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The Internet has enabled the emergence of collective problem solving, also known as crowdsourcing, as a
viable option for solving complex tasks. However, the openness of crowdsourcing presents a challenge
because solutions obtained by it can be sabotaged, stolen, and manipulated at a low cost for the attacker. We
extend a previously proposed crowdsourcing dilemma game to an iterated game to address this question.
We enumerate pure evolutionarily stable strategies within the class of so-called reactive strategies, i.e., those
depending on the last action of the opponent. Among the 4096 possible reactive strategies, we find 16
strategies each of which is stable in some parameter regions. Repeated encounters of the players can improve
social welfare when the damage inflicted by an attack and the cost of attack are both small. Under the current
framework, repeated interactions do not really ameliorate the crowdsourcing dilemma in a majority of the
parameter space.

C
rowdsourcing has opened a plethora of possibilities for individuals around the world to connect, coord-
inate, and solve complex problems that are currently beyond computational capabilities1–15. At the same
time, a number of problems have arisen by the use of this novel technology. In particular, the openness of

crowdsourcing presents individuals with an opportunity to exhibit antisocial behavior such as plagiarizing,
sabotaging, and manipulating the solution being collectively obtained (see Refs. 16 and 17 for brief reviews).

Although techniques for securing crowdsourcing operations have been expanding steadily, so has the number
of applications of crowdsourcing18. As a result, a silver bullet to secure crowdsourcing for all possible attacks may
be difficult to find. Services such as Amazon’s Mechanical Turk will likely diminish the problem of intentional
attacks by using a reputation system, discouraging participants to sabotage12. Other approaches such as error
correction have also been shown to be effective in crowdsourcing settings. However, they are limited in their
applicability to specific contexts19. In this study, we consider the possibility that repeated encounters between the
same peers may alleviate sabotage.

Motivated in part by the DARPA Network Challenge9,10, a crowdsourcing dilemma game in which two
competing firms interact in a two-stage game was recently proposed16. In the first stage, each of the two firms
selects whether or not to achieve a given task via crowdsourcing. If the firm decides not to crowdsource, it tries to
solve the problem in-house. In the second stage, the firms have the option of attacking the opponent if the
opponent has selected to solve the task via crowdsourcing. The equilibrium strategies of the model depend on
complex tradeoffs between the productivity value, the benefit of attack, and the cost of attack. In summary, there
are three parameter regions. First, crowdsourcing by both agents is the unique equilibrium when the damage
inflicted by an attack is low. Second, the in-house solution (i.e., not crowdsourcing) selected by both agents is the
unique equilibrium when the damage inflicted by an attack is high and the cost of attack is low. Third, the
crowdsourcing by both agents and the in-house solution of both agents are two equilibria when the damage
inflicted by an attack is high and the cost of attack is high.

In the crowdsourcing dilemma game16, attacking the opponent’s task that has been crowdsourced lessens the
welfare of both parties, which is a social dilemma. A decreased level of attacks is considered to be socially desirable.
In the theory of cooperation in social dilemma situations, there have been proposed various mechanisms to evade
socially undesirable equilibria. One such mechanism is iterated interaction, also called direct reciprocity. Mutual
cooperation emerges in the iterated prisoner’s dilemma under appropriate conditions if players adopt conditional
strategies such as variants of Tit-for-Tat (i.e., do what the opponent did in the last round)20–25.

In the present study, we explore the possibility that the crowdsourcing dilemma is alleviated by similar repeated
encounters between players in crowdsourcing competitions. We formulate a variant of the crowdsourcing
dilemma game as an iterated game. First, we identify evolutionarily stable strategies (ESSs) of the non-iterated
game as a baseline. Then, we turn to the iterated game to examine a full range of conditional strategies to identify
all ESSs. Our main question is whether or not there exist conditional ESSs that outperform unconditional ESSs for
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given parameter values of the model. For a computational reason, we
restrict ourselves to the strategies that use the information about the
action of the opponent in the previous encounter.

Results
Model. To examine ESSs, we consider an infinitely large well-mixed
population of players in which two randomly selected players are
engaged in an iterated crowdsourcing dilemma game. Each player is
engaged in the game sufficiently many times in one generation.

Consider the iterated game between players 1 and 2. In every
round of the game, each player submits an action, which generally
depends on the action of the opponent in the previous round. We
denote the action selected by player i g {1, 2} in round t by ai,t, which
is either CA, CN, SA, or SN (Figure 1(a)). With ai,t 5 CA (ai,t 5 SA),
player i selects to crowdsource (not to crowdsource) and attack the
opponent if the opponent crowdsources in round t. With ai,t 5 CN
(ai,t 5 SN), player i selects to crowdsource (not to crowdsource) and
not to attack the opponent if the opponent crowdsources in round t.
It should be noted that CA and CN are behaviorally the same unless
the opponent crowdsources. In this case, the opponent that has not
crowdsourced does not know whether the focal player has selected
CA or CN. By the same token, SA and SN are the same unless the
opponent crowdsources.

