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Large LanguageModels have expanded the potential for clinical Natural Language Generation (NLG),
presenting new opportunities to manage the vast amounts of medical text. However, their use in such
high-stakes environments necessitate robust evaluationworkflows. In this review,we investigated the
current landscape of evaluation metrics for NLG in healthcare and proposed a future direction to
address the resource constraints of expert human evaluation while balancing alignment with human
judgments.

The rapid development of Large Language Models (LLMs) has led to sig-
nificant advancements in the field of Natural Language Generation (NLG).
In the medical domain, LLMs have shown promise in reducing
documentation-based cognitive burden for healthcare providers, particu-
larly in NLG tasks such as summarization and question answering. Sum-
marizing clinical documentation has emerged as a critical NLG task as the
volume of medical text in Electronic Health Records (EHRs) continues to
expand1.

Recent advancements, like the introduction of larger context windows
in LLMs (e.g., Google’s Gemini 1.5 Pro with a 1 million-token capacity2),
allow for the processing of extensive textual data, making it possible to
summarize entire patient histories in a single input. However, a major
challenge in applying LLMs to high-stakes environments like medicine is
ensuring the reliable evaluation of their performance. Unlike traditional
approaches, generative AI (GenAI) offers greater flexibility by generating
natural language narratives that use language dynamically to fulfill tasks.
Yet, this flexibility introduces added complexity in assessing the accuracy,
reliability, and quality of the generated output where the desired response is
not as static.

The evaluation of clinical summarization by LLMs must address the
intricaciesof complexmedical texts and tackle LLM-specific challenges such
as relevancy, hallucinations, omissions, and ensuring factual accuracy3.
Healthcare data can further complicate the LLM-specific challenges because
they can contain conflicting or incorrect information. Current metrics, like
n-gram overlap and semantic scores, used in summarization tasks are
insufficient for the nuanced needs of the medical domain4. While these
metrics may perform adequately for simple extractive summarization, they
fall short when applied to abstractive summarization5, where complex

reasoning and in-depth medical knowledge are required. They are also
unable to differentiate the needs of various users or provide evaluations that
account for the relevancy of generations.

In the era of GenAI, automation bias further complicates the potential
risks posedbyLLMs, particularly in clinical settingswhere the consequences
of inaccuracies can be severe. Therefore, efficient and automated evaluation
methods are essential. In this review, we examine the current state of LLM
evaluation in summarization tasks, highlighting both its applications and
limitations in the medical domain. We also propose a future direction to
overcome the labor-intensive process of expert human evaluation, which is
time-consuming, costly, and requires specialized training.

Search strategy and selection criteria
Comprehensive literature searches were conducted across multiple data-
bases focused on summarization and question-answering tasks with a
special focus on clinical applications (Fig. 1). From April 20, 2023 through
August 3, 2023, searches were conducted across the Association for Com-
putational Linguistics (ACL) anthology, Medline, and Scopus databases for
literature that employed human frameworks or pre-LLM automated
metrics for evaluative efforts related to these tasks. This search resulted in
262 abstracts for review. FromApril 16, 2024 through June 6, 2024, searches
were conducted across the Association for Computational Linguistics
(ACL) anthology, Association for Computing Machinery (ACM) Digital
Library, Web of Science, Institute of Electrical and Electronics Engineers
(IEEE) Xplore, and Scopus databases for literature that utilized large lan-
guage models in evaluative processes related to these tasks. This search
resulted in 95 abstracts for review. The free text, filters, and queries by
database for each search can be found in Supplementary Tables 1 and 2.
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Materials were selected for inclusion in this review if they (1) introduced
novel human evaluation frameworks or automatedmetrics, (2) centered on
a clinically-relevant summarization task, or (3) demonstrated improve-
ments over Recall-Oriented Understudy for Gisting Evaluation (ROUGE).
Following abstract reviews with these criteria, there were 82 and 48 papers
respectively that underwent full text review for a total of 130.We also choose
to include anymaterials thatwere referencedbymultiple other articleswhen
presenting potential improvement comparisons or fundamental knowledge
pertaining to the task of evaluation.

Human evaluations in electronic health record
documentation
The current human evaluation frameworks for human-authored clinical
notes are largely based on pre-GenAI rubrics that assess clinical doc-
umentation quality. These frameworks vary depending on the type of
evaluators, content, and the analysis required to generate evaluative scores.
Such flexibility allows for tailored evaluation methods, capturing task-
specific aspects that ensure quality generation. Expert evaluators, with their
field-specific knowledge, play a crucial role inmaintaining high standards of
assessment.

