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Systemic identification of deterministic genes for different phenotypes is a primary application of
high-throughput expression profiles. However, gene expression differences cannot be used when the
differences between groups are not significant. Therefore, novel methods incorporating features other than
expression differences are required. We developed a promising method using transcriptional response as an
operational feature, which is quantified as the correlation between expression levels of pathway genes and
target genes of the pathway. We applied this method to identify causative genes associated with
chemo-sensitivity to tamoxifen and epirubicin. Genes whose transcriptional response was dysregulated only
in the drug-resistant patient group were chosen for in vitro validation in human breast cancer cells. Finally,
we discovered two genes responsible for tamoxifen sensitivity and three genes associated with epirubicin
sensitivity. The method we propose here can be widely applied to identify deterministic genes for different
phenotypes with only minor differences in gene expression levels.

S
pecific phenotypes are generally attributed to different gene expression levels. Since high-throughput
measurement of gene expression levels has become possible, several studies have identified genes showing
differential expression between two or more phenotypic groups with hope that these genes are responsible

for the phenotypic differences. There are several successful examples1–6, however, this approach has not been
successfully applied to clinical studies because of the inconsistency of gene expression profiling using micro-
arrays7–9. Typically, gene expression levels do not show significant differences between groups. For example, few
genes show differential expression between primary tumors that are metastasis-prone and those that are meta-
stasis-free after tamoxifen treatment. Moreover, there are many resultant passenger genes that have no causative
power for phenotypes10. This indicates that analysis of expression level alone is not sufficient.

Abnormal genes that do not show changes in expression level can result in phenotypic changes. For example,
gain-of-function oncogenes can transform normal cells into neoplastic cells such as B-Raf in skin cancer.
Conventional approaches that depend only on gene expression levels are not applicable to such cases. Instead,
evaluation of functional outcomes is required to identify genes contributing to phenotypes. Therefore, opera-
tional relationship between gene expression levels and functional outcomes should be assessed to find phenotype
deterministic genes. Among diverse functional outcomes, we used transcriptional response, which is related to
how well target genes of transcriptional factors are regulated. Malfunctioning genes can deregulate transcriptional
responses against cytotoxic drugs, sometimes triggering drug resistance11,12. To capture such an aberration, we
compared correlation patterns regarding expression levels of pathway genes and their target genes in drug-
sensitive and drug-resistant patients to identify genes with significant differences in transcriptional responses,
instead of comparing gene expression levels in the two patient groups.

There are several previous reports in which correlation is evaluated in each phenotype. Hu et al. checked
correlation difference with all genes between two conditions13. For a gene, however, not all the other genes should
have correlation with it. Considering all other genes is likely to make noise. Hwang et al. also examined correla-
tion, but focused on differentially expressed protein-protein interaction sub-network14. It can identify differential
outcomes, but not the cause for them. Unlike these previous studies, we developed a simple, but powerful method
for systemic identification of deterministic genes for phenotypes using transcriptional response, and identified
genes that lost their transcriptional response in tamoxifen-resistant and epirubicin-resistant patients. We
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hypothesized that inhibition of these genes suppresses abnormal
transcriptional responses, sensitizing cancer cells to tamoxifen or
epirubicin. Computational prediction was confirmed by in vitro cell
viablity assays.

Results
Overview of the approach. We defined a transcriptional response as
a relationship between the activities of transcription factor (TF)

modulators and expression levels of TF target genes, which can be
calculated using several types of correlation or mutual information.
We hypothesized that the transcriptional response (other than the
expression level itself) can be used to differentiate between two
phenotypic groups. For many signal transduction pathways, TFs
are integration points of signals from proteins operating between
TFs and receptors. Thus, we considered genes in the same pathway
with TFs (pathway genes) as genes that can modulate transcriptional
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Figure 1 | Overview of the study approach. For a gene involved in a pathway (pathway gene), target genes of transcription factors involved in the same

pathway were considered to be target genes of the pathway genes. Even if there are no expression differences between the pathway gene (A) and target gene

