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Peter Shadbolt1, Tamás Vértesi2, Yeong-Cherng Liang3, Cyril Branciard4, Nicolas Brunner5

& Jeremy L. O’Brien6

1Centre for Quantum Photonics, H. H. Wills Physics Laboratory & Department of Electrical and Electronic Engineering, University of
Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, United Kingdom, 2Institute of Nuclear Research of the
Hungarian Academy of Sciences, H-4001 Debrecen, P.O. Box 51, Hungary, 3Group of Applied Physics, University of Geneva, CH-
1211 Geneva 4, Switzerland, 4School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia,
5H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom, 6Centre for Quantum
Photonics, H. H. Wills Physics Laboratory & Department of Electrical and Electronic Engineering, University of Bristol, Merchant
Venturers Building, Woodland Road, Bristol, BS8 1UB, UK.

Bell tests — the experimental demonstration of a Bell inequality violation — are central to understanding the
foundations of quantum mechanics, and are a powerful diagnostic tool for the development of quantum
technologies. To date, Bell tests have relied on careful calibration of measurement devices and alignment of a
shared reference frame between two parties — both technically demanding tasks. We show that neither of
these operations are necessary, violating Bell inequalities (i) with certainty using unaligned, but calibrated,
measurement devices, and (ii) with near-certainty using uncalibrated and unaligned devices. We
demonstrate generic quantum nonlocality with randomly chosen measurements on a singlet state of two
photons, implemented using a reconfigurable integrated optical waveguide circuit. The observed results
demonstrate the robustness of our schemes to imperfections and statistical noise. This approach is likely to
have important applications both in fundamental science and quantum technologies, including
device-independent quantum key distribution.

N
onlocality is arguably among the most striking aspects of quantum mechanics, defying our intuition
about space and time in a dramatic way1. Although this feature was initially regarded as evidence of the
incompleteness of the theory2, there is today overwhelming experimental evidence that nature is indeed

nonlocal3. Moreover, nonlocality plays a central role in quantum information science, where it proves to be a
powerful resource, allowing, for instance, for the reduction of communication complexity4 and for device-
independent information processing5–8.

In a quantum Bell test, two (or more) parties perform local measurements on an entangled quantum state,
Fig. 1(a). After accumulating enough data, both parties can compute their joint statistics and assess the presence of
nonlocality by checking for the violation of a Bell inequality. Although entanglement is necessary for obtaining
nonlocality it is not sufficient. First, there exist some mixed entangled states that can provably not violate any Bell
inequality since they admit a local model9,10. Second, even for sufficiently entangled states, one needs judiciously
chosen measurement settings11. Thus although nonlocality reveals the presence of entanglement in a device-
independent way, that is, irrespectively of the detailed functioning of the measurement devices, one generally
considers carefully calibrated and aligned measuring devices in order to obtain a Bell inequality violation. This in
general amounts to having the distant parties share a common reference frame and well calibrated devices.

Although this assumption is typically made implicitly in theoretical works, establishing a common reference
frame, as well as aligning and calibrating measurement devices in experimental situations are never trivial issues.
For instance, in the context of quantum communications via optical fibres, unavoidable small temperature
changes induce strong rotations of the polarisation of photons in the fibre. This makes it challenging to maintain
a good alignment, which in turn severely hinders the performance of quantum communication protocols in
optical fibres12. Also, in the field of satellite based quantum communications13,14, the alignment of a reference
frame represents a key issue given the fast motion of the satellite and the short amount of time available for
completing the protocol—in certain cases there simply might not be enough time to align a reference frame.
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Finally, in integrated optical waveguide chips, the calibration of
phase shifters is a cumbersome and time-consuming operation. As
the complexity of such devices is increased, this calibration proced-
ure will become increasingly challenging.

