Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Spinal Cord
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. spinal cord
  3. articles
  4. article
Effects of induced hypothermia on somatosensory evoked potentials in patients with chronic spinal cord injury
Download PDF
Download PDF
  • Article
  • Published: 01 November 1993

Effects of induced hypothermia on somatosensory evoked potentials in patients with chronic spinal cord injury

  • K C Hayes2,
  • J T C Hsieh1,
  • P J Potter1,
  • D L Wolfe1,
  • G A Delaney1 &
  • …
  • A R Blight1 

Spinal Cord volume 31, pages 730–741 (1993)Cite this article

  • 741 Accesses

  • 17 Citations

  • 3 Altmetric

  • Metrics details

Abstract

We have investigated the effects of mild whole body hypothermia on the amplitude and latency of somatosensory evoked potentials (SEPs) in control subjects (n = 12) and patients (n = 15) with chronic compressive or contusive spinal cord injury (SCI). Mild hypothermia (—1°C) was induced by controlled circulation of propylene glycol through a 'microclimate' head and vest garment while reductions in oral and limb temperatures were monitored. Cooling induced a delayed onset and reduced amplitude of tibial nerve SEPs in control subjects. All SCI patients with recordable SEPs (n = 11) showed similarly delayed onset of the cortical response. In contrast to the controls, nine of the 11 SCI patients showed an increase in amplitude of cortical SEPs. In three of these patients the increase in amplitude exceeded 100% of the precooling values. The cooling-induced changes in SEP amplitude and latency reversed on rewarming for both groups. The cooling-induced increases in cortical SEP amplitude support the a priori hypothesis that cooling would enhance central conduction in some SCI patients with conduction deficits due to focal demyelination.

Similar content being viewed by others

Observations of cold-induced vasodilation in persons with spinal cord injuries

Article Open access 22 February 2024

Heat loss augmented by extracorporeal circulation is associated with overcooling in cardiac arrest survivors who underwent targeted temperature management

Article Open access 13 April 2022

A prospective multi-center study comparing the complication profile of modest systemic hypothermia versus normothermia for acute cervical spinal cord injury

Article 10 January 2022

Article PDF

References

  1. McDonald W I (1975) Mechanisms of functional loss and recovery in spinal cord damage: In: Ciba Foundation Symposium 34 (new series), Symposium on the Outcome of Severe Damage to the Central Nervous System. Elsevier, Amsterdam: 23–33.

    Google Scholar 

  2. Wakefield C L, Eidelberg E (1975) Electron microscopic observations of the delayed effects of spinal cord compression. Exp Neurol 48: 637–646.

    Article  CAS  PubMed  Google Scholar 

  3. Yeo J D (1976) A review of experimental research in spinal cord injury. Paraplegia 14: 1–11.

    CAS  PubMed  Google Scholar 

  4. Young W, Yen V, Blight A (1982) Extracellular calcium ionic activity in experimental spinal cord contusion. Brain Research 253: 105–113.

    Article  CAS  PubMed  Google Scholar 

  5. Dimitrijevic M R (1988) Residual motor functions in spinal cord injury. In: Waxman SE, editor. Advances in Neurology 47. Functional Recovery in Neurological Disease. Raven Press. NY.

    Google Scholar 

  6. Blight A R (1983) Cellular morphology of chronic spinal cord injury in the cat: Analysis of myelinated axons by line-sampling. Neuroscience 10(2): 521–543.

    Article  CAS  PubMed  Google Scholar 

  7. Blight A R (1983) Axonal physiology of chronic spinal cord injury in the cat: Intracellular recording in vitro. Neuroscience 10: 1471–1486.

    Article  CAS  PubMed  Google Scholar 

  8. Blight A R (1985) Delayed demyelination and macrophage invasion: A candidate for secondary cell damage in spinal cord injury. Cent Nerv Syst Trauma 2: 299–314.