Some commonly used pre-GenAI rubrics include the SaferDx6, Phy-
sician Documentation Quality Instrument (PDQI-9)7, and Revised-IDEA8

rubrics. The SaferDx rubric focuses on identifying diagnostic errors and
analyzing missed opportunities in EHR documentation through a 12-
question retrospective survey aimed at improving diagnostic decision-
making and patient safety. The PDQI-9 evaluates physician note quality
across nine criteria questions, ensuring continuous improvement in clinical
documentation and patient care. The Revised-IDEA tool offers feedback on
clinical reasoning documentation through a 4-item assessment. All three of
these rubrics place emphasis on the omission of relevant diagnoses
throughout the differential diagnosis process and the relevant objective data,
processes, and conclusions associated with those diagnoses. They also
require clinical documentation to be free of incorrect, inappropriate, or
incomplete information emphasizing the importance of the quality of evi-
dence and reasoning that is present in clinical documentation. Each rubric
includes additional questions based on the origin and usage of specific

clinical documentation— like the PDQI-9’s assessment of organization to
ensure a reader is able to understand the clinical course of a patient. Each of
the three also uses different assessment styles based on the granularity of the
questions and intention behind the assessment. For instance, the Revised-
IDEA tool uses a count style assessment for 3 of the 4-items to guarantee the
inclusion of a minimum number of objective data points and inclusion of
required features for a high-quality diagnostic reasoning documentation. In
recent publications, the SaferDx tool has been used as a retrospective ana-
lysis of the use of GenAI in clinical practice9, whereas the PDQI-9 and
Revised-IDEA tools have been utilized to compare the quality of clinical
documentation that is written by clinicians versus GenAI methods10–12.
While each of these rubrics was not originally designed to evaluate LLM-
generated content, they offer valuable insights into the essential criteria for
evaluating text generated in the medical domain.

Human evaluations remain the gold standard for LLM outputs13.
However, because these rubrics were initially developed for evaluating
clinician-generated notes, they may need to be adapted for the specific
purpose of evaluating LLM-generated output. Several new and modified
evaluation rubrics have emerged to address the unique challenges posed by
LLM-generated content, including evaluating the consistency and factual
accuracy (i.e., hallucinations) of the generated text. Common themes in
these adapted rubrics include safety14, modality15,16, and correctness17,18.

Criteria for human evaluations
In general, the criteria that are used to make up evaluation rubrics for LLM
output fall into sevenbroad criteria: (1)Hallucination4,17–22, (2)Omission14,19,
(3) Revision23, (4) Faithfulness/Confidence15,16,23, (5) Bias/Harm14,16,22, (6)
Groundedness14,15, and (7) Fluency15,17,20,23. Hallucination encompasses any
evaluative questions that intend to capturewhen information in a generated
text does not follow from the source material. Unsupported claims, non-
sensical statements, improbable scenarios, and incorrect or contradictory
facts would be flagged by questions in this criteria. Omission-based ques-
tions are used to identify missing information in a generated text. Medical
facts, important information, and critical diagnostic decisions can all be
considered omitted when not included in generated text, if those items
would have been included by a medical professional. When an evaluator is

Fig. 1 | Literature search overview. A high level view of the two literature searches conducted for this review and their results.
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asked to make revisions or estimate the number of revisions needed for a
generated text, the evaluative questionwould fall underRevision. Generated
texts are revised until they meet the standards set forth by a researcher,
hospital system, or larger government body. Faithfulness/Confidence is
generally characterized by questions that capture whether a generated text
has preserved the content of the source text and presented conclusions that
reflect the confidence and specificity present in the source text. Questions
about Bias/Harm evaluate whether generated text is introducing potential
harm to a patient or reflecting bias in the response. Information that is
inaccurate, inapplicable, or poorly applied would be captured by questions
that fall under this criteria.Groundedness refers to evaluative questions that
grade the quality of the source-based evidence for a generated text. Any
evidence that contains poor reading comprehension, recall of knowledge,
reasoning steps, or is antithetical to scientific consensus would result in a
poor groundedness score. In addition to the content of a generated text, the
Fluency of a generated text is also included in evaluations. Coherency,
readability, grammatical correctness, and lexical correctness fall under this
criteria. In many cases, Fluency is assumed to be adequate in favor of
focusing on content-based evaluative criteria.

Analysis of human evaluations
The method of analysis for evaluation rubrics can also vary based upon the
setting and task. Evaluative scores can be calculated using binary/Likert
categorizations14,15, counts/proportions of pre-specified instances22, edit
distance23, or penalty/reward schemes similar to those used for medical
exams24. Binary categorizations answer evaluative questions using True/
False orYes/No response schema.This set-up allows complex evaluations to
be broken down into simpler and potentially more objective decisions. A
binary categorization placesmore penalization on smaller errors by pushing
responses to be either acceptable or unacceptable. Likert-scaled categor-
izations allow for a higher level of specificity in the score by providing an
ordinal scale. These scales can consist of as many levels as necessary, and in
many cases there are between 3 and 9 levels including a neutral option for
unclear responses. Scales with a higher number of levels introduce more
problems with meeting assumptions of a normal distribution into an ana-
lysis, along with complexity and disagreement amongst reviewers. Count/
proportion-based evaluations require an evaluator to identify pre-specified
instances of correct or incorrect key phrases related to a particular evaluative
criteria. A precision, recall, f-score, or rate can then be computed from an
evaluator’s annotations to establish a numerical score for a generated text.
Edit distance evaluations also require an evaluator to make annotations on
the generated text that is being evaluated. In these cases, an evaluatormakes
edits to the generated text until it is satisfactory or no longer contains critical
errors. These edits can be corrections on factual errors, inclusion of omis-
sions, or removal of irrelevant items. The evaluative score is the distance
from the original generated text and the edited version based upon the
number of characters, words, etc. that required editing. The Levenshtein
distance25 is an example of an algorithm used to calculate the distance
between the generated text and its edited version. This distance is calculated
as the minimum number of substitutions, insertions, and deletions of
individual characters required to change the original to the edited version.
Finally, one of themore complexways to compute evaluative scores is to use
a Penalty/Reward schema. These schema award points for positive out-
comes to evaluative questions and penalize negative outcomes. This schema
is similar to those seen on national exams which account for positive and
negative scores, using the importance anddifficulty associatedwith different
questions. For example, the schema used to evaluate LLMs on the Med-
HALT dataset is an average of the correct and incorrect answers which are
assigned +1 and −0.25 points respectively24. This evaluation schema pro-
vides a high level of specificity for assigning weights representative of the
trade-off between false positives and false negatives.