There are six types of action that a player i realizes in a single round
(Figure 1(b)). We denote the realized action of player i in round t by
hi,t, which is either CA, CN, C*, SA, SN, or S*. hi,t 5 CA (hi,t 5 SA)
means that player i has crowdsourced (has not crowdsourced) and
attacked the opponent. hi,t 5 CN (hi,t 5 SN) means that player i has
crowdsourced (has not crowdsourced) and has not attacked the
opponent. hi,t 5 C* (hi,t 5 S*) means that player i has crowdsourced
(has not crowdsourced) and that whether player i has intended to
attack the opponent or not is unknown to the opponent. If hi,t is
either CA, CN, SA, or SN, i’s opponent has crowdsourced in round t.
If hi,t is either C* or S*, i’s opponent has not crowdsourced. The
relationship between the actions selected by the two players and the
realized actions perceived by the two players is shown in Table 1.

We consider players adopting the so-called reactive strat-
egies22,23,25,26. A player adopting a reactive strategy selects an action
based on the opponent’s realized action in the previous round.
Therefore, a reactive strategy of player 1 is a mapping from h2,t to
a1,t11. There are 46 5 4096 reactive strategies.

We assume that players commit an action implementation error
with a small probability E 0vE= 1ð Þ. For simplicity, the decision of
crowdsourcing and that of attacking are assumed to err indepen-
dently with the same probability E. For example, a player intending
CA actually carries out CA with probability 1{Eð Þ2, CN with prob-
ability E 1{Eð Þ, SA with probability E 1{Eð Þ, and SN with probability
E2.

The payoff in a round is determined in the same way as in the
original crowdsourcing dilemma game16. A player’s productivity
value is equal to zero as normalization when the player does not
crowdsource. It obeys the uniform distribution on (0, 1) when the
player crowdsources. A player needs to pay cost q g (0, 1) to attack
the opponent to reduce the opponent’s productivity by d g (0, 1).
The player that finally obtains the higher productivity than the
opponent wins the unitary payoff in the current round. The other
player gains nothing. If the productivity values of the two players are
the same, each player wins with probability 1/2. It should be noted
that players decide the actions without referring to the productivity
values of the player itself and the opponent.

We do not consider time discounting of the payoff across rounds
and do assume that the number of rounds is very large. Therefore, we
are concerned with the stationary state of the actions adopted by the
two players and the payoff per round.

Even if we confine ourselves to a single-round game, the present
model is slightly different from the previous model16 in the following
aspects. First, in the previous model16, it was assumed that the pro-
ductivity values of both players thanks to crowdsourcing were
unknown to each player when the players determined whether to
crowdsource or not in the first stage. The productivity values were
then revealed just before the second stage occurred. In other words, if
the opponent has crowdsourced, the focal player knows the oppo-
nent’s productivity (and the focal player’s own productivity if the
focal player has crowdsourced) before they determine whether to
attack the opponent or not. Therefore, each player is assumed to
obey the best response rule in the second stage. In contrast, in the
present model, we assumed that the players select the actions for the
first stage (i.e., crowdsource or not to crowdsource) and the second
stage (i.e., attack or not to attack) in the beginning of the round
without knowing the productivity of the players in the middle of
the round. We changed the model in this way because, otherwise,
there are a continuum of pure strategies because of the productivity is
continuously valued. By confining ourselves to a model with a finite
set of discrete pure strategies, we aim to carry out an exhaustive and
rigorous analysis of the model to understand the iterated as well as
non-iterated crowdsourcing dilemma game.

Non-iterated game. We started by analyzing the non-iterated
crowdsourcing dilemma game. Because strategies conditioned on
the realized action in the previous round are irrelevant, there are
four pure strategies, i.e., CA, CN, SA, and SN. The ESSs in the full
(d, q) parameter space are shown in Figure 2. The figure indicates
that crowdsourcing is stable when the damage inflicted by an attack

Figure 1 | Actions selected and realized in a single round. (a) Four types

of actions selected by a player in a single round. (b) Six types of actions

realized by a player in a single round.

