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The authors previously considered a method of solving optimization problems by using a system of
interconnected network of two component Bose-Einstein condensates (Byrnes, Yan, Yamamoto New J.
Phys. 13, 113025 (2011)). The use of bosonic particles gives a reduced time proportional to the number of
bosons N for solving Ising model Hamiltonians by taking advantage of enhanced bosonic cooling rates. Here
we consider the same system in terms of neural networks. We find that up to the accelerated cooling of the
bosons the previously proposed system is equivalent to a stochastic continuous Hopfield network. This
makes it clear that the BEC network is a physical realization of a simulated annealing algorithm, with an
additional speedup due to bosonic enhancement. We discuss the BEC network in terms of neural network
tasks such as learning and pattern recognition and find that the latter process may be accelerated by a factor
of N.

W
ith the exception of a small class of problems that are solvable analytically, most quantum many-body
problems can only be examined using numerical means, for which exact simulations scale exponen-
tially with the problem size. Approximate methods such as quantum Monte Carlo and Density Matrix

Renomalization Group (DMRG) give accurate results for certain cases but no general algorithm exists that can be
applied to an arbitrary system. In the field of quantum information technology, quantum simulation has gathered
a large amount of attention as an alternative means to study such quantum many-body problems. A quantum
simulator is a device where a quantum many-body problem of interest is artificially created in the lab, such that its
properties can be controlled and measured directly1. By directly using quantum mechanics in the simulation,
there is no exponential overhead in keeping track of the number of states in the Hilbert space of the problem. This
is in the spirit of Feynman’s original motivations for quantum computing2, where quantum mechanics, rather
than classical mechanics, is used to simulate quantum many-body problems.

Given this general approach to quantum many-body problems, the question of whether a quantum simulation
approach can be applied to a general Ising model becomes an important question. The Ising model problem
consists of finding the lowest energy state of the Hamiltonian

HP~
XM

i,j~1

Jijsisjz
XM

i~1

lisi, ð1Þ

where Jij is a real symmetric matrix that specifies the connections between the sites i, j, and si 5 61 is a spin
variable. The task is then to find the minimal energy spin configuration {si} of the Hamiltonian (1). The problem
of finding the solution of the Hamiltonian (1) is in fact known to be NP-complete, since it can be trivially mapped
onto the MAX-CUT problem3. Furthermore, it can in principle encode an arbitrary NP-complete problem by a
polynomial time mapping procedure4, thus the potential application of a reliable method of solving (1) is
extremely broad. Although (1) is itself a classical Hamiltonian since it does not contain any non-commuting
operators, as with quantum annealing where the Hamiltonian is supplemented with an additional transverse
field5, quantum ‘‘tricks’’ may be used to speed up the solution of the ground state beyond classical methods.

In a previous work we investigated a computational device which finds the solution of an Ising model by a set of
interconnected Bose-Einstein condensates6,7. In the approach of Ref. 6, each spin was replaced by a system of N
bosons which can take one of two states. By implementing an analogous Hamiltonian to (1) and cooling the
system down into the ground state, it was shown that the solution of the original Ising model problem could be
found. There is a speedup compared to simply implementing (1) using single spins, because of the presence of
bosonic final state stimulation within each bosonic spin. This resulted in finding the solution of (1) with a speedup
of approximately N. The attractive feature of the proposal in Ref. 6 is that the computation is done simply by
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implementing a static Hamiltonian, so that no complicated gate
sequence needs to be employed in order to find the ground state
solution. Effectively, the dissipative process itself performs the com-
putation itself, and therefore can also be considered to be a reservoir
engineering approach to quantum computation. Related proposals
were offered in Refs. 8–10, where instead of BECs, photons were
used.

In this paper, we analyze the proposal in Ref. 6 from the point of
view of neural networks, specifically the stochastic continuous
Hopfield model. Recasting the proposal in this form allows for a
clearer analysis of the properties of the device, where standard results
can be carried over to the BEC case. It clarifies the origin of the , N
speedup of the device, which was established via a numerical
approach in Ref. 6. We find that the , N speedup originates from
each element of the Hopfield network being accelerated due to boso-
nic stimulation, and thermal fluctuations provide the stochastic
aspect to the Hopfield network. We then consider some simple appli-
cations of the BEC network for neural networking tasks.