Drawbacks of human evaluations
While human evaluations provide nuanced assessments, they are resource-
intensive and heavily reliant on the recruitment of evaluators with clinical

domain knowledge. The experience and background of an evaluator can
significantly influence how they interpret and evaluate generated text.
Additionally, the level of guidance and specificity in evaluative instructions
determines how much of the assessment is shaped by the evaluators’ per-
sonal interpretations and beliefs about the task. Although increasing the
number of evaluators could mitigate some of these biases, resources—both
time and financial—often limit the scale of human evaluations. These
evaluations also require substantial manual effort, and without clear
guidelines and training, inter-rater agreement may suffer. Ensuring that
human evaluators alignwith the evaluation rubric’s intent requires training,
much like annotation guidelines for NLP shared tasks26–28. In the clinical
domain, medical professionals are typically used as expert evaluators, but
their time constraints limit their availability for large-scale evaluations. The
difficulty of recruitingmoremedical professionals, compoundedby the time
needed for thorough assessments, makes frequent, rapid evaluations
impractical.

Another concern is the validity of the evaluation rubric itself. A robust
human evaluation frameworkmust possess strong psychometric properties,
including construct validity, criterion validity, content validity, and inter-
rater reliability, to ensure reproducibility and generalizability. Unfortu-
nately, many frameworks used in clinical evaluations do not provide suffi-
cient details about their creation, making it difficult to assess their
validity15,24. Often, human evaluation frameworks are developed for specific
projects with only one evaluator, andwhilemetrics like inter-rater reliability
are crucial to establish validity, they are not always reported18,23. Moreover,
clinically relevant evaluation rubrics have not been specifically designed to
assess LLM-generated summaries.Most existing evaluation rubrics focus on
assessing human-authored note quality, and they do not encompass all the
elements required to evaluate the unique aspects of LLM-generated
outputs6–8.

Pre-LLM automated evaluations
Automated metrics offer a practical solution to the resource constraints of
human evaluations, particularly in fields like Natural Language Processing
(NLP), where tasks such as question answering, translation, and summar-
ization have long relied on these methods. Automated evaluations employ
algorithms,models, or heuristic techniques to assess the quality of generated
text without the need for continuous human intervention, making them far
more efficient in terms of time and labor. These metrics, however, depend
heavily on the availability of high-quality reference texts, often referred to as
“gold standards.” The generated text is compared against these gold stan-
dard reference texts to evaluate its accuracy and howwell it meets the task’s
requirements. Despite their efficiency, automated metrics may struggle to
capture the nuance and contextual understanding required in more com-
plexdomains, such as clinical diagnosis,where subtle differences inphrasing
or reasoning can have significant implications. Therefore, while automated
evaluations are valuable for their scalability, their effectiveness is closely tied
to the quality and relevance of the reference texts used in the evaluation.

Categories of automated evaluation
Automated evaluations in the clinical domain can be categorized into five
primary types (Fig. 2), each tailored to specific evaluation goals and
dependent on the availability of reference and source material for the gen-
erated text: (1) Word/Character-based, (2) Embedding-based, (3) Learned
metrics, (4) Probability-based, (5) and Pre-Defined Knowledge Base.

Word/Character-based evaluations rely on comparisons between a
reference text and the generated text to compute an evaluative score. These
evaluations can be based on character, word, or sub-sequence overlaps
depending on the need of the evaluation and the nuance that may be present
in the text. RecallOrientedUnderstudy forGistingEvaluation (ROUGE)29 is a
prime example of a word/character-based metric. The many variants of
ROUGE — N-gram Co-Occurrence (N), Longest Common Sub-sequence
(L), Weighted Longest Common Sub-sequence (W), Skip-Bigram Co-
Occurrence (S) — represent the level of comparison between the reference
and generated texts. ROUGE-L is the current gold standard for automated
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evaluation, especially in summarization, and relies on the longest common
subsequencebetween the referenceandgenerated texts.Theevaluative score is
computed as the fraction of words in the text that are in the longest common
subsequence. Edit distancemetrics25would also fall under this category as they
arebasedon thenumberofwordsor characters thatwouldneed tobechanged
tomatch the referenceandgenerated texts. Edits canbeclassifiedas insertions,
deletions, substitutions, or transpositions of the words/characters in the
generated text.

