risk-profiling tools.

Enhancing other financial models with AI
Beyond the models discussed above, modern financial engineering has
studied a list of other canonical models, e.g., the Black-Scholes model for

option pricing, the Cox-Ingersoll-Ross (CIR) model for interest rate term-
structure dynamics, and more. These together furnish a treasure cave in
which AI can add substantial value.

For example, the Black-Scholes model assumes the price of a non-
dividend-paying stock to follow Geometric Brownian motion:

dSt ¼ μSt dt þ σSt dWt ; ð7Þ

where the implied volatility σ is a key variable and the surface σimpl(K,T) has
to be calibrated from thousands of option quotes. AI can provide another
perspective on the risk and volatility of assets35.

The CIR model, similarly, is defined as a stochastic differential equa-
tion:

drt ¼ aðb� rtÞ dt þ σ
ffiffiffiffi
rt

p
dWt ; ð8Þ

where b is the long-termmean interest rate and a is themean reversion rate.
The CIR model also has three key variables (b, a, σ), where AI has access to
information such as Fed meeting calendars, statements, and minutes to
reasonably recalibrate the variables with clear physical meanings.

Discussion, limitations, and outlook
Across the CAPM, MVO, BLM, and other financial models, we can see a
common theme: AI does not merely recognize advanced patterns from
existing data, but also injects new information into models that were tra-
ditionally constrained by limiteddata and thus simplified assumptions. This
symbiosis is transforming financial modeling in both research and practice.
Several notable insights are summarized below:
• Data, not algorithm, generates alpha:Quantitativefinance has always

been data-driven, but the scope was often limited to price and funda-
mental data. AI allowsmodels to ingest the “soft” information that was
previously only in the human realm (news, opinions, central bank
communications). As shown by multiple studies, incorporating these
textual signals can improve return forecasts and risk management.

• Microandmacroboundariesbecomeblurred:AIcanconnectmicro-
level signals (e.g., firm-specific sentiment) to macro outcomes (market
or sectormovements). Thismeansmodels likeCAPMandBLMcan be
extended to multi-scale views. A local piece of news can slightly tilt a
global portfolio: something hard to do at scale without the help of AI.

• The role of human expertise is shifting: In the approach to combine
financial models with AI, human judgment seems unlikely to become
entirely obsolete. Rather, it will migrate to a higher, supervisory plane.
In traditional workflows, portfoliomanagers exercise judgmentmainly
at the feature engineering stage: discarding factors they deem spurious
in order to curb overfitting. AI-augmented models, by contrast, can
ingest and process far richer factors than any manual screen could
accommodate, so the human contribution shifts toward quality
control. A risk manager, for example, might deploy an AI-enhanced
MVO to automate portfolio adjustments, but will still have to decide
the AI analyzer to use, the scope of data to permit, and have to validate
the model outcomes.

• New research frontiers are emerging: The convergence of AI and
finance is openingnewquestions. For example, how canwedistinguish
true signals from spurious correlations? Fake or manipulated news36 is
not yet a serious problem in this domain, but things are fast-changing.
Another promising area of research is how we can define/integrate
ethical and regulatory constraints, e.g., Environmental, social, and
governance (ESG) data, into AI-empowered financial models in a
meaningful way.

This article is limited in two aspects. First, we rely heavily on NLP
models and sentiment as examples of AI for discussion. Sentiment is not the
only vehicle for using AI: other results, such as the number of news articles
on certain topics, semantics, personality detection, and the machine
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processing of a large amount of (derivatives) data, are underexplored. Sec-
ond, wemainly focus on the improvement of financialmodels per se, butAI
brings opportunities beyond that. There aremany otherwaysAI can help in
the investment process, suchas supporting less technically versed specialists,
devising novel and complex models based on practitioner insights, and
touching a larger customer base and managing relations.

In conclusion, we discussed a research direction that AI can
meaningfully contribute to the development of financial modeling: by
fusing new information rather than mining the existing data, by
focusing on the key variables rather than the target output. This
approach retains the elegance and logic of CAPM, MVO, etc., but
empowers them with data and computation that far exceed what was
imaginable when those models were formulated. As these AI-
enhanced models continue to evolve, they will likely drive better
practical outcomes and a deeper understanding of financial markets.
Just as the original models revolutionized finance in the late 20th
century, their AI-augmented descendants are poised to transform
finance in the 21st century. This synergy between AI and finance
exemplifies how combining domain knowledge with technological
innovation can create powerful new tools—in this case, tools that help
investors navigate complexity and uncertainty with greater confidence
and insight.

Data availability
No datasets were generated or analyzed during the current study.
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