Results
Bose-Einstein condensate networks. We first give a brief
description of the proposal of Ref. 6. In order to solve (1) we
consider a system such as that shown in Figure 1. Each spin si in
HP is associated with a trapping site containing N bosonic particles.
The bosons can occupy one of two spin states, which we label by s 5

61. The set of possible states can then be written

kj i~ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k! N{kð Þ!

p a{iz
� �k

a{i{
� �N{k

0j i ð2Þ

where ais is the annihilation operator for spin s on site i. A concrete
example of the two levels for the case of atomic BECs can be found in
Fig. 6(a) of Ref. 11. On each site i we may define a total pseudospin
(which we call spin henceforth for brevity) operator Si~a{izaiz

{a{i{ai{ taking eigenvalues Sijkæ 5 (2N 1 2k)jkæ. The sites are
controlled such that the system follows the bosonic Ising
Hamiltonian

H~
XM

i,j~1

Jijsisjz
XM

i~1

lisi ð3Þ

where Jij is the same matrix as in HP which specifies the
computational problem, and si 5 Si/N are normalized spin variables.

The ground state of (3) can be used to infer the ground state of (1).
This follows from the fact that for extremal states si 5 61, the same

structure of the Hamiltonian gives the same ordering of energy states.
However, unlike the discrete si variables, si take a large number of
values between 21 and 1, and thus there are many more states
present in (3) in comparison to (1). One may then worry that some
of these states are in fact lower than the ground state. As discussed in
Ref. 6, it can be shown that such states can never be lower in energy
than the extremal states, and are at worst degenerate with the ground
state configuration of (1). Thus one may always deduce a ground
state of (1) by making the assignment si 5 si/jsij, provided si is a
ground state configuration.

One possible method of creating the interactions experimentally
in (3) is via a measurement-feedback approach. In this approach, the
total spin si on each site is continuously measured, and an appropri-
ate control signal is continuously fed back into the system by apply-
ing a local dc field on another site. Given a measurement result of
{sj(t)} across the spins, a local field

Bi tð Þ~
X

j

Jijsj tð Þzli ð4Þ

is applied on site i. Since the Zeeman energy due to this field is

H~
X

i

Bisi, ð5Þ

a simple substitution yields (3).
Starting from a random spin configuration {sj(t)}, the system is

cooled assuming that the ambient temperature T is fixed. The pro-
cedure is essentially identical to a simulated annealing procedure, the
sole difference being the use of the bosonic Ising model. By varying
the temperature during the cooling process such that it is time
dependent T(t), a strategy similar to thermal annealing may be per-
formed, in order to escape being trapped in local minima. In practice,
instead of varying the temperature, varying the overall magnitude of
(3) by adjusting the strength of the magnetic field (4) is equivalent. By
taking advantage of the bosonic amplification of the cooling process,
it was found in Ref. 6 that an approximate factor of N was found in
the cooling process.

The time evolution is modeled by an extension of the method
presented by Glauber to bosons18. Given the M site Hamiltonian
(3), the states are labeled

kj i~P
M

i~1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki! N{kið Þ!

p a{iz
� �ki

a{i{
� �N{ki

0j i, ð6Þ

where the ki range from 0 to N, a{is is the creation operator for a boson
on site i in the state s, and we have defined the vector k 5 (k1, k2, …,
kM). The approach as described in Ref. 6 is to assign a probability pk

of occupation of each configuration labeled by jkæ. The system then
evolves between the states jkæ R jk9æ by a probabilistic process,
characterized by transition weight factors w. The weight factors are
chosen such that in the long time limit, the states k obey a thermal
equilibrium statistics.

Given an initial probability distribution set by the initial condi-
tions, pk then evolves according to

dpk

dt
~
XM

i~1

{w k,dið Þpkzw kzdi,{dið Þpkzdi

{w k,{dið Þpkzw k{di,dið Þpk{di

ð7Þ

where di is a vector of length M with its ith element equal to one and
zero otherwise. The w(k, di) is a weight factor representing the trans-
ition jkæ R jk 1 diæ, containing both the bosonic final state stimu-
lation factor and a coefficient to ensure that the system evolves to the
correct thermal equilibrium distribution. We have restricted the
transitions to first order transitions in (7) for simplicity. The final
state stimulation factor can be calculated by assuming a Hamiltonian

site 1 site 2
B    1

B   2
site 3

B   3

J21 J23 J31 J32J13J12

λ1 λ2 λ3

S    1 S    3S    2

Figure 1 | Each site of the Ising Hamiltonian is encoded as a trapping site,
containing N bosons. The bosons can occupy one of two states s 5 61,