Embedding-based evaluations create contextualized or static embed-
dings for the reference and generated texts for comparison rather than
relying on exact matches between words or characters. These embedding-
based metrics are able to capture semantic similarities between two texts
since the embedding for a word or phrase would be based on the text that
surrounds it as well as itself. The BERTScore30 is a commonly used metric
that falls under this category. For this metric, a Bidirectional Encoder
Representations fromTransformers (BERT)model31 is used to generate the
contextualized embeddings before computing a greedy cosine similarity
score based on those embeddings.

Learned metric-based evaluations rely on training amodel to compute
the evaluations. These metrics can be trained on example evaluation scores
or directly on the reference and generated text pairs. Regression and neural
network models are the foundation of these metrics providing varying
degrees of complexity for the learnable parameters. The Crosslingual
OptimizedMetric for Evaluation of Translation (COMET)32 is ametric that
would fall under this category as it is a neuralmodel trained for evaluation. It

was originally created for evaluation of machine translations, but has since
been applied to other generative tasks. COMET uses a neural network with
the generated text as input toproducean evaluative score.Thismetric canbe
applied to datasets that are reference-less as well as those with
reference texts.

Probability evaluations rely on calculating the likelihood of a generated
text based on domain knowledge, reference texts, or source material. These
metrics equate high-quality generations with those that have a high prob-
ability of being coherent or relevant to the reference or source text. They also
penalize the inclusion of off-topic or unrelated information. An example is
BARTScore33, which calculates the sumof log probabilities for the generated
output based on the reference text. In this case, the log probabilities are
computed using the Bidirectional and Auto-Regressive Transformer
(BART) model, which assesses how well the generated text aligns with the
expected content34.

Pre-Defined Knowledge Base metrics rely on established databases of
domain-specific knowledge to inform the evaluation of generated text. These
metrics are particularly valuable in specialized fields like healthcare, where
general language models may lack the necessary depth of knowledge. By
incorporating domain-specific knowledge bases, such as theNational Library
of Medicine’s Unified Medical Language System (UMLS)35, these metrics
provide more accurate and contextually relevant evaluations. Pre-defined
knowledge bases can enhance other evaluation methods, such as contextual
embedding, machine learning, or probability-based metrics, by grounding
them in the specialized terminology and relationships unique to the domain.

Fig. 2 | Pre-LLM automated evaluation metric taxonomy. A structured organi-
zation of pre-LLM automated evaluation metrics categorized by their bases and the
need for ground truth references. Those metrics that were built for or have been
applied in the clinical domain are in bold. The taxonomy includes Recall-Oriented
Understudy forGisting Evaluation (ROUGE)29,Metric for Evaluation of Translation
with Explicit Ordering (METEOR)66, Jensen-Shannon (JS) Divergence67,
Consensus-based Image Description Evaluation (CIDEr)68, PyrEval69, Standardized
Bilingual Evaluation Understudy (sacreBLEU)70, Summarization Evaluation by
Relevance Analysis (SERA)71, POURPRE72, Basic Elements (BE)73, Bilingual Eva-
luation Understudy (BLEU)70, General Text Matcher (GTM)74, Word Error Rate
(WER)75/ Translation Edit Rate (TER)76, Improving Translation Edit Rate (ITER)77/
CDER (Cover-Disjoint Error Rate)78, chrF (character n-gram F-score)79, characTER
(Character Level Translation Edit Rate)80, Extended Edit Distance (EED)81, YiSi82,
Q-metrics83, Concept Unique Identifier (CUI) F-Score37, Crosslingual Optimized
Metric for Evaluation of Translation (COMET)32, Bilingual Evaluation Understudy
with Representations from Transformers (BLEURT)84, Combined Regression

Model for Evaluating Responsiveness (CREMER)85, Better Evaluation as Ranking
(BEER)86, BLEND87, Composite88, Neural Network Based Evaluation Metric
(NNEval)88, Enhanced Sequential Inference Model (ESIM)89, Regressor Using
Sentence Embeddings (RUSE)90, Bidirectional Encoder Representations from
Transformers for Machine Translation Evaluation (BERT for MTE)91,
ClinicalBLEURT19, Conditional Bilingual Mutual Information (CBMI)92, NIST93,
BERTScore30, MoverScore94, AUTOmatic SUMMary Evaluation based on N-gram
Graphs (AutoSumm ENG)95, Merge Model Graph (MeMoG)95, Semantic Proposi-
tional Image Caption Evaluation (SPICE)96, BERTr97, Word Embedding-based
automatic MT evaluation using Word Position Information (WEWPI)98, Word
Mover-Distance (WMD)99, SIMILE100, NeUral Based Interchangeability Assessor
(NUBIA)101, SapBERTScore102, ClinicalBERTScore103, PubMedBERTScore104,
UMLSScorer38, MIST19, Summary-Input Similarity Metrics (SIMetrix)67,
BARTScore33, Hallucination Risk Measurement+ (HARiM+)105,
ClinicalBARTScore33, MedBARTScore19, Semantic Normalized Cumulative Gain
(SEM-nCG)106, Intrinsic Knowledge Graph107.
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This combination ensures that evaluations account for both linguistic accu-
racy and the specialized knowledge required in fields like clinical medicine.
BERTScore has a variant that was trained on the UMLS called the
SapBERTScore36. The score functions similarly to the general domain
BERTScore but leverages a BERT model fine-tuned using UMLS data to
generate more domain-specific embeddings. Other metrics based on the
UMLS include the CUI F-Score37 and UMLS Scorer38. The UMLS Scorer
utilizes UMLS-based knowledge graph embeddings to assess the semantic
quality of the text19, providing a more structured approach to evaluating
clinical content. Meanwhile, the CUI F-Score represents text using Concept
Unique Identifiers (CUIs) from the UMLS, calculating F-scores that reflect
how well the generated text aligns with key medical concepts. This enables a
more granular evaluation of the relevance and accuracy of medical termi-
nology within the generated content.