(B) in two phenotypic groups, the correlation between them (C) can still differ. (D) EGFR target genes were significantly correlated only in drug-sensitive

patients. Each rectangle represents EGFR target genes, and color indicates the portion of datasets in which the target gene had a Spearman’s rank order

correlation coefficient (P , 0.05) with EGFR in terms of mRNA expression level. (E) Target genes of a pathway gene were defined as target genes of

transcription factors involved in the same pathways of the pathway gene. For each phenotypic group, we calculated the ratio of target genes with a

significant expressional correlation with the pathway gene over all target genes, which is termed as the significance rate (SR) of the pathway gene. The ratio

of small SR over large SR is restricted to range [0, 1], and termed as the significance score (SS) of the pathway gene.
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responses. A schematic diagram of the overall process is shown in
Figure 1. To identify deterministic genes for specific phenotypes, we
evaluated all signaling molecules in any pathways according to
NetSlim, simply referred to as ‘‘pathway genes’’. We considered
target genes of TFs in the same pathway of each pathway gene to
be controlled by a pathway gene (target genes of a pathway gene).
Even when there are no expression differences in a pathway gene
(Figure 1A) and a target gene (Figure 1B) between two phenotypes,
expressional correlation between the two genes can differ
(Figure 1C). Therefore, we considered the expressional correlation
as representative for normality of the transcriptional regulation of
pathway genes. In most datasets, for example, EGFR target genes
have significant expressional correlation with EGFR only in
tamoxifen-sensitive patients (Figure 1D). Expression of EGFR and
its target gene (NUDT11), and the correlation between them is
shown in Supplementary Fig. S1 online. To identify pathway genes
that lose significant transcriptional regulation on their target genes in
drug-resistant patients, we compared the number of target genes
which have significant expressional correlation with a pathway
gene in drug-resistant and drug-sensitive patients. We defined the
significance rate (SR) of a pathway gene as the proportion of target
genes which have significant expressional correlations with the
pathway gene, and the significance score (SS) as the ratio of small
SR over large SR after restriction to range [0, 1]. According to defined
formula, higher SS indicates more deterministic genes for given
phenotype (Figure 1E). We used SS as the numeric for normality
of the transcriptional regulation of each pathway gene.

Difference in transcriptional response with minor expression
differences. Differentially expressed genes (DEGs) between tamoxifen-
resistant and tamoxifen-sensitive patients in the datasets were
identified. Among the eight datasets, there were no DEGs in the
four datasets using a false discovery rate (FDR) , 0.05. GSE6532B
had the largest number of DEGs, which accounted for only 5% of the
tested genes (Figure 2A). On the other hand, SR was significantly
increased in tamoxifen-sensitive patients compared to tamoxifen-
resistant patients in all datasets (Figure 2B, all datasets had a
paired t-test P-value , 0.0001). The SR distribution of all pathway
genes confirmed this result (Figure 2C, the distributions were not
normal in Kolmogorov-smirnove, D’agostino & Pearson omnibus,
and Shapiro-Wilk normality tests). Based on SR, we calculated SS for
all pathway genes (Figure 2D). The number of target genes of
pathway genes was not associated with SS (based on the P-value of
the Spearman’s rank order correlation coefficient of target gene
number and SS). We visualized the difference in SR between the
two groups (SR of tamoxifen-sensitive patients - SR of tamoxifen-
resistant patients) for all pathway genes over several datasets
(Figure 3A). Of the top-ranked genes, we selected five that had no
differences in expression level between the two groups (Figure 3B),
and performed in vitro assays to examine the association between
these genes and tamoxifen sensitivity.