Table 1 | Relationship between the actions selected by the two
players and the realized actions

a1,t a2,t h1,t h2,t

CA CA CA CA
CA CN CA CN
CA SA C* SA
CA SN C* SN
CN CA CN CA
CN CN CN CN
CN SA C* SA
CN SN C* SN
SA CA SA C*
SA CN SA C*
SA SA S* S*
SA SN S* S*
SN CA SN C*
SN CN SN C*
SN SA S* S*
SN SN S* S*
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(i.e., d) is small or the cost of attack (i.e., q) is large. Attacking is stable
when d is large or q is small.

The results shown in Figure 2 are qualitatively the same as those
for the previously analyzed single-shot crowdsourcing dilemma
game16 in the meaning that crowdsourcing is stable when d is small
or q is large. In contrast, a large q value does not prevent the players
from attacking the opponent in the previous model16, whereas not to
attack is an ESS for large q (irrespectively of d) in the present model.

Evolutionary stability and efficiency for the iterated game. We
exhaustively searched ESSs among the 4096 reactive strategies. We
found 16 strategies that were ESSs in some regions of the (d, q)
parameter space. The 16 ESSs are listed in Table 2. In the table,
an(SN), for example, indicates the action selected when the
opponent realized SN in the previous round. Each strategy is an
ESS in the parameter region specified by the label (one of (A)
through (J)) shown in the table. The parameter regions are
depicted in Figure 3 (see the caption for the precise definition).

Ten out of the 16 ESSs are efficient for some d and q values. The
parameter regions in which these ESSs are efficient are shown in
Table 2. We checked the condition for the efficiency by referring
to the average payoffs of ESSs in the homogeneous population
(Table 3).

Strategies 1, 2, and 3 are unconditional strategies, whereas the
other strategies are conditional strategies. We call the three uncon-
ditional strategies uncond-CA, uncond-CN, and uncond-SA,
respectively.

In parameter regions (B) and (C), uncond-CN and uncond-SA are
efficient ESSs, respectively. This result is the same as that for the
single-shot game (Figure 2). In the intersection of regions (B) and
(C), which is region (D), strategies 4, 5, 6, 7, 8, and 9 are also efficient
ESSs. In subregions of (B) and (C), strategies 10, 11, 13, 15, and 16 are
inefficient ESSs. Strategies 10, 11, and 15, but not 13 yield the same
payoff as the efficient ESSs in the limit E?0. Strategy 13 is the only
ESS that yields a smaller payoff than that of the coexisting uncon-
ditional ESS (i.e., uncond-SA) in the limit E?0.

In region (A), neither uncond-CN nor uncond-SA is an ESS, and
uncond-CA is an inefficient ESS. Instead, strategy 12 or 14, both of
which are conditional strategies, is the efficient ESS in the region. It
should be noted that, in the single-shot game, (uncond-)CA is the
unique ESS in this parameter region (Figure 2). Because regions (A),
(B), and (C) exhaust the entire parameter space 0 , d , 1, 0 , q , 1,
conditional ESSs yield larger payoffs than unconditional ESSs only in
region (A). In other words, making the crowdsourcing dilemma
game an iterated game improves the efficiency of the ESS exclusively
in this parameter region.

Region (A) is composed of subregions (K) and (L).

In region (K), strategy 14 is not an ESS, and strategy 12 is the
efficient ESS. The payoff of strategy 12 in the homogeneous popu-
lation is larger than that of uncond-CA by 1=2ð ÞqEzO E2

� �
. The

difference vanishes in the limit E?0. This is because a pair of players
adopting strategy 12 almost always implements CA for infinites-
imally small E.

In spite of this similarity between strategy 12 and uncond-CA,
strategy 12 is efficient because, when a pair of players adopts strategy
12, their realized actions persist in SA for some time once both
players start implementing SA. To understand this phenomenon,
consider the situation in which both players adopting strategy 12
implement CA. This situation almost always occurs in the limit
E?0. The two players simultaneously switch to SA if both players
commit an error to select either SA or SN in the same round. This

event occurs with probability E 1{Eð ÞzE2
� �2

~E2. They return to
selecting CA if either player commits an error to select CA or CN.

This event occurs with probability 1{ 1{E 1{Eð Þ{E2
� �2

~2E{E2.
Therefore, the fraction of the number of rounds in which the two
players implement SA is approximately equal to 1=2ð ÞE for small E.
During the period in which the two players implement SA, the cost of
attack is evaded. In contrast, a player adopting uncond-CA cannot
avoid the cost of attack, irrespective of whether the opponent adopts
uncond-CA or strategy 12. This is because the repetition of SA does not
persist and both players almost always implement CA. Therefore,
strategy 12 is stable against invasion by uncond-CA and yields a slightly
larger payoff than uncond-CA in the homogeneous population.