Drawbacks of automated metrics
Prior to the advent of LLMs, automated metrics would generate a
single score meant to represent the quality of a generated text,
regardless of its length or complexity. This single-score approach can
make it difficult to pinpoint specific issues in the text, and in the case of
LLMs, it is nearly impossible to understand the precise factors con-
tributing to a particular score13. While automated metrics offer the
benefit of speed, this comes at the cost of relying on surface-level
heuristics, such as lexicographic and structural measures, that fail to
capture more abstract summarization challenges in medical text.
Abstractive summarization introduces unique evaluative challenges
because the generated text may not directly correspond to any part of
the original documentation. This contrasts with extractive summar-
ization, where generated content is explicitly drawn from the source
text, making quality assessments more straightforward. Conse-
quently, automated metrics developed prior to the advent of LLMs are
typically optimized for extractive approaches, limiting their ability to
fully capture the inferences and new language generated by abstractive
summarization. Furthermore, the subjective nature of assessing
clinical reasoning and coherence in abstractive summaries presents
additional challenges. Automated metrics often fail to account for the
alignment of generated content with clinical logic or decision-making
pathways, which are critical in the medical domain. This raises the
importance of complementing automated metrics with strong human
evaluation processes. Specifically, ensuring alignment with subject

matter experts and achieving high inter-rater reliability are essential to
mitigate subjectivity and provide robust evaluations.

Future directions: LLMs as evaluators to complement
human expert evaluators: prompt engineering LLMs
as judges
LLMs are versatile tools capable of performing a wide range of tasks,
including evaluating the outputs of other LLMs (Fig. 3). This concept, where
an LLM acts as a model of a human expert evaluator, has gained traction
with the advent of instruction tuning and reinforcement learning with
human feedback (RLHF)39. These advancements have significantly
improved the ability of LLMs to align their outputswith humanpreferences,
as seen in the transition from GPT-3 to GPT-4, which marked a paradigm
shift in LLM accuracy and performance40.

LLMs have the potential to bridge critical gaps in evaluation meth-
odologies for generative clinical text. Human evaluation frameworks, while
reliable, demand significant time and effort fromexpert reviewers, creating a
paradoxical bottleneck: LLMs designed to reduce the cognitive burden on
clinicians inadvertently introduce additional workload in their evaluation.
Automated metrics, as they currently exist, are often insufficient for asses-
sing the abstractive nature of generative outputs in clinical contexts. LLMs,
when aligned with expert human preferences, offer an opportunity to
augment evaluationprocesses, reducing the relianceonmanual reviewwhile
maintaining accuracy and relevance to clinical needs.

An effective LLM evaluator would be able to respond to evaluative
questionswith precision and accuracy comparable to that of human experts,
following frameworks like those used in human evaluation rubrics. LLM-
based evaluations could providemany of the same advantages as traditional
automated metrics, such as speed and consistency, while potentially over-
coming the reliance on high-quality reference texts. Moreover, LLMs could
evaluate complex tasks by directly engaging with the content, bypassing the
need for simplistic heuristics and offering more information into factual
accuracy, hallucinations, and omissions.

Although the use of LLMs as evaluators is still emerging in research,
early studies have demonstrated their utility as an alternative to human
evaluations, offering a scalable solution to the limitations of manual
assessment41. As the methodology continues to develop, LLM-based eva-
luations hold promise for addressing the shortcomings of both traditional
automated metrics and human evaluations, particularly in complex,
context-rich domains such as clinical text generation.