Deterministic genes for tamoxifen sensitivity. To verify the accu-
racy of the computational predictions, we evaluated the cytotoxic
effect of tamoxifen after knockdown of the five top-ranked genes,
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Figure 2 | Tamoxifen sensitivity is more strongly associated with SS than DEGs. (A) The number of differentially expressed genes (DEGs) between

tamoxifen-sensitive and tamoxifen-resistant patient groups over eight datasets. There were no DEGs in four datasets with FDR , 0.05. (B) SR in

tamoxifen-sensitive and tamoxifen-resistant patients. All datasets have different SR distributions with P , 0.0001. The 95% confidence intervals of SR are

(0.073, 0.075) and (0.144, 0.149) in tamoxifen-resistant and tamoxifen-sensitive groups, respectively. Distribution of SR (C) and SS (D) for tamoxifen

sensitivity were averaged over all datasets.
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namely, SNF1LK, TRAP1, JAK2, SOCS2, and FOSB. Titration of
tamoxifen showed that cell death occurred in a dose-dependent
manner in two breast cancer cell lines: MCF-7 and MDA-MB-231
cells. To examine the effects of each gene on cell viability, cells were
treated with tamoxifen at a concentration of 1 mM. At 48 h post-
transfection of siRNAs specific for each gene, cells were incubated in
the presence or absence of tamoxifen for 24 h, and then cell viability
was measured using WST-1 assay. Tamoxifen-induced cell death was
significantly increased in cells transfected with siJAK2 or siSOCS2
(Figure 4A). Transfection of siRNAs without tamoxifen treatment
did not induce significant level of cell death. These results were
confirmed by flow cytometric analysis after staining with TMRE.
Tamoxifen-induced cell death was remarkably increased after
siRNA knockdown of JAK2 and SOCS2 (Figure 4B). These data

validate our computational method and suggest that JAK2 and
SOCS2 are deterministic genes for tamoxifen sensitivity in breast
cancer. In accordance with these results, JAK2/STAT5 inhibition
has been shown to be important to restore efficacy of dual PI3K/
mTOR inhibitor in metastatic breast cancer15.

Consistent loss of transcriptional response by JAK2 and SOCS2 in
drug-resistant patients. Because JAK2 and SOCS2 were associated
with tamoxifen sensitivity in the in vitro assays, we examined
whether their target genes would have significant transcriptional
responses in the tamoxifen-sensitive patients over several datasets.
For most JAK2 (Figure 5A) and SOCS2 (Figure 5B) target genes, the
transcriptional response was consistently lost in drug-resistant
patients for all datasets. For SOCS2 target genes, two datasets
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Figure 3 | Significant scores of pathway genes over all datasets. (A) Significance scores of pathway genes over all datasets. Each column represents a

dataset and each row represents a pathway gene. Color indicates differences in SR between the two groups (SR of tamoxifen-sensitive patients - SR of

tamoxifen-resistant patients) instead of SS for clear visualization. Gray cells indicate the pathway genes that were not available on microarray chips used in

the dataset. (B) Significance of expression level differences of the five top-ranked genes. For each gene, a dot indicates the q-value of differential expression

in each dataset. For the five top-ranked genes, there were no genes that showed differential expression with FDR , 0.05 (yellow region) in any of datasets.
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(GSE1378, GSE1379) showed different sign of correlations with
mRNA expression levels of SOCS2 compared to other datasets, but
their correlations were still significant (Figure 5B). These data sug-
gest that the status of transcriptional regulation is more consistent
with drug-sensitivity than are gene expression levels, where only five
DEGs were common to two datasets among the eight datasets.

Validation in another case: deterministic genes for epirubicin
sensitivity. Similarly with the case of tamoxifen sensitivity, we
applied our method in epirubicin-treated breast cancer samples
(GSE16446). We evaluated efficacy of epirubicin in MDA-MB-231
cells after knockdown of the six top-ranked genes, namely,
NOTCH4, HES5, IL6, BIRC2, RING1, and SPEN. At 48 h post-
transfection of siRNAs specific for each gene, cells were incubated
in the presence or absence of epirubicin for 24 h, and then cell
viability was evaluated by trypan blue exclusion. Epirubicin-
induced cell death was significantly increased in cells transfected
with siNOTCH4, siHES5, or siBIRC2, suggesting that they are deter-
ministic genes for epirubicin sensitivity. However, DEGs could not
select deterministic genes for epirubicin sensitivity, because there
were no DEGs with FDR , 0.05 including NOTCH4, HES5, and
BIRC2 (Supplementary Fig. S2 online).