In region (L), strategy 14 is the efficient ESS. The payoff of strategy 14
in the homogeneous population is larger than that of uncond-CA by
qzO Eð Þ, which does not vanish for infinitesimally small E.

A pair of players adopting uncond-CA almost always implements
CA and obtains 1/2 2 q per round for infinitesimally small E. This is
because both players pay the cost of attack (i.e., q) and win the game
with probability 1/2. In contrast, a pair of players adopting strategy
14 almost always implements SA for infinitesimally small E, as shown
in Table 3. The two players obtain 1/2 per round; each player wins
with probability 1/2 without paying the cost of attack. This is the
reason why strategy 14 yield a larger payoff than uncond-CA in the

 0
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 0  0.25  0.5  0.75  1
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CA

CN CN/SA
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Figure 2 | Phase diagram for the single-shot game. In the region labeled

CN/SA, both CN and SA are ESSs.

Table 2 | ESSs. an(h) is the action that a player with strategy n
selects when the opponent’s realized action was h in the previous
round. The regions for ESS and efficiency in the table indicate the
parameter regions in which the strategy is an ESS and an efficient
ESS, respectively. See Figure 3 for the definition of the region
labels. If an ESS is efficient nowhere, the entry for the region for
efficiency remains blank

Strategy (n) an(CA)an(CN) an(C*) an(SA) an(SN) an(S*)
Region
for ESS

Region
for

efficiency

1 (uncond-CA) CA CA CA CA CA CA (A)
2 (uncond-CN) CN CN CN CN CN CN (B) (B)
3 (uncond-SA) SA SA SA SA SA SA (C) (C)
4 CN CN CN CN CN SA (D) (D)
5 CN CN SA SA SA CN (D) (D)
6 CN CN SA SA SA SA (D) (D)
7 SA SA CN CN CN CN (D) (D)
8 SA SA CN CN CN SA (D) (D)
9 SA SA SA SA SA CN (D) (D)
10 CN SA SA SA SA SA (D)
11 CN SA CN CN CN SA (E)
12 CA CA CA CA CA SA (F) (K)
13 SA SA CA CA CA CA (G)
14 SA SA CA CA CA SA (H) (L)
15 SN CA CA CA CA SN (I)
16 SN CN CA CA CA SN (J)
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limit E?0. A player adopting strategy 14 alternates between CA and
SA in the absence of error if the opponent adopts uncond-CA. In this
situation, the average payoff of the opponent is equal to (1/2) {(1 2 d)
1 (1/2 2 q)}. Therefore, strategy 14 is stable against invasion by
uncond-CA when q . 1/2 2 d. This condition defines a boundary
of region (L). It should be noted that, when d , 1/2, i.e., when being
attacked is not so costly, players gain a larger payoff by selecting CA
rather than SA irrespective of the action of the opponent. Therefore,
in contrast to strategy 14, uncond-SA is not stable in region (L).

Size of attractive basins of different ESSs in parameter region (A).
In the previous section, we revealed that conditional strategies were
the only efficient ESSs in region (A). For these conditional strategies to
establish a foothold in an evolutionary context, they should also have a
sufficiently large attractive basin under evolutionary dynamics.
Therefore, we compare the relative size of the attractive basins of
the ESSs in region (A). We examine replicator dynamics composed
only of ESSs because it is not feasible to treat the dynamics composed
of all 4096 strategies. Region (K) allows two ESSs, i.e., uncond-CA and
strategy 12. Region (L) is divided into subregion (L1) that allows three
ESSs, i.e., uncond-CA, strategy 12, and strategy 14, and subregion (L2)
that allows two ESSs, i.e., uncond-CA and strategy 14. The boundary
between (L1) and (L2) is given by q 5 1 2 2d. These regions within
region (A) are depicted in Figure 4(a). We separately calculated the
size of attractive basins for regions (K), (L1), and (L2).

The size of the attractive basin for each ESS is shown in
Figure 4(b)--(d) with E~10{3. The attractive basins of strategies
12 and 14 are larger than that of uncond-CA for a large parameter
region in region (A). In particular, strategies 12 and 14 have the
largest attractive basin in most of region (K) and the entire region
(L2), respectively. Therefore, conditional strategies 12 and 14 are not

only efficient but also reached from various initial conditions under
replicator dynamics.