Fig. 3 | Stages of prompt engineering LLMs as judges.The three different aspects of
prompt engineering expanded upon in section 5. The three sections - Zero-Shot and
In-Context Learning (ICL), Parameter Efficient Fine Tuning (PEFT), andPEFTwith

HumanAware Loss Function (HALO) - fit together into a larger schema for training
and prompting an LLM to serve as an evaluator to complement human expert
evaluators.
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Zero-shot and in-context learning
Onemethod fordesigningLLMs toperformevaluations is through theuseof
manually curated prompts (Fig. 4). Aprompt consists of the task description
and instructions provided to an LLM to guide its responses. Two primary
prompting strategies are employed in this context: Zero-Shot andFew-Shot3.
In Zero-Shot prompting, the LLM is given only the task description without
any examples before being asked to perform evaluations. Few-Shot
prompting provides the task description alongside a few examples to help
guide the LLM in generating output. The number of examples varies based
on the LLM’s architecture, input window limitations, and the point at which
the model performs optimally. Typically, between one and five few-shot
examples are used. Prompt engineering, through both Zero-Shot and Few-
Shot (“in-context learning”) approaches (collectively referred to as “hard
prompting”), enables an LLM to perform tasks that it was not explicitly
trained todo.However, performancecanvary significantlydependingon the
model’s pre-training and its relevance to the new task.

Beyond these manual approaches, a more adaptive strategy involves
“soft prompting,” also known as machine-learned prompts, which includes
techniques like prompt tuning and p-tuning42. Soft prompts are learnable
parameters added as virtual tokens to amodel’s input to signal task-specific
instructions. Unlike hard prompts, soft prompts are trained and incorpo-
rated into the model’s input layer, enabling the model to handle a broader
range of specialized tasks. Soft prompting has been shown to outperform
Few-Shot prompting, especially in large-scale models, as it fine-tunes the
model’s behavior without altering the core weights.

Through these methods, LLMs can be instructed to serve as evaluators
with instructions on the dimensions and scale needed for a thorough eva-
luation. Promising results for such methods have already been seen in
general domain applications like LLM-EVAL43 and TALEC44. LLM-EVAL
is a single prompt approach to employing LLM-based evaluators that can
consist of multiple dimensions. This approach reported correlation coeffi-
cients between human evaluators and LLM evaluators to have an average
increase of nearly 30 points over ROUGE-L. TALEC is a GPT-4 based
method that incorporates in context learning for establishing evaluation
criteria and has shown correlation coefficients of nearly 0.9. Even though
applications in the clinical domain are significantly more complex, there
have also been positive reports of LLM-based evaluators on clinically rele-
vant tasks. Models like Llama-2, ChatGPT-4o, and Claude-3 have been
applied for evaluations on medical question answering and clinical note
generation. Brake et al.45 experimented with model size, quantization, and
multiple in context learning varieties on Llama-2with final reports showing
aCohenKappaof 0.79with their humanevaluators.Krolik et al.46 prompted

ChatGPT-4o to perform evaluations of medical responses generated for a
question answering system on dimensions such as hallucinations, com-
pleteness, and coherence.

Parameter efficient fine-tuning
When prompting alone does not achieve the desired performance, fine-
tuning the entire LLM may be necessary for optimal task execution. Even
though an LLM may be pre-trained on a vast corpus, it can struggle with
tasks requiring domain-specific knowledge or handling nuanced inputs. To
address these challenges, Supervised fine-tuning (SFT) methods with
Parameter Efficient Fine-Tuning (PEFT) using quantization and low rank
adaptors can be employed, where the model is trained on a specialized
dataset of prompt/response pairs tailored to the task at hand. Fine-tuning
every weight in a LLM can require a large amount of time and computa-
tional resources. In these instances, quantization and low rank adaptors are
added to the fine-tuning process for PEFT. Quantization reduces the time
andmemory costs of training by using lower precision data types, generally
4-bit and8-bit, for theLLMsweights47. Low rank adaptors (LoRA) freeze the
weights of a LLM and decompose them into a smaller number of trainable
parameters ultimately also reducing the costs of SFT48. PEFT helps refine an
LLM by embedding task-specific knowledge, ensuring the model can
respond accurately in specialized contexts. The creation of these datasets is
critical–performance improvements are directly tied to the quality and
relevance of the prompt/response pairs used for fine-tuning. The goal is to
adjust the LLM to perform better in specific use cases, such as medical
diagnosis or legal reasoning, by narrowing its focus to task-specific beha-
viors through PEFT.

Training an LLM to serve as an evaluator could require task-specific
training, especially in very specialized domains like healthcare, where the
evaluation rubrics, scales, or other required definitions are part of the
training dataset. PHUDGE49 and FENCE50 are examples of PEFT methods
applied in general domain tasks for an LLM to serve as the evaluator.
PHUDGE is fine-tuned from Phi-3 as a cost-efficient alternative to closed
source promptingmethods formodels like GPT-4. Therefore, performance
comparisons were done against human and GPT-4 evaluations both of
whichhadhigh reported correlationswithPHUDGE. FENCEis an example
of a framework developed specifically for evaluating factuality. This meth-
odology focuses on using synthetic data to augment public datasets and
provide feedback to language generationmodels.When applied to Llama3-
8b-chat, factuality was reported to see more than a 14% increase.