It is therefore an interesting and important question whether the
requirements of having a shared reference frame and calibrated
devices can be dispensed with in nonlocality tests. It was recently
shown15 that, for Bell tests performed in the absence of a shared
reference frame, i.e., using randomly chosen measurement settings,
the probability of obtaining quantum nonlocality can be significant.
For instance, considering the simple Clauser-Horne-Shimony-Holt
(CHSH) scenario16, randomly chosen measurements on the singlet
state lead to a violation of the CHSH inequality with probability of
, 28%; moreover this probability can be increased to , 42% by
considering mutually unbiased measurement bases. The generalisa-
tion of these results to the multipartite case were considered in Refs.
[15, 17], as well as schemes based on decoherence-free subspaces18.
Although these works demonstrate that nonlocality can be a rela-
tively common feature of entangled quantum states and random
measurements, it is of fundamental interest and practical importance
to establish whether Bell inequality violation can be ubiquitous.

Here we demonstrate that nonlocality is in fact a far more generic
feature than previously thought, violating CHSH inequalities with-
out a shared frame of reference, and even with uncalibrated devices,
with near-certainty. We first show that whenever two parties per-
form three mutually unbiased (but randomly chosen) measurements
on a maximally entangled qubit pair, they obtain a Bell inequality
violation with certainty—a scheme that requires no common ref-
erence frame between the parties, but only a local calibration of each
measuring device. We further show that when all measurements are
chosen at random (i.e., calibration of the devices is not necessary
anymore), although Bell violation is not obtained with certainty, the
probability of obtaining nonlocality rapidly increases towards one as
the number of different local measurements increases. We perform
these random measurements on the singlet state of two photons
using a reconfigurable integrated waveguide circuit, based on
voltage-controlled phase shifters. The data confirm the near-unit
probability of violating an inequality as well as the robustness of
the scheme to experimental imperfections—in particular the non-
unit visibility of the entangled state—and statistical uncertainty.
These new schemes exhibit a surprising robustness of the observation
of nonlocality that is likely to find important applications in dia-
gnostics of quantum devices (e.g. removing the need to calibrate
the reconfigurable circuits used here) and quantum information

protocols, including device-independent quantum key distribution5

and other protocols based on quantum nonlocality6–8 and quantum
steering19.

Results
Bell test using random measurement triads. Two distant parties,
Alice and Bob, share a Bell state. Here we will focus on the singlet
state

Y{j i~ 1ffiffiffi
2
p 0j iA 1j iB{ 1j iA 0j iB
� �

, ð1Þ

though all our results can be adapted to hold for any two-qubit
maximally entangled state. Let us consider a Bell scenario in which
each party can perform 3 possible qubit measurements labelled by

the Bloch vectors a!x and b
!

y (x, y 5 1, 2, 3), and where each
measurement gives outcomes 61. After sufficiently many runs of
the experiment, the average value of the product of the measurement

outcomes, i.e. the correlators Exy~{ a!x
: b
!

y , can be estimated from
the experimental data. In this scenario, it is known that all local
measurement statistics must satisfy the CHSH inequalities:

CHSH~ ExyzExy0zEx0y{Ex0y0
�� ��ƒ2, ð2Þ

and their equivalent forms where the negative sign is permuted to the
other terms and for different pairs x, x9 and y, y9; there are, in total, 36
such inequalities.

Interestingly, it turns out that whenever the measurement settings
are mutually unbiased, i.e. a!x

: a!x0~dx,x0 and b
!

y
: b
!

y0~dy,y0 (ortho-
gonal measurement triads, from now on simply referred to as mea-
surement triads), then at least one of the above CHSH inequalities
must be violated — except for the case where the measurement triads
are perfectly aligned, i.e. for each x, there is a y such that a!x~+ b

!
y .

Therefore, a generic random choice of unbiased measurement set-
tings — where the probability that Alice and Bob’s settings are per-
fectly aligned is zero (for instance if they share no common reference
frame) — will always lead to the violation of a CHSH inequality.

Proof. Assume that a!x
� �

and b
!

y

n o
are orthonormal bases.