Discussion
We explored the possibility of improving the quality of the solution
in a crowdsourcing game by analyzing an iterated game. We found
that the crowdsourcing dilemma was alleviated when the damage
inflicted by an attack (i.e., d) and the cost of attack (i.e., q) were small
(i.e., region (A)). Our main conclusions are as follows: (i) In para-
meter region (A), an unconditional strategy (uncond-CA) and either
conditional strategy (strategy 12 or 14) are coexisting ESSs. (ii)
Furthermore, the conditional strategies 12 and 14 are more efficient
than uncond-CA in region (A). (iii) Outside region (A), repeated
encounters do not alter the efficient ESSs relative to the case of the
non-iterated game.

Strategy uncond-CA is analogous to unconditional defection in
the prisoner’s dilemma game. Strategies 12 and 14 are analogous to
retaliative strategies in the prisoner’s dilemma game. However, we
emphasize that, the loose analogue between the crowdsourcing
dilemma game and the prisoner’s dilemma game is only justified
in region (A). Because strategy 12 is only marginally superior to
uncond-CA in region (A), we discuss the combat between strategy
14 and uncond-CA; the homogeneous population of strategy 14
yields the payoff that is larger by < q than that realized by the
homogeneous population of uncond-CA. If strategy 14 and
uncond-CA play the iterated game, each strategist almost always
selects CA or SA. In our game, CA and SA are analogous to defection
and cooperation in the prisoner’s dilemma, respectively. If both
selects SA, both players obtain 1/2 in a single round if O Eð Þ terms
are neglected. If the focal player selects SA and the opponent selects
CA, the focal player gains d 2 q. If the focal player selects CA and the

Figure 3 | Parameter regions (A) to (L) in the (d, q) space. In addition to the trivial condition 0 , d, q , 1, the 12 regions are defined as follows. Region

(A): d , 1/2 and q , (1/2)d(2 2 d). Region (B): q . (1/2)d(2 2 d). Region (C): d . 1/2 and q , d. Region (D): d . 1/2 and (1/2)d(2 2 d) , q , d. Region

(E): d . 1/2 and max{(1/2)d(2 2 d), (3/2)(2d 2 1)} , q , d. Region (F): q , min{(1/2)d(2 2 d), 1 2 2d}. Region (G): d . 1/2 and 2d 2 1 , q ,

(1/2)d(2 2 d). Region (H): max{1/2 2 d, d 2 1/2} , q , (1/2)d(2 2 d). Region (I): max{d, 1/2} , q , 3/4. Region (J): max{(2/5)(1 1 2d 2 d2), d} , q ,

min{(1/2)(21 1 6d 2 3d2), 6/7}. Region (K): q , min{(1/2)d(2 2 d), 1/2 2 d}. Region (L): d , 1/2 and 1/2 2 d , q , (1/2)d(2 2 d).
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opponent selects SA, the focal player gains 1 2 d. If both players
select CA, both players obtain 1/2 2 q. Because 1 2 d . 1/2 . 1/2 2

q . d 2 q and 2 3 (1/2) . (1 2 d) 1 (d 2 q), the single-shot
crowdsourcing dilemma game played by strategy 14 and uncond-
CA is essentially the same as the prisoner’s dilemma.

The uncond-CA strategy is equivalent to the unconditional defec-
tion in the prisoner’s dilemma. To describe the behavior of the player
adopting strategy 14, we refer to such a player simply as strategy 14
here. If strategy 14 realizes SA and the opponent realizes SA,
corresponding to mutual cooperation, strategy 14 selects SA (i.e.,
cooperation) in the next round. If strategy 14 realizes SA and the
opponent realizes CA, strategy 14 is exploited by the opponent and
switches to CA (i.e., defection) in the next round. If strategy 14

realizes CA and the opponent realizes SA, strategy 14 exploits the
opponent and continues to select CA. If strategy 14 realizes CA
and the opponent realizes CA, corresponding to mutual defection,
strategy 14 switches to SA. Therefore, strategy 14 is equivalent to
the win-stay lose-shift strategy in the iterated prisoner’s
dilemma23,24. Our results pertaining to the improved efficiency of
strategy 14 relative to uncond-CA are consistent with the results
obtained for the win-stay lose-shift strategy in the iterated prison-
er’s dilemma23,24.