    Article  CAS  PubMed  Google Scholar 

  9. Blight A R, Young W (1989) Central axons in injured cat spinal cord recover electrophysiological function following remyelination by Schwann cells. J Neurol Sci 91: 15–34.

    Article  CAS  PubMed  Google Scholar 

  10. Gledhill R F, Harrison B M, McDonald W I (1973) Demyelination and remyelination after acute spinal cord compression. Exp Neurol 38: 472–487.

    Article  CAS  PubMed  Google Scholar 

  11. McDonald W I (1974) Remyelination in relation to clinical lesions of the central nervous system. Br Med Bull 30: 186–189.

    Article  CAS  PubMed  Google Scholar 

  12. Harrison B M, McDonald W I (1977) Remyelination after transient experimental compression of the spinal cord. Ann Neurol 1: 542–551.

    Article  CAS  PubMed  Google Scholar 

  13. Gledhill R F, McDonald W I (1977) Morphological characteristics of central demyelination and remyelination. A single fiber study. Ann Neurol 1: 552–560.

    Article  CAS  PubMed  Google Scholar 

  14. Bunge R P, Puckett W R, Becerra J L, Marcillo A, Quencer R M (1993) Observations on the pathology of human spinal cord injury: A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination, In: Seil FJ, editor. Neural Regeneration 59. Raven Press, NY: 75–89.

    Google Scholar 

  15. Chiu S Y, Ritchie J M (1980) Potassium channels in nodal and internodal axonal membrane in mammalian myelinated fibres. Nature 284: 170–171.

    Article  CAS  PubMed  Google Scholar 

  16. Chiu S Y, Ritchie J M (1981) Evidence for the presence of potassium channels in the internodal region of acutely demyelinated mammalian single nerve fibres. J Physiol (Lond) 313: 415–437.

    Article  CAS  Google Scholar 

  17. Koles Z J, Rasminsky M (1972) A computer simulation of conduction in demyelinated nerve fibres. J Physiol (Lond) 227: 351–364.

    Article  CAS  Google Scholar 

  18. McDonald W I, Sears T A (1970) The effect of experimental demyelination on conduction in the central nervous system. Brain 93: 583–598.

    Article  CAS  PubMed  Google Scholar 

  19. Sakatani K, Ohta T, Shimo-oku M (1987) Conductivity of dorsal column fibers during experimental spinal cord compression and after decompression at various stimulus frequencies. Cent Nerv Syst Trauma 4: 161–179.

    Article  CAS  PubMed  Google Scholar 

  20. Sakatani K, Iizuka H, Young W (1991) Randomized double pulse stimulation for assessing stimulus frequency-dependent conduction in injured spinal and peripheral axons. EEG Clin Neurophysiol 81: 108–117.

    CAS  Google Scholar 

  21. Waxman S G (1988) Biophysical mechanisms of impulse conduction in demyelinated axons. In: Waxman SG, editor. Functional Recovery in Neurological Disease. Raven Press, New York: 185–214.

    Google Scholar 

  22. Waxman S G (1989) Demyelination in spinal cord injury. J Neurol Sci 91: 1–14.

    Article  CAS  PubMed  Google Scholar 

  23. Blight A R (1989) Effect of 4-Aminopyridine on axonal conduction-block in chronic spinal cord injury. Brain Res Bull 22: 47–52.

    Article  CAS  PubMed  Google Scholar 

  24. Davis F A, Jacobson S (1971) Altered thermal sensitivity in injured and demyelinated nerve: A possible model of temperature effects in multiple sclerosis. J Neurol Neurosurg Psychiatry 34: 551–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brismar T (1980) Potential clamp analysis of membrane currents in rat myelinated nerve fibres. J Physiol (Lond) 298: 171–184.

    Article  CAS  Google Scholar 

  26. Davis F A (1970) Axonal conduction studies based on some considerations of temperature effects in multiple sclerosis. EEG Clin Neurophysiol 28: 281–286.