Since the correlators of the singlet state have the simple scalar prod-
uct form Exy~{ a!x

: b
!

y , the matrix

e~

E11 E12 E13

E21 E22 E23

E31 E32 E33

0
B@

1
CA ð3Þ

contains (in each column) the coordinates of the three vectors { b
!

y ,
written in the basis a!x

� �
.

By possibly permuting rows and/or columns, and by possibly
changing their signs (which corresponds to relabelling Alice and
Bob’s settings and outcomes), we can assume, without loss of gen-
erality, that E11, E22 . 0 and that E33 . 0 is the largest element (in
absolute value) in the matrix E. Noting that b

!
3~+ b

!
1| b
!

2 and
therefore jE33j5 jE11E22 – E12E21j, these assumptions actually imply
E33 5 E11E22 – E12E21 $ E11, E22, jE12j, jE21j and E12E21 # 0; we will
assume that E12 # 0 and E21 $ 0 (one can multiply both the x 5 2 row
and the y 5 2 column by 21 if this is not the case).

With these assumptions, (E11 1 E21) max[–E12, E22] $ E11E22 –
E12E21 5 E33 $ max[–E12, E22], and by dividing by max[–E12, E22]
. 0, we get E11 1 E21 $ 1. One can show in a similar way that –
E12 1 E22 $ 1. Adding these last two inequalities, we obtain

E11zE21{E12zE22§2: ð4Þ

Since E is an orthogonal matrix, one can check that equality is
obtained above (which requires that both E11 1 E21 5 1 and

–E12 1 E22 5 1) if and only if a!1~ b
!

1, a!2~ b
!

2 and

Figure 1 | Bell violations with random measurements. (a) Schematic

representation of a Bell test. (b) Schematic of the integrated waveguide chip

used to implement the new schemes described here. Alice and Bob’s

measurement circuits consist of waveguides to encode photonic qubits,

directional couplers that implement Hadamard-like operations, thermal

phase shifters to implement arbitrary measurements, and detectors.
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a!3~ b
!

3. (See Supplementary Information for details) Therefore,
if the two sets of mutually unbiased measurement settings a!x

� �

and b
!

y

n o
are not aligned, then inequality (4) is strict: a CHSH

inequality is violated. Numerical evidence suggests that the above
construction always gives the largest CHSH violation obtainable
from the correlations (3).

While the above result shows that a random choice of measure-
ment triads will lead to nonlocality with certainty, we still need to
know how these CHSH violations are distributed; that is, whether the
typical violations will be rather small or large. This is crucial espe-
cially for experimental implementations, since in practise, various
sources of imperfections will reduce the strength of the observed
correlations. Here we consider two main sources of imperfections:
limited visibility of the entangled state, and finite statistics.

First, the preparation of a pure singlet state is impossible experi-
mentally due to noise. In the experiment described here, limited
visibility mainly originates from imperfect operation of the photon
source and detectors. It is thus desirable to understand the effect of
such experimental noise, which can be modelled by a Werner state
with limited visibility V:

Y{j i?rV~V Y{ihY{j jz 1{Vð Þ 1
4
: ð5Þ

This, in turn, results in the decrease of the strength of correlations by
a factor V. In particular, when Vƒ1

� ffiffiffi
2
p

, the state (5) ceases to
violate the CHSH inequality. States rV are known as Werner states9.

Second, in any experiment the correlations are estimated from a
finite set of data, resulting in an experimental uncertainty. To take
into account this finite-size effect, we will consider a shifted classical
bound L§2 of the CHSH expression (2) such that an observed
correlation is only considered to give a conclusive demonstration
of nonlocality if CHSHwL. Thus, if the CHSH value is estimated
experimentally up to a precision of d, then considering a shifted
classical bound of L~2zd ensures that only statistically significant
Bell violations are considered.