depicted as either red or blue. The interaction between the sites may be

externally induced by measuring the total spin Si on each site i via the

detectors. A local field on each site equal to Bi 5 Sj JijSj 1 li is applied via

the feedback circuit.
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Ht~
X

isa{isai{s and calculating the transition rate according to
Fermi’s golden rule (up to a constant)

kzdih jHt kj ij j2~ kiz1ð Þ N{kið Þ, ð8Þ

At thermal equilibrium, the transition rates are equal between the

states jkæ « jk 1 diæ, which ensures that
dpk

dt
~0. The final state

stimulation factors cancel for such pairs and we have

w k, dið Þ
w kzdi,{dið Þ~

pkzdi

pk

, ð9Þ

and similarly for di R 2di. From the probability distribution at
thermal equilibrium we can calculate

pkzdi

pk

~ exp {2b
X
j=i

Jij N{2kj
� �

zli

" # !
, ð10Þ

where b~
1

kBT
. This gives the coefficients as

w k, dið Þ~a 1zcið Þ kiz1ð Þ N{kið Þ

w k,{dið Þ~a 1{cið Þki N{kiz1ð Þ
ð11Þ

where

ci~ tanh {b
X
j=i

Jij N{2kj
� �

zli

" # !
, ð12Þ

a is a constant determining the overall transition time scale. a is set to
1 for all numerical calculations.

Equivalence to the stochastic continuous Hopfield model. We now
show that the scheme detailed in the previous section is formally
equivalent to the stochastic continuous Hopfield model. After
defining the Hopfield model we show the equivalences between the
two systems, and derive the evolution equations for the BEC network
in the context of the Hopfield model.

Definition of the Hopfield model. The Hopfield model is an asyn-
chronous model of an artificial neural network12,13, where the each
unit of the network changes state at random times, such that no two
units change simultaneously. The Hopfield model is in the class of
recurrent neural networks, where the output of the network is fed
back into itself, so that given a particular initial configuration, the
system undergoes a sequence of changes in configuration of the units
until steady state is achieved.

In the standard (discrete, deterministic) Hopfield model, each unit
takes the value si 5 61. The units are updated according to the rule

si?s0i~sgn
X

j

J ijsjzbi

" #
ð13Þ

where sgn(x) 5 x/jxj denotes the sign function, J ij is a symmetric
matrix with zero diagonal elements, bi is the threshold of unit i. The
units are updated to their new values s0i at random. Whether a given
state is stable with respect to the updates can be determined by the
Lyapunov (energy) function

E~
X

ij

J ijsisjz
X

i

bisi: ð14Þ

The update sequence proceeds until a local minima with respect to
the Lyapunov function is reached. From a physics perspective, the
transition rule (13) can be viewed as a cooling process at zero tem-
perature, where given an initial high energy spin configuration, the
spins cool one by one randomly into a low energy state. It is thus
equivalent to the discrete Ising model problem (1) up to a constant

energy factor originating from the diagonal elements of Jij, which
play no part in the dynamics of the problem.

The model can be extended to one where continuous variables xi

g [21, 1] are used in place of the discrete ones si. Such continuous
Hopfield networks have similar properties to the discrete version in
terms of the configuration of stable states14. The way the model is
usually defined is in terms of an electric circuit model (see for e.g. Ref.
13). On a single unit i, the time evolution of the circuit obeys

Ci
dvi

dt
~{

vi

Ri
zbiz

X
j

J ijxj ð15Þ

where Ci is the capacitance, Ri is the resistance, vi is the voltage, and xi

is the output of the circuit after operation of the nonlinear amplifier
(or activation function). The activation function restricts the output
to a limited region such that output is always in the range [21, 1]. A
typical choice is

xi~w við Þ~ tanh við Þ: ð16Þ

The corresponding energy function for the dynamics is

E~
X

ij

J ijxixjz
X

i

bixiz
X

i

1
Ri

ð
w{1 xð Þdx: ð17Þ

From the energy function it may then be shown that the system is
guaranteed to converge to a local minima of the energy. The last term
in (17) gives a modification of the energy landscape which shifts the
position of the minima away from the extrema x 5 61. For a suffi-
ciently high-gain amplifier (corresponding to a modification of the
activation function to w(vi) R w(Gvi) with G . 1), this term is known
to have a negligible effect on the overall dynamics14. Due to the
energy structure of the continuous model being equivalent to the
discrete model13, a solution to the continuous model then gives a
one-to-one correspondence to the discrete model.