Discussion
Evaluation of transcriptional response is required to identify deter-
ministic genes for different phenotypes. In the context of drug-
resistance, pathway genes can convey defective signals to TFs and
affect the transcription of target genes, eventually inducing drug-
resistance. As in this case, operational phenotypes such as the res-
ponse to growth factors or drugs depend not only on the quantity of
proteins but also on their functional normality. Thus, we incorpo-
rated stimuli-response concepts into transcriptional control, and
developed a method to identify deterministic genes that cause spe-
cific phenotypes. Our method was used to identify genes responsible
for tamoxifen sensitivity in breast cancer. Notably, most genes
showed non-significant differential expression between tamoxifen-
sensitive and tamoxifen-resistant groups (Figure 2A). Even using re-
sampling analysis by Li et al.16, only one gene was common DEG that
has FDR , 0.05 for more than 50% of randomly selected microarray
data in two of eight datasets. This suggests that traditional methods
that depend on the quantity of gene expression levels would have
been unsuccessful in this case.

Several studies have identified genes that represent prognosis1,2,17

after tamoxifen treatment, but such studies have focused on differ-
ences in gene expression between drug-resistant and drug-sensitive
patients. The ratio of two genes (HOXB13:IL17BR) is one of

prognostic factors18. However, the results of several studies have been
inconsistent7–9 mainly due to the inaccuracy of expression profiling
by microarrays. In contrast, the rank of expression level has been
relatively well-conserved over several studies compared to express-
ion level itself19. We speculated that our method would successfully
identify causative genes for drug resistance because we used rank of
correlations of genes. Moreover, the correlation is not affected by
shift and scale, implying that the normalization method of express-
ion levels, which is an important issue in handling gene expression
profiles, has only a minor effect on the final results. Using our
method, we revealed that JAK2 and SOCS2 are deterministic factors
for tamoxifen sensitivity in breast cancer. In addition, we showed
that NOTCH4, HES5, and BIRC2 and determine epirubicin sensitiv-
ity of breast cancer cells.

Our proposed method is not limited to drug resistance, but rather
is applicable to any case where two different phenotypes are of inter-
est, even when few genes are showing significant differential express-
ion. Therefore, it is important to establish definite criteria by which
phenotypes can be determined. For example, it is clear that cell death
is the most important phenotypic criterion for drug-resistance. On
the other hands, there is no clear standard for phenotypic differenti-
ation regarding metastasis, even though anoikis, migration, and
invasion are important contributing factors. To overcome these
weaknesses of examining phenotypes, we incorporated transcrip-
tional response as a functional output of phenotypes, and success-
fully identified causative genes for different phenotypes.

Methods
Microarray datasets and pre-processing. We used four original microarray datasets
from the Gene Expression Omnibus (GEO) database: GSE129093, GSE1378,
GSE1379, and GSE6532. Because GSE6532 includes data from several hospitals, we
split it into five datasets according to hospital and microarray platform. All datasets
contained ER-positive patients. We classified patients as tamoxifen-resistant if there
was annotation (in the GSM description) that metastasis had occurred; otherwise,
they were classified as tamoxifen-sensitive. In all datasets, disease free survival (DFS)
of tamoxifen-sensitive patients group was longer than that of tamoxifen-resistant
patients group (all datasets had a paired t-test P-value , 0.001). We used GSE16446
in the case of epirubicin sensitivity. Total 38 arrays were used for drug sensitive and
resistant groups since the other arrays have no information about occurrence of
distant metastasis after therapy. The number of patients and other information are
provided in Table 1.