Intuitively, both crowdsourcing and not attacking are expected to
be analogous to cooperation, and not crowdsourcing and attacking
are expected to be analogous to defection. However, the present
model as well as the previous one16 do not allow the association

Table 3 | Stationary distribution of the selected actions of two players adopting an ESS, in the limit E?0. P(a) is the probability that both
players select action a. The probability that the two players select different actions tends to zero as E?0. The payoff when both players
adopt the same strategy is also shown

Strategy (n) P(CA) P(CN) P(SA) P(SN) Payoff (pnn)

1 (uncond-CA) 1 0 0 0 1=2{qð Þz2qE{qE2

2 (uncond-CN) 0 1 0 0 1=2{qEzqE2

3 (uncond-SA) 0 0 1 0 1=2{qEzqE2

4 0 1 0 0 1=2{qEzqE2

5 0 1 0 0 1=2{qEzqE2

6 0 0 1 0 1=2{qEzqE2

7 0 1/2 1/2 0 1=2{qEzqE2

8 0 0 1 0 1=2{qEzqE2

9 0 1/2 1/2 0 1=2{qEzqE2

10 0 0 1 0 1=2{qEzqE2{2qE3zO E4ð Þ

11 0 0 1 0 1=2{qE{qE2z8qE3zO E4ð Þ

12 1 0 0 0 1=2{qð Þz 5=2ð ÞqE{ 5=2ð ÞqE2zqE3zO E4ð Þ

13 1/2 0 1/2 0 1=2ð Þ 1{qð Þz 3=2ð ÞqE2{qE3zO E4ð Þ

14 0 0 1 0 1=2{3qEz9qE2{10qE3zO E4ð Þ

15 0 0 0 1 1=2{2qEz20qE3zO E4ð Þ

16 0 0 0 1 1=2{2qEz 1=4ð ÞqE2z 399=16ð ÞqE3zO E4ð Þ
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between crowdsourcing (not crowdsourcing) and cooperation
(defection) because of the definition of the payoff. In both models,
the winning player gains a payoff equal to unity. Given that attacking
does not occur, crowdsourcing increases the probability of winning
owing to the enhanced productivity. However, whether the solution
is made in-house or by crowdsourcing does not affect the payoff in
any other way. For example, if the realized actions of both players are
SN (i.e., not crowdsourcing and not attacking), each player gains an
expected payoff equal to 1/2. If the realized actions of the two players
are CN (i.e., crowdsourcing and not attacking), the payoff remains
the same. However, in real situations, crowdsourcing is considered to
improve the quality of the solution unless an attack occurs3,5,11. To
examine non-iterated and iterated crowdsourcing dilemma games
with this added component warrants future work. In this study, we
confined ourselves to a simpler scenario, thus avoiding to introduce
yet a new parameter.

Methods
Calculation of average payoffs. Throughout the present paper, we concentrate on
the set of pure reactive strategies. We calculate the average payoff of player 1 that
adopts reactive strategy n when the opponent player 2 adopts reactive strategy m,
denoted by pnm.

In each round, there are nine possible pairs of actions realized by the two players. In
other words, (h1,t, h2,t) is either (CA,CA), (CA,CN), (CN,CA), (CN,CN), (C*,SA),
(C*,SN), (SA,C*), (SN,C*), or (S*,S*). Given (h1,t, h2,t), the actions that the two
players intend to carry out in the next round are determined by n and m. Then, we
calculate the probability with which each pair of actions (a1,t11, a2,t11) is actually
selected. This probability depends on E. Then, the two players play the game such that
a pair of realized actions (h1,t11, h2,t11) is uniquely determined from the pair of
selected actions (a1,t11, a2,t11), as shown in Table 1. By combining the stochastic
mapping from (h1,t, h2,t) to (a1,t11, a2,t11) and the deterministic mapping from (a1,t11,
a2,t11) to (h1,t11, h2,t11), we obtain the transition probability from (h1,t, h2,t) to (h1,t11,
h2,t11). Any (h1,t11, h2,t11) is reached from any (h1,t, h2,t) with a positive probability
because of the error Ew0ð Þ. Therefore, the Markov chain on (h1,t, h2,t) is ergodic and
possesses a unique stationary distribution.

The average payoff of player 1 is given by

pnm~
X

h1,t ,h2,tð Þ
P1 h1,t ,h2,tð Þp1 h1,t ,h2,tð Þ, ð1Þ

where P*(h1,t, h2,t) is the probability that (h1,t, h2,t) is realized in the stationary state,
and p1(h1,t, h2,t) is the expected payoff of player 1 under (h1,t, h2,t). Table 4 shows the
values of p1(h1,t, h2,t). It should be noted that if both players crowdsource, player 1

attacks player 2, and player 2 does not attack player 1 (i.e., (h1,t, h2,t) 5 (CA, CN)),
then player 1 wins if p1 . p2 2 d, where p1 and p2 are productivity values of players 1
and 2, respectively. This event occurs with probability 1 2 (1/2)(1 2 d)2.

Evolutionary stability and efficiency. Strategy n is an ESS if pnn . pmn is satisfied or
both pnn 5 pmn and pnm . pmm are satisfied for all m ? n. We enumerate all ESSs as
follows using essentially the same exhaustive search method as that used for studying
indirect reciprocity27.