Equations of motion on a single site. In order to see the equivalence
with the Hopfield model, let us first examine the dynamics on a single
site, and set M 5 1. In this case the probability distribution of the
states evolve as

dpk

dt
~{w k,1ð Þpkzw kz1,{1ð Þpkz1

{w k,{1ð Þpkzw k{1,1ð Þpk{1:

ð18Þ

where in this case

w k,1ð Þ~a 1zcð Þ kz1ð Þ N{kð Þ

w k,{1ð Þ~a 1{cð Þk N{kz1ð Þ

c~ tanh {blð Þ,

since there is only one site. Multiplying the whole equation by k and
summing over k given an equation for the mean value

d kh i
dt

~a 1zcð Þ kz1ð Þ N{kð Þh i{a 1{cð Þ k N{kz1ð Þh i: ð19Þ

Making the approximation that Æk2æ < Ækæ2, and changing variables to
S 5 2N 1 2k the equation can be recast into the form

1
a

ds
dt

~{Ncs2{2szc 2zNð Þ ð20Þ

where we have used the normalized variable s 5 ÆSæ/N. This approxi-
mation is accurate under physically relevant probability distributions
generated by (18). For example, a uniform distribution pk 5 1/N
gives Ækæ2 < N 2/4, in comparison to the exact result Æk2æ < N 2/3.
The approximation improves as the distribution becomes more
peaked. An explicit solution for this may be found to be

www.nature.com/scientificreports
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s tð Þ~A tanh acANtzK0ð Þ{ 1
Nc

ð21Þ

where A~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

2
N

z
1

N2c2

r
is a constant that is order unity at low

temperatures such that Nc?1. K0 is fixed by the initial conditions,
for which we typically assume s(t 5 0) 5 0. We see that the spin
approaches its steady state value with a timescale , 1/ajcjN. At zero
temperature where c 5 61 (depending upon the direction of the
applied external field), the time scale is enhanced by a factor of N.

The physical origin of the speedup is due to bosonic final state
stimulation. When N indistinguishable particles occupy a quantum
state, the rate of population transfer is enhanced by a factor of , N.
This effect is most familiar from the theory of lasing, where photon
emission occurs preferentially into the lasing mode15. In our case, the
cooling rate of the bosons on a single site is accelerated by a factor of
N, due to the bosonic factors (8) in the transition rates (11). This
accelerated cooling is what provides the speedup of the network as a
whole6.

Let us compare this to the Hopfield network for a single site. In this
case the equation of motion reads

C
dv
dt

~{
v
R

zb: ð22Þ

Changing variables to the output of the nonlinear amplifier, we
obtain

C
dx
dt

~
dw{1

dx

� �{1

{
w{1 xð Þ

R
zb

	 

: ð23Þ

This is the counterpart of the equation (20) for the Hopfield case. The
solution of this

x tð Þ~w bRz exp {t
�

CRzK 00
� 
� �

, ð24Þ

where K 00 is set by the initial conditions.
Writing the equations in this form makes the correspondence

between the BEC system and the Hopfield network clear, which we
summarize in Table I. The output x of the Hopfield network corre-
sponds to the normalized spin variable s. The magnetic field B
applied on each site for the BEC system then corresponds to the
voltage on each Hopfield unit before the non-linear amplifier. The
steady state values are determined by setting the right hand side of
(20) and (23) to zero. The value of the steady state depends upon the
ratio of the field (l or b) applied and the temperature kBT 5 1/b or
the conductance 1/R respectively. The overall time constant is con-
trolled by 1/a or C in each case. In the Hopfield network, there is
obviously no bosonic final state stimulation, so the speedup propor-
tional to N is absent. While the exact equation of motion for the two
cases (20) and (23) differ in their details, it is clear that the qualita-
tively there is a similar structure and behavior to the dynamics. While
in the Hopfield network, the overall time constant is determined by
the capacitance of the circuit, the fundamental timescale of the BEC
network is determined by the cooling rate of the bosons on each site.