Extensions to traditional PEFT methods have continued to be intro-
duced as research progresses towards specialized domains with specific

Fig. 4 | Anatomy of an evaluator prompt. An
evaluator prompt consists of three sections: prompt,
information, and evaluation. All three components
are essential for an LLM serving as an evaluator. The
Evaluator Prompt needs to instruct the LLM on the
task (Prompt), provide the LLM will all the neces-
sary information to make an evaluation (Informa-
tion), and all the information that defines the
guidelines and formatting of the evaluation
(Evaluation).
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needs. Methodologies such as preference-based learning, probability cali-
bration, text reprocessing, or some combination have emerged to refine the
capabilities of LLMs51. Preference-based learning is focused on the adap-
tationof LLMsusinghumanpreference data. In this style of training, human
preference datasets are curated to train LLMs for specialized evaluations.
Probability calibration and text reprocessing are post-processing meth-
odologies employed to refine LLMs through targeted adjustments following
analysis of initial outputs. Probability calibration quantifies discrepancies in
LLM generations and ground truth texts throughmathematical derivations
for adjustments. Text reprocessing hinges on integrating various iterations
of evaluative outputs to improve accuracy. Because of the nuanced nature of
the clinical domain, this review will focus on preference-based learning
methods where clinician’s preferences are incorporated in training the
evaluator. This allows the LLM serving as the evaluator to be guided by
feedback for understanding clinical relevancy.

Parameter efficient fine-tuning with human-aware loss function
In certain applications, the focus of fine-tuning is to align the LLM with
human values and preferences, especially when the model risks generating
biased, incorrect, or harmful content. This alignment, known as Human
Alignment training, is driven by high-quality human feedback integrated
into the training process. A widely recognized approach in this domain is
Reinforcement Learning withHuman Feedback (RLHF)52. RLHF is applied
to update the LLM, guiding it toward outputs that score higher on the
reward scale. In the reward model stage, a dataset annotated with human
feedback is used to establish the reward, typically scalar in nature, of a
particular response. The LLM is then trained to produce responses that will
receive higher rewards through a process known as Proximal Policy Opti-
mization (PPO)53. This iterative process ensures the model aligns with
human expectations, but it can be resource-intensive, requiring significant
memory, time, and computational power.

To address these computational challenges, newer paradigms have
emerged that streamlineHumanAlignment training by directly optimizing
the LLM-based on humanpreferences, without the need for a rewardmodel

with Direct Preference Optimization (DPO)54. DPO reformulates the
alignment process into ahuman-aware loss function (HALO), optimizedon
a dataset of human preferences where prompts are paired with preferred
and dis-preferred responses (Fig. 5). This method is particularly promising
for aligning LLMs with human preferences and can be applied to ordinal
responses, such as the Likert scales commonly seen in human evaluation
rubrics. While PPO improves LLM performance by aligning outputs with
humanpreferences, it is often sample-inefficient and can suffer from reward
hacking55. DPO, in contrast, directly optimizes model outputs based on
human preferences without needing an explicit reward model, making it
more sample-efficient and better aligned with human values. DPO sim-
plifies the training process by focusing directly on the desired outcomes,
leading to more stable and interpretable alignment. While these methods
have been successfully applied in other domains56–58, their use in themedical
field is under-explored. Training data from the human evaluation rubric on
amuch smaller scale toovercome labor constraints can be incorporated into
a loss function designed for human alignment using DPO.

In the last year, many variants of DPO have emerged for alignment
training methods that can prevent over-fitting and circumvent DPO’s
modeling assumptions withmodifications to the underlyingmodel and loss
function (Fig. 6).Alternativemethods suchas JointPreferenceOptimization
(JPO)59 and Simple Preference Optimization (SimPO)60 were derived from
DPO. These methods introduce regularization terms and modifications to
the loss function to prevent premature convergence and ensuremore robust
alignment over a broader range of inputs.Other alternativemethods such as
Kahneman-Tversky Optimization (KTO)61 and Pluralistic Alignment Fra-
mework (PAL)62 use alternatives to the Bradley-Terry preferences model
that underlies DPO. The alternative modeling assumptions used in these
methods can prevent the breakdown of DPO’s alignment in situations
without direct preference data and heterogeneous human preferences.

Drawbacks of LLMs as evaluators
LLMs hold promise for automating evaluation, but as with other automated
evaluationmethods, there are significant challenges to consider. Onemajor

Fig. 5 | Alignment workflow: PPO v. DPO. An overview of the processes for aligning an LLM through Reinforcement Learning Human Feedback (RLHF) with Proximal
Policy Optimization (PPO) and Direct Policy Optimization (DPO).
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issue is the rapid pace at which LLMs and their associated training stra-
tegies have evolved. This rapid development often outpaces the ability to
thoroughly validate LLM-based evaluators before they are used in prac-
tice. In some cases, new optimization techniques are introduced before
their predecessors have undergone peer review, and these advancements
may lack sufficient mathematical justification. The speed of LLM evolu-
tion can make it difficult to allocate time and resources for proper vali-
dation, which can compromise their reliability. The specific method of
validation for LLM-based evaluators is another open area of research. In
the case of multiple human evaluators, inter-rater reliability metrics have
been utilized to identify when different evaluators diverge. LLM-based
evaluation output can be compared against that of expert human eva-
luators, but the standard to which LLM-based evaluatorsmust be held has
yet to be determined. In cases of ordinal, count, or other numerical eva-
luation scoring outputs, validation metrics like root mean squared error
are also a possibility. One existing gap towards the reliable validation of
LLM-based evaluators is the existence of datasets tailored for this task
where the entire evaluative rubric is present and a highly-reliable ground
truth exists.