Consider strategy n. For all strategies m ? n, we check the following conditions. If
pnn and pmn are not the same function in terms of d, q, and E, we expand the difference
with respect to E as follows:

pnn{pmn~
X?

k~0

ak d,qð ÞEk: ð2Þ

We denote the nonzero coefficient of the lowest order on the right-hand side of Eq. (2)
by a�k d,qð Þ. For infinitesimally small E, strategy n is stable against invasion by strategy
m if a�k d,qð Þw0. If pnn and pmn are the same function, then we compare pnm and pmm

with the same procedure. If pnm and pmm are the same function, strategy n is not an
ESS because it is neutrally stable against invasion by strategy m. If n is not invaded by
any m, even neutrally, n is an ESS.

We say that ESS n is efficient if pnn $ pmm for all other ESSs m(? n). To check the
efficiency of ESSs, we expand pnn 2 pmm with respect to E and look at the sign of the
non-zero coefficient of the lowest order.

Calculation of the size of the attractive basin under replicator dynamics. We
denote the frequency of players adopting strategy n by xn g [0, 1]. The replicator
equation is given by

Figure 4 | Details of region (A). (a) Three subregions of region (A) in the (d, q) space. (b), (c), (d) Relative sizes of the attractive basins. (b) uncond-CA,

(c) strategy 12, and (d) strategy 14. We set E~10{3. The two solid lines in (b), (c), and (d) represent the boundaries between the subregions. The size of

attractive basin of strategies 12 and 14 is equal to zero in region (L2) and region (K), respectively, because they are not ESSs in the corresponding region.

Table 4 | The expected payoff p1(h1,t, h2,t) of player 1 when the
realized actions of player 1 and 2 are h1,t and h2,t, respectively

h1,t h2,t p1(h1,t, h2,t)

CA CA 1/2 2 q
CA CN 1 2 (1/2)(1 2 d)2 2 q
CN CA (1/2)(1 2 d)2
CN CN 1/2
C* SA 1 2 d
C* SN 1
SA C* d 2 q
SN C* 0
S* S* 1/2
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dxn

dt
~xn pn{�pð Þ, ð3Þ

where pn~
X

m
pnmxm and �p~

X
n
pnxn .

Consider the case in which just two pure-strategy ESSs, denoted by n 5 1 and 2,
exist. Then, under the replicator dynamics composed of two strategies 1 and 2, the
relative size of the attractive basin of strategy 1 is given by (p11 2 p21)/(p11 1 p22 2

p12 2 p21).
Consider the case in which three pure-strategy ESSs, denoted by n 5 1, 2, and 3,

exist. Then, we assume a population composed of the three ESSs and determine the
basin size of the ESSs by direct numerical integration of the replicator equation
because analytical expressions are difficult to obtain. We run the dynamics from
initial conditions (x1, x2, x3) 5 (,1D, ,2D, ,3D), where D 5 1/200, and (,1, ,2, ,3) is a
set of integers that satisfy 0 , ,1, ,2, ,3 , 200 and ,1 1 ,2 1 ,3 5 200. We count the
number of initial conditions such that all players finally adopt strategy 1 and divide it
by the total number of initial conditions. The calculated fraction defines the relative
size of the attractive basin of strategy 1. Parallel definitions are applied to strategies 2
and 3.

1. Howe, J. The rise of crowdsourcing. Wired Mag. 14, 1–4 (2006).
2. von Ahn, L. Games with a purpose. Computer 39, 92–94 (2006).
3. von Ahn, L., Maurer, B., McMillen, C., Abraham, D. & Blum, M. re-CAPTCHA:

Human-based character recognition via web security measures. Science 321,
1465–1468 (2008).

4. Huberman, B. A., Romero, D. M. & Wu, F. Crowdsourcing, attention and
productivity. J. Inform. Sci. 35, 758–765 (2009).

5. Cooper, S. et al. Predicting protein structures with a multiplayer online game.
Nature 466, 756–760 (2010).

6. Hand, E. et al. Citizen science: People power. Nature 466, 685–687 (2010).
7. Horowitz, D. & Kamvar, S. D. The anatomy of a large-scale social search engine, in

Proc. 19th ACM International Conference on World Wide Web, 431–440 (2010).
8. Hellerstein, J. M. & Tennenhouse, D. L. Searching for Jim Gray: A technical

overview. Comm. ACM 54, 77–87 (2011).
9. Pickard, G. et al. Time-critical social mobilization. Science 334, 509–512 (2011).
10. Tang, J. C. et al. Reflecting on the DARPA red balloon challenge. Comm. ACM 54,

78–85 (2011).
11. Barrington, L., Turnbull, D. & Lanckriet, G. Game-powered machine learning.