The analogue of the activation function w(v) may be derived as
follows. Considering the activation function as a rule that converts
the internal magnetic field B to the spin variable s, we may derive the
average spin at thermal equilibrium using the Boltzmann distri-
bution taking into account of bosonic statistics. From the partition
function

peq
k ~ 1{ exp {2bBð Þð Þ exp {2bBkð Þ, ð25Þ

and therefore

seq~
X

k

peq
k {1z2k=Nð Þ

~W zð Þ:
1{e2z 2zNð Þ� �

z 2zNð Þ e2z Nz1ð Þ{e2z
� �

1{e2zð Þ 1{e2z 1zNð Þð Þ

ð26Þ

where z 5 Bb here. The function above has a dependence that has
similar behavior to

W zð Þ< tanh {
z Nz2ð Þ

3

� �
ð27Þ

which makes it clear that it plays a similar role to that of the activation
function w in the Hopfield network.

Equations of motion for interconnected BECs. We may now general-
ize to the multi-site case. Multiplying (7) by ki and summing over all
k gives the equations

d kih i
dt

~a 1zci kð Þð Þ kiz1ð Þ N{kið Þh i

{a 1{ci kð Þð Þki N{kiz1ð Þh i:
ð28Þ

where we have written ci R ci(k) to remind ourselves that this is not a
constant in this case. Making the approximation that Ækmæ < Ækæm,
and making the change of variables to si 5 ÆSiæ/N, we obtain

1
a

dsi

dt
~{Nci sð Þs2

i {2sizci sð Þ 2zNð Þ: ð29Þ

The sole difference to the single site case here is that the equilibrium
values of si are now dependent on the spins of all the other sites s. The
dynamics on each site is the same as the single site case, and thus
evolves in time as (21), considering the other spins to be approxi-
mately fixed. This basic structure is precisely the same dynamics that
determine the equation of motion of the Hopfield network (15).

Although it is not possible to solve the set of equations (29) ana-
lytically, we may see in this formulation why the whole system should
have a speedup of , N, as found in Ref. 6. Considering an asyn-
chronous update procedure (in fact this is exactly what was per-
formed to simulate the dynamics of the system in the Monte Carlo
procedure7), all but one ‘‘active’’ site is fixed in spins. The active site
then evolves in time according to the evolution of (21). This has a
speedup of , Njcj in the evolution of the spin, thus to make an
incremental change ds in the active spin takes a time reduced by
Njcj compared to the N 5 1 case. The spin is then fixed, and then
another site is chosen at random and this is updated. Since each step
takes a reduced time of Njcj, the whole evolution proceeds at an
accelerated rate. For sufficiently low temperatures, c < 61, and
therefore the speedup is approximately , N.

Stochastic Hopfield network. Up to this point, the equations of
motion (29) have been entirely deterministic. The role of the tem-
perature was to merely shift the equilibrium values of the spins, as
determined by (26), and did not contribute to any stochastic evolu-
tion of the system. In the BEC network there are thermal fluctuations
which cause the system to behave in a random manner. Therefore in
order to fully capture the dynamics of the BEC network we must
include the contribution of the random thermal process. Such

Table I | Equivalences between the network of BECs proposed in
Ref. 6 and the Hopfield model

Quantity BEC network Hopfield model

Site variable si 5 ÆSiæ/N xi

Site field variable Bi vi

Ising matrix Jij J ij

Local field li bi

Time constant 1/a C
Steady-state control parameter 1/kBT Ri

Activation function W w

www.nature.com/scientificreports
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stochastic versions of Hopfield networks, and their generalization to
the Boltzmann machine (by having additional hidden units) are
defined by modifying the update rule (13) to include probabilistic
effects. Considering the discrete Hopfield model first, the algorithm
consists of selecting a particular spin si, and making an update
according to

si?{si if DEv0

si?{si if DEw0 with probability e{DE=kBT

si?si if DEw0 and otherwise:

ð30Þ

DE is the energy difference between the state with the flipped spin
and no flipped spin16.

The evolution equations (7) for the BEC network can be converted
into a set of stochastic update rules which give the same time depend-
ence when an ensemble average is taken. The stochastic formulation
also allows for a convenient method of numerically simulating the
system, which was discussed in detail in Ref. 7. We briefly describe
the procedure as applied to the current formulation of the BEC
network. The simulation is started from a random initial value of k
5 (k1, k2, …, kM) in (7), and we update the system by repeating the
stochastic transition process following the kinetic Monte Carlo
method17. In each update we calculate the transition weight w(k,
di) in (7) for all the possible transitions. The transition is then made
with a probability in proportion to the transition weight w(k, di). The
time increment is then calculated according to

Dt~{ln rð Þ=Wtot ð31Þ

where r g (0, 1] is a randomly generated number and

Wtot~
X

i

w k, dið Þzw k, {dið Þð Þ ð32Þ

This procedure is repeated for many trajectories so that ensemble
averages of quantities such as the average spin can be taken.