We have estimated numerically the distribution of the CHSH
violations (the maximum of the left-hand-side of (2) over all x, x9,
y, y9) for uniformly random measurement triads on the singlet state

(see Fig. 2). Interestingly, typical violations are quite large; the aver-
age CHSH value is , 2.6, while only , 0.3% of the violations are
below 2.2. Thus this phenomenon of generic nonlocality is very
robust against the effect of finite statistics and of limited visibility,
even in the case where both are combined. For instance, even after
raising the cutoff to L~2:1 and decreasing the singlet visibility to
V 5 0.9, our numerical simulation shows that the probability of
violation is still greater than 98.2% (see Fig 2).

Bell tests using completely random measurements. Although
performing unbiased measurements does not require the spatially
separated parties to share a common reference frame, it still requires
each party to have good control of the local measurement device.
Clearly, local alignment errors (that is, if the measurements are not
exactly unbiased) will reduce the probability of obtaining
nonlocality. In practise the difficulty of correctly aligning the local
measurement settings depends on the type of encoding that is used.
For instance, using the polarisation of photons, it is rather simple to
generate locally a measurement triad, using wave-plates. However,
for other types of encoding, generating unbiased measurements
might be much more complicated (see experimental part below).

This leads us to investigate next the case where all measurement

directions a!x, b
!

y

n o
are chosen randomly and independently. For

simplicity, we will focus here on the case where all measurements are

chosen according to a uniform distribution on the Bloch sphere.

Although this represents a particular choice of distribution, we

believe that most random distributions that will naturally arise in

an experiment will lead to qualitatively similar results, as indicated by

our experimental results.
We thus now consider a Bell test in which Alice and Bob share a

singlet, and each party can use m possible measurement settings, all
chosen randomly and uniformly on the Bloch sphere. We estimated
numerically the probability of getting a Bell violation as a function of
the visibility V [of the state (5)] for m 5 2,…,8; see Fig. 2. Note that
for m $ 4, additional Bell inequalities appear20; we have checked
however, that ignoring these inequalities and considering only
CHSH leads to the same results up to a very good approximation.
Fig. 2 clearly shows that the chance of finding a nonlocal correlation

Figure 2 | (a) Bell tests using random measurement triads (theory). Distribution of the (maximum) CHSH violations for uniformly random

measurement triads on a singlet state. The inset shows the probability of obtaining a CHSH violation as a function of the visibility V of the Werner state;

this probability is obtained by integrating the distribution of CHSH violations (main graph) over the interval [2/V, 2
ffiffiffi
2
p

]. (b) Bell tests using completely
random measurements (theory). Plot of the probability of Bell violation as a function of the visibility V of the Werner state, for different numbers m of

(completely random) measurements per party.

www.nature.com/scientificreports
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rapidly increases with the number of settings m. Intuitively, this is
because when choosing an increasing number of measurements at
random, the probability that at least one set of four measurements (2
for Alice and 2 for Bob) violates the CHSH inequality increases
rapidly. For example, with m 5 3 settings, this probability is 78.2%
but with m 5 4, it is already 96.2%, and for m 5 5 it becomes 99.5%.
Also, as with the case of unbiased measurements, the probability of
violation turns out to be highly robust against depolarising noise; for
instance, for V 5 0.9 and m $ 5, there is still at least 96.9% chance of

finding a subset a!x, a!x0 , b
!

y, b
!

y0

n o
among our randomly chosen

measurements that gives nonlocal correlations.

Measurement devices. We use the device shown in Fig. 1(b) to
implement Alice and Bob’s random measurements on an
entangled state of two photons. This device is a reconfigurable
quantum photonic chip, in which qubits are encoded using path or
dual-rail encoding25. The path encoded singlet state is generated
from two unentangled photons using an integrated waveguide
implementation21,22 of a nondeterministic CNOT gate23, an archi-
tecture which also enables deliberate introduction of mixture. This
state is then shared between Alice and Bob who each have a Mach-
Zehnder (MZ) interferometer, consisting of two directional couplers
(equivalent to beamsplitters) and variable phase shifters (w1,2 and
w3,4) and single photon detectors. This enables Alice and Bob to
independently make a projective measurement in any basis by
setting their phase shifters to the required values24,25. The first
phase-shifters (w1,3) implement rotations around the Z axis of the
Bloch sphere (RZ wð Þ~e{iwsZ=2); since each directional coupler imple-
ments a Hadamard-like operation (H ’~eip=2e{ipsZ=4He{ipsZ=4,
where H is the usual Hadamard gate), the second phase shifters
(w2,4) implement rotations around the Y axis (RY wð Þ~e{iwsY=2).
Overall, each MZ interferometer implements the unitary
transformation U(w1,3, w2,4) 5 RY(w2,4)RZ(w1,3), which enables
projective measurement in any qubit basis when combined with a
final measurement in the logical (Z) basis using avalanche
photodiode single photon detectors (APDs).