Proc. Natl. Acad. Sci. U.S.A. 109, 6411–6416 (2012).
12. Mason, W. & Suri, S. Conducting behavioral research on Amazon’s Mechanical

Turk. Behav. Res. Methods 44, 1–23 (2012).
13. Zhang, H., Horvitz, E., Chen, Y. & Parkes, D. C. Task routing for prediction tasks,

in Proc. 11th International Conference on Autonomous Agents and Multiagent
Systems 2, 889–896 (2012).

14. Alstott, J., Madnick, S. & Velu, C. Measuring and predicting speed of social
mobilization. arXiv:1303.3805 (2013).

15. Rahwan, I. et al. Global manhunt pushes the limits of social mobilization.
Computer 46, 68–75 (2013).

16. Naroditskiy, V., Jennings, N. R., Hentenryck, P. V. & Cebrian, M. Crowdsourcing
dilemma. arXiv:1304.3548 (2013).

17. Watts, D., Cebrian, M. & Elliot, M. Dynamics of social media, in Public Response to
Alerts and Warnings Using Social Media: Report of a Workshop on Current
Knowledge and Research Gaps, 22–33, eds. National Research Council (The
National Academies Press, Washington, D.C., 2013).

18. Kittur, A. et al. The future of crowd work, in Proc. 2013 Conference on Computer
Supported Cooperative Work, 1301–1318 (2013).

19. Ipeirotis, P. G., Provost, F., Sheng, V. S. & Wang, J. Repeated labeling using
multiple noisy labelers. Data Min. Knowl. Disc. 28, 402–441 (2014).

20. Trivers, R. L. The evolution of reciprocal altruism. Quart. Rev. Biol. 46, 35–57
(1971).

21. Axelrod, R. The Evolution of Cooperation (Basic Books, NY, 1984).
22. Nowak, M. A. & Sigmund, K. Tit for tat in heterogeneous populations. Nature 355,

250–253 (1992).
23. Kraines, D. & Kraines, V. Learning to cooperate with Pavlov–an adaptive strategy

for the iterated Prisoner’s Dilemma. Theor. Decis. 35, 107–150 (1993).
24. Nowak, M. A. & Sigmund, K. A strategy of win-stay, lose-shift that outperforms

tit-for-tat in the Prisoner’s Dilemma game. Nature 364, 56–58 (1993).
25. Nowak, M. A. Evolutionary Dynamics (Harvard Univ. Press, Cambridge, 2006).
26. Nowak, M. A. & Sigmund, K. The evolution of stochastic strategies in the

Prisoner’s Dilemma. Acta Appl. Math. 20, 247–265 (1990).
27. Ohtsuki, H. & Iwasa, Y. How should we define goodness–reputation dynamics in

indirect reciprocity. J. Theor. Biol. 231, 107–120 (2004).

Acknowledgments
K.O. acknowledges the support provided through CREST JST. M.C. and A.A. are supported
by the Australian Government as represented by DBCDE and ARC through the ICT Centre
of Excellence program. N.M. acknowledges the support provided through Grants-in-Aid
for Scientific Research (No. 23681033) from MEXT, Japan, the Nakajima Foundation,
CREST JST, and the Aihara Innovative Mathematical Modelling Project, the Japan Society
for the Promotion of Science (JSPS) through the ‘‘Funding Program for World-Leading
Innovative R&D on Science and Technology (FIRST Program),’’ initiated by the Council for
Science and Technology Policy (CSTP).

Author contributions
M.C. and N.M. designed the research; K.O. contributed the computational results; K.O.,
M.C., A.A. and N.M. discussed the results; K.O., M.C., A.A. and N.M. wrote the paper.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Oishi, K., Cebrian, M., Abeliuk, A. & Masuda, N. Iterated
crowdsourcing dilemma game. Sci. Rep. 4, 4100; DOI:10.1038/srep04100 (2014).

This work is licensed under a Creative Commons Attribution 3.0 Unported license.
To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4100 | DOI: 10.1038/srep04100 7

http://creativecommons.org/licenses/by/3.0

	Iterated crowdsourcing dilemma game
	Introduction
	Results
	Model
	Non-iterated game
	Evolutionary stability and efficiency for the iterated game
	Size of attractive basins of different ESSs in parameter region (A)

	Discussion
	Methods
	Calculation of average payoffs
	Evolutionary stability and efficiency
	Calculation of the size of the attractive basin under replicator dynamics

	Acknowledgements
	References