This procedure produces exactly the same time dynamics as (7),
hence for quantities such as the equilibration time this procedure must
be followed. However, if only the behavior at equilibrium is required,
the update procedure can be replaced by the Metropolis algorithm.
The update procedure is then as follows. Start from a random initial
value of k 5 (k1, k2, …, kM). Then make an update according to

ki?ki+1 if DEv0

ki?ki+1 if DEw0 with probability e{DE=kBT

ki?ki if DEw0 and otherwise:

ð33Þ

where the energy difference in this case is

DE~+2
X
j=i

Jij N{2kj

� �
zli

" #
: ð34Þ

The exponential factor is precisely the same as that determining the
weight factors in (10). The only difference in this case is that the
bosonic stimulation factors are not present in this case, which are
important only for determining the transition rates, and not the equi-
librium values. The above Metropolis transition rule (10) is identical to
the stochastic Hopfield network, up to the difference that each site
contains energy levels between ki 5 0, …, N. It is therefore evident in
this context that the two systems are equivalent in their dynamics.

We may also derive the equivalent stochastic differential equations
for the average spin by adding noise terms to (29) (see Methods)

1
a

dsi

dt
~{Nci sð Þs2

i {2sizci sð Þ 2zNð Þ

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
a

1zsið Þ 1{sið Þz 2
N

1{ci sð Þsið Þ
	 
s

ji tð Þ:
ð35Þ

The above equation is identical to (29) up to the Gaussian noise term.
This allows for the system to escape local minima in the energy
landscape. The steady state evolutions then approach the correct
thermal equilibrium averages as defined by the Boltzmann distri-
bution. Combined with an annealing schedule, this may be used to
find the ground state of the Ising Hamiltonian. As found previously,
due to the factors of N in (35) originating from bosonically enhanced
cooling, the annealing rates may be made N times faster, allowing for
an accelerated method of finding the solution to Ising model pro-
blems, as claimed in Ref. 6.

Learning and pattern completion. Our discussion to this point has
focused on the problem of finding the ground state given a particular
problem instance encoded by the Jij parameters. This may be given
for example by translating a MAX-CUT problem into the
corresponding Jij matrix. The task is then to try and find the
optimal spin configuration for this problem instance. However,
given the correspondence of the BEC network to the continuous
Hopfield model, it is clear that there should be other applications
beyond this problem solving scenario.

One common application of neural networks is learning and
memory retrieval. In this application the network is initially exposed
to several patterns that the user would like to retrieve later. In this
step the Jij matrix is modified according to a prescribed learning
algorithm. Thus in contrast to the previous application Jij is the
quantity to be determined in the learning step. Once the learning
process is complete, the network is put in retrieval mode and the Jij

parameters are fixed. The network now operates in the same way as
the problem solving scenario considered previously. Given an initial
spin configuration that is similar to the stored configurations, the
network then retrieves the stored patterns, demonstrating pattern
completion.

In this section, we discuss the application of learning and memory
retrieval in BEC networks. The first step of learning can be straight-
forwardly adapted from standard methods13. To illustrate the tech-
nique, we consider the Hebbian learning, one of the simplest
unsupervised learning algorithms. The performance of the pattern
completion process is then assessed by examining the time taken to
retrieve the patterns. This serves to both illustrate the equivalence of
the BEC network to the continuous Hopfield model, and show the
potential benefits of using many bosons in the system.

Learning. The simplest example of unsupervised learning is the
Hebbian learning rule. Using the associations in Table I it is straight-
forward to write down the corresponding rule in the case of the BEC
network. We follow the presentation given in Ref. 13 (sec. 2.5) for the
case of continuous activation functions, since in the BEC system the
measured spin is a continuous quantity. We assume that the BEC
network starts with the system shown in Figure 1 with the Ising
matrix set to

Jij~0: ð36Þ

The learning algorithm then proceeds as follows. We apply various

magnetic field configurations l
nð Þ

i where n labels the various pattern
configurations that the network is exposed to during the learning
process. Starting with the first field configuration n 5 1, we apply this
field and wait until the spins reach their equilibrium value, which will
be given (for the first iteration)

si~W bl
1ð Þ

i

� �
ð37Þ

We then update the Ising matrix according to

Jij?Jijzcsil
nð Þ

j ð38Þ

where c is the learning constant which determines the speed of the
learning process. We then make subsequent applications of the field
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l
nð Þ

i , measure the field si in each case, then make the replacement
(38). For n $ 2, the spins do not simply take the values of (37) since Jij

will in general be non-zero. The process is continued until the learn-
ing examples are exhausted, or the same set can be recycled. Other
learning algorithms may be derived in a similar way using the asso-
ciations in Table I.