Each thermal phase shifter is implemented as a resistive ele-
ment, lithographically patterned onto the surface of the waveguide
cladding. Applying a voltage v to the heater has the effect of locally
heating the waveguide, thereby inducing a small change in refractive
index n (dn/dT < 1 3 10–5K) which manifests as a phase shift in the
MZ interferometer. There is a nonlinear relationship between the
voltage applied and the resulting phase shift w(v), which is generally
well approximated by a quadratic relation of the form

w uð Þ~azbv2: ð6Þ

In general, each heater must be characterised individually — a
procedure which is both cumbersome and timeconsuming. The
function w(v) is estimated by measuring single-photon interference
fringes from each heater. The parameter a can take any value
between 0 and 2p depending on the fabrication of the heater, while
typically b*0:15 rad

V2
24,25. For any desired phase, the correct voltage

can then be determined.
In the experiments described here, heater calibration is necessary

both for state tomography, and for implementing random measure-
ment triads. In contrast, this calibration can be dispensed with
entirely when implementing completely random measurements.
Thus, in this case we simply choose random voltages from a uniform
distribution, in the range [0V, 7V], which is adequate to address
phases in the range 0 # w # 2p—i.e. no a priori calibration of
Alice and Bob’s devices is necessary. Clearly this represents a signifi-
cant advantage for our device.

Experimental violations with random measurement triads. We
first investigate the situation in which Alice and Bob both use 3
orthogonal measurements. We generate randomly chosen measure-
ment triads using a pseudo-random number generator. Having
calibrated the phase/voltage relationship of the phase shifters, we
then apply the corresponding voltages on the chip. For each pair of
measurement settings, the two-photon coincidence counts between
all 4 combinations of APDs (C00, C01, C10, C11) are then measured for
a fixed amount of time—the typical rate of simultaneous photon
detection coincidences is , 1 kHz. From these data we compute

Figure 3 | Bell tests requiring no shared reference frame. Here we perform Bell tests on a two-qubit Bell state, using randomly chosen measurement

triads. Thus our experiment requires effectively no common reference frame between Alice and Bob. (a) 100 successive Bell tests; in each iteration, both

Alice and Bob use a randomly-chosen measurement triad. For each iteration, the maximal CHSH value is plotted (black points). In all iterations, we get a

CHSH violation; the red line indicates the local bound (CHSH52). The smallest CHSH value is , 2.1, while the mean CHSH value (dashed line) is

, 2.45. This leads to an estimate of the visibility of V~
2:45
2:6

^0:942, to be compared with 0.913 6 0.004 obtained by maximum likelihood quantum state

tomography28. (See Supplementary Information for further discussion of this slight discrepancy.) Error bars, which are too small to draw, were estimated

using a Monte Carlo technique, assuming Poissonian photon statistics. (b) The experiment of (a) is repeated for Bell states with reduced visibility,

illustrating the robustness of the scheme. Each point shows the probability of CHSH violation estimated using 100 trials. Uncertainty in probability is

estimated as the standard error. Visibility for each point is estimated by maximum-likelihood quantum state tomography, where the error bar is

calculated using a Monte Carlo approach, again assuming Poissonian statistics. Red points show data corrected for accidental coincidences (see

Methods), the corresponding uncorrected data is shown in blue. The black line shows the theoretical curve from Fig. 2 (inset). Further discussion of the

slight discrepancy between experimental and theoretical probabilities of CHSH violation is provided in the Supplementary Information.