Moreover, despite their advancements, LLMs remain sensitive to the
prompts and inputs they receive. As LLMs continue to update and change
their internal knowledge representations and as their prompts also change,
the output can be highly variable. The exact LLM, or model version, that is
used can also add another layer of variability. The same prompts and inputs
can produce different results based on the LLM’s internal structure and pre-
training schema. LLMshave also beennoted for egocentric biaswhich could
affect evaluations as more and more LLM-generated text appears in source
texts63. As a result, the use of LLMs as evaluators must be accompanied by
stringent testing and safety checks to mitigate risks. Ensuring fairness in
their responses is also critical, particularly in sensitive domains like
healthcare, where biased or stigmatizing language could have serious con-
sequences. These challenges highlight the need for continuous evaluation,
testing, and refinement tomakeLLM-based evaluators both reliable and safe
for medical evaluations.

Evaluation needs for the clinical domain
The development of reliable evaluation strategies is becoming increasingly
important as the pace of innovation in GenAI outstrips the speed at which
these technologies are validated. In health systems, the focus on clinical
safety must also contend with the time constraints placed on healthcare
professionals. While human evaluation rubrics offer a high degree of
reliability and accuracy, they are significantly limited by the time commit-
ment required from medical professionals serving as evaluators. Ironically,
the technologies being evaluated often aim to reduce the cognitive load on
these same professionals, yet they demand further time investment for their
performance evaluation.

Automated evaluations, if properly designed for the clinical domain,
present a promising alternative to human evaluations. However, tradi-
tional non-LLM automated evaluations have thus far fallen short, failing
to consistently match the rigor of human evaluation rubrics5,13. These
metrics frequently overlookhallucinations, fail to assess reasoning quality,
and struggle to determine the relevance of generated texts. As LLMs are
introduced as potential alternatives for human evaluators, it is critical to
consider the unique requirements of the clinical domain. Systematic
reviews of LLM-based applications for healthcare reveal that evaluation
dimensions like safety, bias, and information quality are of particular
importance64,65. Since patient safety is at the forefront of many clinical
NLG tasks, clinically deployed LLMsmust be evaluated for their potential
to produce incorrect information or lead to negative patient outcomes.
They are also susceptible to adopting biased behavior based on non-
objective or non-comprehensive training data. This could infuse LLM
generations with stereotypes and biased results that are harmful to
patients. The quality of information in an LLM generation is also
important in clinical applications. Aspects like factuality, relevancy, use-
fulness, consistency, and completeness are employed to capture the extent
to which clinical text is representative of a patient’s clinical course. These
factors can be significantly more complex to evaluate using heuristics and
require some level of clinical knowledge to judge clinical impact. Eva-
luation frameworksmust incorporate assessments along these dimensions

Fig. 6 | Human aware loss functions (HALOs) from PPO to present. The
development timeline for HALOs from the advent of Proximal Policy Optimization
(PPO) in 2017 through 2024. EachHALO is connected to it’s precursor (eitherDPO
or PPO) by a dotted line. If a HALO has an algorithmic basis in reinforcement
learning, it is presented as white text on a solid color background. If a HALO has an
algorithmic basis that is reinforcement learning free, it is presented as colored text
on a white background. Each color, either text or background, corresponds to the
data requirements for that HALO. Blue corresponds to HALOs that only use
prompt/response pair data. Orange corresponds to HALOs that use response pre-
ference pairs in addition to the prompt. Finally, green corresponds to HALOs that
use binary judgement data in addition to the prompt/response pair. The figure

includes PPO Proximal Policy Pptimization53, DPO Direct Preference
Optimization54, RSO Statistical Rejection Sampling108, IPO Identity Preference
Optimization109, cDPO Conservative DPO110, KTO Kahneman Tversky
Optimization61, JPO Joint Preference Optimization59, ORPOOdds Ratio Preference
Optimization111, rDPO Robust DPO112, BCO Binary Classifier Optimization113,
DNODirect NashOptimization62, TR-DPOTrust TegionDPO114, CPOContrastive
Preference Optimization115, SPPO Self-Play Preference Optimization116, PAL
Pluralistic Alignment Framework62, EXO Efficient Exact Optimization117, AOT
Alignment via Optimal Transport118, RPO Iterative Reasoning Preference
Optimization119, NCA Noise Contrastive Alignment120, RTO Reinforced Token
Optimization121, SimPO Simple Preference Optimization60.
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in addition to those generally associated with high-quality text genera-
tions. These considerations require evaluation methodology designed
specifically for health system applications that will prioritize such clini-
cally relevant concerns over exact string matching or structural simila-
rities that have been themainstay of general domain evaluationmetrics. A
well-designed LLM evaluator—an “LLM-as-a-judge”—could potentially
combine the high reliability of human evaluations with the efficiency of
automated methods, while avoiding the pitfalls that have limited existing
automated metrics. If executed effectively, such LLM-based evaluations
could offer the best of both worlds, ensuring clinical safety without
sacrificing the quality of assessments.
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