We now discuss in more detail the experimental configuration to
realize the Hebbian learning rule for the BEC network. In the con-
figuration of Figure 1, we assume that the Jij matrices can be changed
as desired, i.e. they are computer controlled. We also assume that the
spins si can be read out in addition to the existing feedback circuit.
The experimental procedure then is as follows. 1) Set Jij 5 0; 2) Apply
the field Bi~l

1ð Þ
i to the sites and wait for equilibration; 3) Read the

spins si and apply the update rule (38); 4) Apply the field
Bi~

P
j Jijsj tð Þzl

nð Þ
i and wait for equilibration; 5) Go to step 3 until

the patterns are exhausted. This builds up the Jij matrix which can be
used in the next step for pattern recognition.

Pattern completion. As a simple example of the use of the BEC
network for pattern completion, we test the set of equations given
in (29) using an Ising matrix trained using the Hebbian algorithm of
the previous section. We numerically evolve a set of 16 3 16 equa-
tions forming a two dimensional grid at zero temperature from the
initial conditions as shown in Figure 2. In Figures 2a and 2b we start
from fragments of the learned patterns while in Figure 2c we start
from a randomly chosen spin configuration. We see that in all cases
the spins evolve towards the learned configurations, with the BEC
network completing the patterns as desired. For the random initial
configuration, the spins evolve towards whichever configuration
happens to be closer to the learned patterns.

The time scaling behaviour is shown in Figure 3. In Figure 3a we
plot the normalized Hamming distance

D~
1

2M

X
i

si tð Þ{s nð Þ
i

��� ��� ð39Þ

between the evolved spin configuration and the learned spin config-

urations s nð Þ
i . We see that the general behavior is that the time for the

pattern completion scales as , 1/N, which can again be attributed to
bosonic stimulated cooling. There is a logarithmic correction to this
behavior, where there is an initial stiffness of the spins to move
towards the steady state configuration. In Figure 3b we show the
scaling of the time to reach a particular Hamming distance E with
respect to N. We see that for large N all curves converge to the
dominant , 1/N behaviour. This shows that BEC networks can
equally well be used to perform tasks such as pattern completion,
with the additional benefit of a reduced time in proportion to N.

Discussion
We have analyzed the BEC network proposed in Ref. 6 in terms of the
theory of neural networks and found that it is equivalent to a stoch-
astic continuous Hopfield model. In contrast to the continuous
Hopfield model where the overall timescale of the evolution is deter-
mined by the capacitance within each unit, in the BEC network the
timescale is determined via the rate of cooling. Due to bosonic sti-
mulated cooling, the rate of cooling may be accelerated in proportion
to the number of bosons N on each site, which in turn accelerates the
cooling rate of the entire system. The bosonic stimulated cooling
makes the time evolution equations (29) on a single site not precisely
the same as its Hopfield model counterpart (15), but the difference
merely gives a modification of the dynamics as the system heads
towards equilibrium, the overall behaviour of the system as a whole
remains the same. In particular, tasks such as pattern completion
may be performed using the BEC network, in the same way as the
Hopfield model.

In this context, it would appear that using a BEC network, rather
than a physical implementation of a Hopfield network, is nothing but
a more complicated way of implementing what could be done equally
well by either standard electronics or optical means12. Specifically,
one could imagine using simply Hopfield circuits with small capaci-
tances such that the timescale of the circuit is as small as desired.
Other variations of optical implementations of Hopfield models
allow for fast operation speeds. While for the zero temperature case
this may be true, the BEC system does have the advantage that the
random fluctuations following Boltzmann statistics is already built-
in, and do not require additional circuitry to simulate. Another pos-
sible advantage is that the speedups can be made systematically faster
by simply increasing the number of bosons. At the level of the model
that we present in this paper there is no fundamental limitation to the
speedups that can be achieved. However, in practice other issues are
likely to be present, so any speedup must be taken advantage of
within the practical limitations that the experimental device imposes.