www.nature.com/scientificreports
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the maximal CHSH value as detailed above. This entire procedure is
then repeated 100 times. The results are presented in Fig. 3a, where
accidental coincidences, arising primarily from photons originating
from different down-conversion events, which are measured through-
out the experiment, have been subtracted from the data (the raw data,
as well as more details on accidental events, can be found in the
Methods). Remarkably, all 100 trials lead to a clear CHSH violation;
the average CHSH value we observe is , 2.45, while the smallest
measured value is , 2.10.

We next investigate the effect of decreasing the visibility of the
singlet state: By deliberately introducing a temporal delay between
the two photons arriving at the CNOT gate, we can increase the degree
of distinguishability between the two photons. Since the photonic
CNOT circuit relies on quantum interference26 a finite degree of dis-
tinguishability between the photons results in this circuit implement-
ing an incoherent mixture of the CNOT operation and the identity
operation27. By gradually increasing the delay we can create states rV

with decreasing visibilities. For each case, the protocol described
above is repeated, which allows us to estimate the average CHSH
value (over 100 trials). For each case we also estimate the visibility via
maximum likelihood quantum state tomography. Figure 3b clearly
demonstrates the robustness of our scheme, in good agreement with
theoretical predictions: a considerable amount of mixture must be
introduced in order to significantly reduce the probability of obtain-
ing a CHSH violation.

Together these results show that large Bell violations can be
obtained without a shared reference frame even in the presence of
considerable mixture.

Experimental violations with completely random measurements.
We now investigate the case where all measurements are chosen at
random. The procedure is similar to the first experiment, but we now
apply voltages chosen randomly from a uniform distribution, and
independently for each measurement setting. Thus our experiment

requires no calibration of the measurement MZ interferometers (i.e.
the characterisation of the phase-voltage relation), which is generally
a cumbersome task. By increasing the number of measurements
performed by each party (m 5 2, 3, 4, 5), we obtain CHSH
violations with a rapidly increasing probability, see Fig. 4. For m 5

5, we find 95 out of 100 trials lead to a CHSH violation. The visibility
V of the state used for this experiment was measured using state
tomography to be 0.869 6 0.003, clearly demonstrating that robust

Figure 4 | Experimental Bell tests using uncalibrated devices. We perform Bell tests on a two-qubit Bell state, using uncalibrated measurement

interferometers, that is, using randomly-chosen voltages. For m 5 2, 3, 4, 5 local measurement settings, we perform 100 trials (for each value of m). As the

number of measurement settings m increases, the probability of obtaining a Bell violation rapidly approaches one. For m $ 3, the average CHSH value

(dashed line) is above the local bound of CHSH52 (red line). Error bars, which are too small to draw, were estimated by a Monte Carlo technique,

assuming Poissonian statistics. Data has been corrected for accidentals (see Methods).

Figure 5 | Raw data of experimental Bell tests requiring no shared
reference frame. This figure shows the raw data, without correcting for

accidental coincidences, of Fig. 4a. Here the average CHSH value is 2.30

(dashed line), leading to an estimate of the visibility of V~
2:3
2:6

^0:885,

while the estimate from quantum state tomography is V 5 0.861 6 0.003

(see Supplementary Information). Error bars, which are too small to draw,

were estimated using a Monte-Carlo technique, assuming Poissonian

photon statistics.

www.nature.com/scientificreports
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violation of Bell inequalities is possible for completely random
measurements.

It is interesting to note that the relation between the phase and the
applied voltage is typically quadratic, see Eq. (6). Thus, by choosing
voltages from a uniform distribution, the corresponding phase dis-
tribution is clearly biased. Our experimental results indicate that this
bias has only a minor effect on the probability of obtaining
nonlocality.