    Article  CAS  Google Scholar 

  27. Frankenhaeuser B, Moor L E (1963) The effect of temperature on the sodium and potassium permeability changes in myelinated nerve fibres of Xenopus laevis. J Physiol (Lond) 169: 431–437.

    Article  CAS  Google Scholar 

  28. Louis A A, Hotson J R (1986) Regional cooling of human nerve and slowed NA+ inactivation. EEG Clin Neurophysiol 63: 371–375.

    Article  CAS  Google Scholar 

  29. Schauf C L, Davis F A (1974) Impulse conduction in multiple sclerosis: a theoretical basis for modification by temperature and pharmacological agents. J Neurol Neurosurg Psychiatry 37: 152–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rasminsky M (1973) The effects of temperature on conduction in demyelinated single nerve fibres. Arch Neurol 28: 287–292.

    Article  CAS  PubMed  Google Scholar 

  31. Watson C W (1959) Effect of lowering of body temperature on the symptoms and signs of multiple sclerosis. N Engl J Med 261: 1253–1259.

    Article  CAS  PubMed  Google Scholar 

  32. VanDieman H A M, VanDongen M M M M, Dammers J W H H, Polman C H (1992) Increased visual impairment after exercise (Uhthoff's phenomenon) in multiple sclerosis: Therapeutic possibilities. Eur Neurol 32: 231–234.

    Article  Google Scholar 

  33. Boynton B L, Garramone P M, Buca J (1985) Observations on the effects of cool baths for patients with multiple sclerosis. Phys Ther Rev 39: 297–299.

    Article  Google Scholar 

  34. Symington G R, MacKay I R, Currie T T (1977) Improvement in multiple sclerosis during prolonged induced hypothermia. Neurology 27: 302–303.

    Article  CAS  PubMed  Google Scholar 

  35. Nelson D A, McDowell E (1959) The effects of induced hyperthermia on patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 11: 113–116.

    Article  Google Scholar 

  36. Namerow N S (1968) Circadian temperature rhythm and vision in multiple sclerosis. Neurology 18: 417–422.

    Article  CAS  PubMed  Google Scholar 

  37. Hayes K C, Blight A R, Potter P J, Allatt R D, Hsieh J T C, Wolfe D L et al (1993) Preclinical trial of 4-Aminopyridine in patients with chronic spinal cord injury. Paraplegia 31: 216–224.

    CAS  PubMed  Google Scholar 

  38. Cooper K E, Cranston W I, Snell E S (1964) Temperature in the external auditory meatus as an index of central temperature changes. J Appl Physiol 19: 1032–1035.

    Article  CAS  PubMed  Google Scholar 

  39. Chiappa K H, editor (1990) Evoked Potentials in Clinical Medicine. Raven Press, New York.

    Google Scholar 

  40. Blair E (1964) Clinical Hypothermia. McGraw-Hill, New York.

    Google Scholar 

  41. DeLisa J, Mackenzie K, Baran E (1987) Manual of Nerve Conduction Velocity and Somatosensory Evoked Potentials. 2nd ed. Raven Press, New York: 190–200.

  42. Hume A L, Durkin M A (1986) Central and spinal somatosensory conduction times during hypothermic cardiopulmonary bypass and some observations on the effects of fentanyl and isoflurane anesthesia. EEG Clin Neurophysiol 65: 46–58.

    CAS  Google Scholar 

  43. De Jesus P V, Hausmanowa-Petrusewicz I, Barchi R L (1973) The effect of cold on nerve conduction of human slow and fast nerve fibers. Neurology 23: 1182–1189.

    Article  CAS  PubMed  Google Scholar 

  44. de Jong R H, Hershey W N, Wagman I H (1966) Nerve conduction velocity during hypothermia in man. Anesthesiology 27: 805–810.

    Article  CAS  PubMed  Google Scholar 

  45. Benita M, Conde H (1972) Effects of local cooling upon conduction and synaptic transmission. Brain Res 36: 133–151.

    Article  CAS  PubMed  Google Scholar 

  46. Stejskal L, Travnicek V, Sourek K, Kredba J (1980) Somatosensory evoked potentials in deep hypothermia. Appl Neurophysiol 43: 1–7.