A possible issue for the physical realization is whether the connec-
tions between each Ising site require response times of the order of
the cooling time on each site. Apart from a simple slowdown due to
bottlenecks in the transmission, such delay times in the information
between each site can introduce instabilities in the system causing

a

b

c

Nt=5

Nt=5

Nt=3

timet=0 0 0.2 0.4 0.6 0.8 1.0
s

Figure 2 | Pattern completion for a BEC network prepared with
Hebbian learning for the two characters in (a) and (b). The BEC network

is evolved in time starting from the initial conditions as shown and evolve

towards their steady state configurations. Parameters used are a 5 1, N 5

104, kBT 5 0. Pixel characters provided courtesy of Akari Moffat

(blablahospital).

N=1 N=102 N=104 N=106

Nt

D

a

log  N10

lo
g 

  t 10
ε

ε=0.1

ε=0.01 b

0 2 4 6 8 10
0.0
0.1
0.2
0.3
0.4

0 1 2 3 4 5 6
-5
-4
-3
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0
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Figure 3 | (a) Hamming distance D versus time for the pattern recognition

task given in Figure 2a for various boson numbers N as shown.

(b) Times te necessary for reaching a Hamming distance of e as a function

of N. Dotted line corresponds to 1/N.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2531 | DOI: 10.1038/srep02531 6



divergent behavior. We leave as future work whether the proposals in
Refs. 8–10 can be treated with the same analysis.

Methods
First consider a single site, and start with the probability distribution (18). Assuming
that N ? 1, introduce the variables z 5 k/N, E~1=N , and the density q z,tð Þ~pk=E of
z at time t, the master equation is rewritten

Lq z,tð Þ
Lt

~{w z,Eð Þq z,tð Þzw zzE,{Eð Þq zzE,tð Þ

{w z,{Eð Þq z,tð Þzw z,{Eð Þ,t):
ð40Þ

Expanding w z+E,+Eð Þand q z+E,tð Þ up to second order in E, we obtain

Lq z,tð Þ
Lt

~{
L
Lz

w z,Eð Þ{w z,Eð Þð ÞEq z,tð Þ½ �

z
1
2

L2

Lz2
w z,Eð Þzw z,{Eð Þð ÞE2q z,tð Þ

� 

zO E3

� �

~{
L
Lz

AE zð Þq z,tð Þ½ �z 1
2

L2

Lz2
BE zð Þq z,tð Þ½ �zO E3

� �
,

ð41Þ

where

AE zð Þ~ w z,Eð Þ{w z,{Eð Þð ÞE

BE zð Þ~ w z,Eð Þzw z,{Eð Þð ÞE2:
ð42Þ

Using the diffusion approximation such that the transition rates are on the order of
w z,+Eð Þ*1=dt, w z,Eð Þ{w z,Eð Þð Þ*E=dt, and E2=dt*O 1ð Þ, and taking the limits of
E?0, we obtain the Fokker-Planck equation

Lq z,tð Þ
Lt

~{
L
Lz

A zð Þq z,tð Þ½ �z 1
2

L2

Lz2
B zð Þq z,tð Þ½ �, ð43Þ

where A zð Þ~limE?0AE zð Þ and B zð Þ~limE?0BE zð Þ. The corresponding stochastic
differential equation is given by

dz
dt

~A zð Þz
ffiffiffiffiffiffiffiffiffi
B zð Þ

p
j tð Þ ð44Þ

where j(t) is Gaussian white noise with Æj(t)æ 5 0 and Æj(t)j(t9)æ 5 d(t 2 t9).
Changing variables to s 5 21 1 2z, the coefficients for our case are

A zð Þ~ a

2
{Ncs2{2szc 2zNð Þ
� 


B zð Þ~ a

2
1zsð Þ 1{sð Þz 2

N
1{csð Þ

	 

:

ð45Þ

The stochastic differential equation including noise is then obtained as

1
a

ds
dt

~{Ncs2{2szc 2zNð Þz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
a

1zsð Þ 1{sð Þz 2
N

1{csð Þ
	 
s

j tð Þ: ð46Þ

A straightforward generalization to the multi-site case gives the following evolution
equations

1
a

dsi

dt
~{Nci sð Þs2

i {2sizci sð Þ 2zNð Þz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
a

1zsið Þ 1{sið Þz 2
N

1{ci sð Þsið Þ
	 
s

ji tð Þ:
ð47Þ
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