All probe IDs in microarray chips were removed during processing if detection
P-values were larger than 0.05 or tags for detection were absent. Probes that detected
less than 75% in all sample groups were also removed in later analyses. Remaining
probes were converted into HPRD20 ID where the average intensities of the probes for
the same HPRD were assigned as expression intensity of the HPRD ID. Quantile-
quantile normalization was applied to all chips.

Pre-defined pathways. We used NetSlim database21 whose pathways are one of the
most well-organized forms, even though there are small number of pathways.
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Table 1 | Overview of the study approach

GSE ID GPL ID The number of resistant patients The number of sensitive patients ER-STATE

GSE1378 GPL1223 28 32 Positive
GSE1379 GPL1223 28 32 Positive
GSE6532A GPL96 12 54 Positive
GSE6532B GPL97 19 80 Positive
GSE6532C GPL570 28 59 Positive
GSE6532D GPL96 16 32 Positive
GSE6532E GPL97 21 48 Positive
GSE12093 GPL96 20 116 Positive
GSE16446 GPL570 19 19 Negative
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NetSlim pathways start from external stimuli and end with transcription factors. For
pathways containing several sub-pathways such as EGFR pathway, NetSlim pathways
are neatly demarcated. Moreover, protein-protein and enzyme-substrate interactions
in NetSlim are selected based on stringent criteria21. We manually removed genes
denoted as transcriptionally induced in the pathways. Finally, we used 605 pathway
genes, and 9063 target genes of pathway genes.

Cell cultures. MCF-7 and MDA-MB-231 cells were generously provided by Dr. Mi-
Young Kim (KAIST, Daejeon, Korea), and maintained at 37uC in an atmosphere
containing 5% CO2 in Dulbecco’s modified Eagle’s medium (Welgene, Seoul, Korea)
supplemented with 10% fetal bovine serum (Gibco, Gaithersburg, MD), 100 U/ml
penicillin, and 100 mg/ml streptomycin (Invitrogen, Carlsbad, CA). Tamoxifen was
purchased from Sigma-Aldrich (St. Louis, MO).

Cell viability assay. WST-1 assays were performed to determine cell viability. MCF-7
and MDA-MB-231 cells were seeded in 24-well plates at a density of 4 3 104 cells/well
in quadruplicate, and WST-1 reagent (Nalgene, Rochester, NY) was added to each
well up to 5% of the media volume. After incubation for 2 h at 37uC in a 5% CO2
incubator, the absorbance at 450 nm was measured using a microplate reader (Bio-
Rad, Richmond, CA). Cell death was confirmed by staining with 100 nM
tetramethylrhodamine ethyl ester (TMRE, Sigma-Aldrich). Ten thousand cells were
analyzed on a Caliber flow cytometer. Cell viability was also measured by trypan blue
exclusion. Each cell suspension was mixed with the same volume of 0.4% trypan blue
dye (Gibco), followed by counting with hemocytometer in quadruplicate. Cells that
stained blue were scored as nonviable.

siRNA transfection. A small interfering RNA (siRNA) duplex targeted to SNF1LK,
TRAP1, JAK2, SOCS2, FOSB, NOTCH4, HES5, IL6, BIRC2, RING1, SPEN, and an
siRNA with a random sequence (negative control) was synthesized by Bioneer
(Daejeon, Korea). Transient transfection was performed using Lipofectamine 2000
(Invitrogen) according to the manufacturer’s protocol.

Statistical analysis. DEGs were identified by a q-value , 0.05 calculated with
‘‘qvality’’22 for the P-value of the two-tailed Student’s t-test. Correlations used in SRs
were calculated using the Spearman’s rank order correlation coefficient and their P-
values were approximated using Student’s distribution23. After treatment of
anticancer drugs, each sample was compared by one-way analysis of variance
(ANOVA) with Tukey’s post hoc test being applied to significant main effects.
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