Discussion
Bell tests provide one of the most important paths to gaining insight
into the fundamental nature of quantum physics. The fact that they
can be robustly realised without the need for a shared reference frame
or calibrated devices promises to provide new fundamental insight.
In the future it would be interesting to investigate these ideas in the
context of other Bell tests, for instance considering other entangled
states or in the multipartite situation (see29 for recent progress in this
direction), as well as in the context of quantum reference frames30,31.

The ability to violate Bell inequalities with a completely uncali-
brated device, as was demonstrated here, has important application
for the technological development of quantum information science
and technology: Bell violations provide an unambiguous signature of
quantum operation and the ability to perform such diagnostics with-
out the need to first perform cumbersome calibration of devices
should enable a significant saving in all physical platforms. These
ideas could be particularly helpful for the characterisation of entan-
glement sources without the need for calibrated and aligned mea-
surement devices. They could also be relevant to quantum
communications experiments based on optical fibres or earth-
satellite links, in which the alignment of a reference frame is
cumbersome.

Finally Bell violations underpin many quantum information pro-
tocols, and therefore, the ability to realise them with dramatically
simplified device requirements holds considerable promise for

simplifying the protocols themselves. For example, device-independ-
ent quantum key distribution5 allows two parties to exchange a
cryptographic key and, by checking for the violation of a Bell inequal-
ity, to guarantee its security without having a detailed knowledge of
the devices used in the protocol. Such schemes, however, do typically
require precise control of the apparatus in order to obtain a suffi-
ciently large violation. In other words, although a Bell inequality
violation is an assessment of entanglement that is device-
independent, one usually needs carefully calibrated devices to obtain
such a violation. The ability to violate Bell inequalities without these
requirements could dramatically simplify these communication
tasks. The implementation of protocols based on quantum steering19

may also be simplified by removing calibration requirements.
Note added. While completing this manuscript, we became aware

of an independent proof of our theoretical result on Bell tests with
randomly chosen measurement triads, obtained by Wallman and
Bartlett29, after one of us mentioned numerical evidence of this result
to them.

Methods
Photon counting and accidentals. In our experiments, we postselect on successful
operation of the linear-optical CNOT gate by counting coincidence events, that is, by
measuring the rate of coincidental detection of photon pairs. Single photons are first
detected using silicon avalanche photodiodes (APDs). Coincidences are then counted
using a Field-Programmable Gate Array (FPGA) with a time window of , 5 ns. We
refer to these coincidence events as tA

0 ,tB
0

� �
.

Accidental coincidences have two main contributions: first, from photons
originating from different down-conversion events arriving at the detectors within
the time window; second, due to dark counts in the detectors. Here we directly
measure the (dynamic) rate of accidental coincidences in real time, for the full
duration of all the experiments described here. To do so, for each pair of detectors we
measure a second coincidence count rate, namely tA

0 ,tB
1

� �
, with jt1 – t0j 5 30 ns. In

order to do this, we first split (duplicate) the electrical TTL pulse from each detector
into two BNC cables. An electrical delay of 30 ns is introduced into one channel, and
coincidences (i.e. at tA

0 ,tB
1

� �
) are then counted directly. Finally we obtain the cor-

rected coincidence counts by subtracting coincidence counts at tA
0 ,tB

1

� �
from the raw

coincidence counts at tA
0 ,tB

0

� �
.

Figure 6 | Raw data of experimental Bell tests using uncalibrated measurement interferometers (random voltages). This figure shows the raw data,

without correcting for accidental coincidences, of Fig. 5. Error bars, which are too small to draw, are estimated by a Monte Carlo technique, assuming

Poissonian statistics. The visibility V of the state used for this experiment was measured using state tomography to be 0.804 6 0.003.

www.nature.com/scientificreports
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All experimental results presented in the main text have been corrected for acci-
dentals. Here we provide the raw data. Fig. 5 presents the raw data for Fig. 3(a) while
Fig. 6 presents the raw data for Fig. 4. Notably, in Fig. 5, corresponding to the case of
randomly chosen triads, all but one of the hundred trials feature a CHSH violation.
The average violation is now , 2.3.
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