    Article  CAS  PubMed  Google Scholar 

  47. Markand O N, Warren C H, Moorthy S S, Stoelting R K, King R D (1984) Monitoring of multimodality evoked potentials during open heart surgery under hypothermia. EEG Clin Neurophysiol 59: 432–440.

    CAS  Google Scholar 

  48. Budnick B, McKeown K L, Wiederholt W C (1981) Hypothermia-induced changes in rat short latency somatosensory evoked potentials. EEG Clin Neurophysiol 51: 19–31.

    Article  CAS  Google Scholar 

  49. Oro J, Haghighi S (1992) Effects of altering core body temperature on somatosensory and motor evoked potentials in rats. Spine 17: 498–503.

    Article  CAS  PubMed  Google Scholar 

  50. Perot P L (1973) The clinical use of somatosensory evoked potentials in spinal cord injury. Clin Neurosurg 20: 367–381.

    Article  PubMed  Google Scholar 

  51. Riffel B . Stohr M, Korner S (1984) Spinal and cortical evoked potentials following stimulation of the posterior tibial nerve in the diagnosis and localisation of spinal cord diseases. EEG Clin Neurophysiol 58: 400–407.

    Article  CAS  Google Scholar 

  52. Young W (1982) Correlation of somatosensory evoked potentials and neurological findings in spinal cord injury In: Tator CD, editor. Early Management of Acute Spinal Cord Injury. Raven Press, New York.

    Google Scholar 

  53. Simons D J (1937) Note on effect of heat and of cold upon certain symptoms of multiple sclerosis. Bull Neurol Inst 6: 385–386.

    Google Scholar 

  54. Guthrie T C (1951) Visual and motor changes in patients with multiple sclerosis: A result of induced changes in environmental temperature. Arch Neurol Psychiatry 65: 437–451.

    Article  CAS  Google Scholar 

  55. Bajada S, Mastaglia F L, Black J L, Collins D W K (1980) Effects of induced hyperthermia on visual evoked potentials and saccade parameters in normal subjects and multiple sclerosis patients. J Neurol Neurosurg Psychiatry 43: 849–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Matthews W B, Read D J, Pountney E (1979) Effect of raising body temperature on visual and somatosensory evoked potentials in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 42: 250–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physical Medicine & Rehabilitation, Parkwood Hospital and The University of Western Ontario, London, Ontario, Canada

    J T C Hsieh, P J Potter, D L Wolfe, G A Delaney & A R Blight

  2. Director of Research, Parkwood Hospital, 801 Commissioners Road East, London, N6C 5J1., Ontario, Canada

    K C Hayes

Authors
  1. K C Hayes
    View author publications

    Search author on:PubMed Google Scholar

  2. J T C Hsieh
    View author publications

    Search author on:PubMed Google Scholar

  3. P J Potter
    View author publications

    Search author on:PubMed Google Scholar

  4. D L Wolfe
    View author publications

    Search author on:PubMed Google Scholar

  5. G A Delaney
    View author publications

    Search author on:PubMed Google Scholar

  6. A R Blight
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayes, K., Hsieh, J., Potter, P. et al. Effects of induced hypothermia on somatosensory evoked potentials in patients with chronic spinal cord injury. Spinal Cord 31, 730–741 (1993). https://doi.org/10.1038/sc.1993.115

Download citation

  • Issue date: 01 November 1993

  • DOI: https://doi.org/10.1038/sc.1993.115

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • SEPs
  • spinal cord injury
  • demyelination
  • hypothermia
Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Calendar of Events
  • Journal Information
  • Open Access Fees and Funding
  • About the Editors
  • About the Partner
  • Contact
  • For Advertisers

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Spinal Cord (Spinal Cord)

ISSN 1476-5624 (online)

ISSN 1362-4393 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited