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The current standard of care for head and neck cancer includes surgical resection of the tumor followed by
targeted head and neck radiation. This radiotherapy results in a multitude of negative side effects in adjacent
normal tissues. Autophagy is a cellular mechanism that could be targeted to ameliorate these side effects
based on its role in cellular homeostasis. In this study, we utilized Atg5”;Aqp5-Cre mice which harbor a
conditional knockout of Atg5, in salivary acinar cells. These autophagy-deficient mice display increased
radiosensitivity. Treatment of wild-type mice with radiation did not robustly induce autophagy following
radiotherapy, however, using a model of preserved salivary gland function by IGF-1-treatment prior to
irradiation, we demonstrate increased autophagosome formation 6-8 hours following radiation.
Additionally, administration of IGF-1 to Atg5";Aqp5-Cre mice did not preserve physiological function.
Thus, autophagy appears to play a beneficial role in salivary glands following radiation and pharmacological
induction of autophagy could alleviate the negative side effects associated with therapy for head and neck
cancer.

ead and neck cancer is one of the most common cancers worldwide. The current standard of care includes
surgical resection of the tumor followed by chemotherapy and radiation'. Although advances in techno-
logy have allowed for improved targeting of radiation to the tumor, salivary glands still receive significant
levels of radiation throughout the course of treatment®. Radiation causes significant damage to the salivary glands
and a loss of salivary function. This damage causes patients to suffer from xerostomia, mucositis, dental caries and
malnutrition®’. Unfortunately, current therapies used to ameliorate these negative side effects are short-lived and
have multiple negative side effects of their own>’. Therefore, it is consequential that mechanisms for salivary
gland preservation be identified to better the quality of life for these patients and decrease their financial burden.

Macroautophagy, hereafter referred to as autophagy, has been shown to have both positive and negative effects
on cellular homeostasis and survival*. In a majority of tissues, autophagy is necessary to maintain cellular
homeostasis and to provide a “quality control” mechanism via removal of damaged proteins and organelles*”.
The role of autophagy in the response of cancer cells to radiotherapy has been studied in depth®'* however, the
role autophagy plays in normal tissue function following radiation is much less understood. When a knockdown
of Atg7 was used in human prostatic epithelial cell line, RWPE-1, these cells showed increased radiosensitivity
and increased non-apoptotic cell death'’. However, Moretti ef al found that the induction of autophagy in mouse
embryonic fibroblasts (MEFs) following radiation actually increased radiosensitivity via increased levels of non-
apoptotic cell death™. Therefore the beneficial or detrimental effect by autophagy may be cell type- and damage
stimulus-dependent and much more research is needed to define the role of autophagy in physiologic function
following damage.

Mouse models have been extensively used to investigate the mechanisms underlying salivary gland sensitivity
to radiation-therapy. These studies have shown that there is a significant increase in apoptosis of salivary acinar
cells 8-24 hours following targeted head and neck radiation'. This increase in cell death is most likely one of the
causes of the loss of acinar cells, glandular shrinkage, changes in saliva composition, and reduction in salivary flow
rates which occurs within 72 hours after radiation®. In addition, there is a lack of cell cycle arrest in the salivary
glands at these acute time points following radiation'. It is hypothesized that this lack of cell cycle arrest does not
allow sufficient time for cells to undergo repair following radiotherapy. Models of preventing radiation-induced
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salivary gland dysfunction have primarily focused on regulation of
apoptosis. The use of insulin like growth factor-1 (IGF-1) concur-
rently with targeted head and neck radiation causes a significant
reduction in the rate of apoptosis and increased cell cycle arrest at
these acute time points'’. Importantly, radiation with IGF-1 pretreat-
ment also allows for preservation of stimulated salivary flow
rates'’"’.

The activation of autophagy in normal tissue following stress, such
as radiation, may rely in part on the interplay between apoptosis and
autophagy. The exact relationship between these two cellular
mechanisms remains controversial and is most likely tissue and
stress specific'®. Most studies, however, do describe Ambral,
Beclin-1, and Bcl-2 as key proteins in the interplay between these
two cellular processes'”*’. Ambral and Beclin-1 are necessary for the
autophagic process to occur. These two proteins form a complex that
is required for the second step of the autophagic process, elongation
of the phagophore®'. Bcl-2 sequesters Ambral so that it is unable to
complex with Beclin-1 and leads to an inhibition of autophagy and
an induction of apoptosis'”*°. Therefore, studying the interaction
and crosstalk relationship of these three proteins can help expand
the understanding of the autophagy/apoptosis relationship.

We created the Atg5”;Agp5-Cre mouse model which has a con-
ditional knockout of Afg5, a gene necessary for autophagy, in salivary
acinar cells in order to understand the role of autophagy in salivary
gland function®. In these mice, Cre recombinase is specifically
expressed in salivary acinar cells via the use of the Aquaporin 5
(Agp5) promoter, which is the principle aquaporin water channel
protein expressed on the apical surface of salivary acinar cells®.
Salivary glands have relatively low baseline levels of autophagy**
and correspondingly Atg5”;Aqp5-Cre mice display no differences
in baseline levels of apoptosis, proliferation, or salivary flow rates®.
The purpose of this study was to determine the role of autophagy in
the response of the salivary glands to targeted head and neck radi-
ation and to better define the relationship between autophagy and
apoptosis in salivary glands following radiation by evaluating the
binding of Ambra-1 to Bcl-2 or Beclin-1.

Methods

Ethics statement. All animals were housed and treated in accordance with the
University of Arizona Institutional Animal Care and Use Committee (IACUC). All
experiments were approved by IACUC.

Production of Atg5”;Aqp5-Cre mice. The development of the Atg5”;Agp5-Cre mice
has been described in detail previously**. Briefly, an Agp5-Cre mouse line was crossed
with a mouse line that contains a floxed Atg5 gene (Atg5”) to produce the
Atg5";Aqp5-Cre autophagy-deficient and Atg5™/*;Aqp5-Cre wild-type mice. DNA
was isolated from tail tips to determine the genotype of each mouse. 2 pl of Atg5 or
Cre recombinase primer pairs (IDT) and 1 pl of isolated DNA were added to Hot
Start PCR Mix Tubes (Bioneer, Alameda, CA). The Hot Start PCR Mix Tubes were
placed into a thermal cycler for 2 hours (Bio-Rad). This PCR mixture was loaded into
an agarose gel with ethidium bromide and run at 150 volts for about 30 minutes. The
VersaDoc Imaging System (Bio-Rad) was used to image the ethidium bromide gels.
Both male and female mice were used for all experiments using this mouse model.

Radiation treatment. Intramuscular injections of a ketamine/xylazine mixture

(50 mg/kg and 10 mg/ml respectively) (Western Medical Supply, Arcadia, CA) were
given to four to six week old FVB, Atg5”;Aqp5-Cre, or Atg5**;Agp5-Cre mice for
sedation. Following sedation, the mice were constrained in a 50 ml conical tube and
their bodies were shielded with >6 mm lead so that only the head and neck region
was exposed to a single 5 Gy dose of radiation (*°Co therapeutic irradiator,
Theratron-80, Atomic Energy of Canada Ltd., Ottawa, Canada). All animals were
housed and treated in accordance with the University of Arizona Institutional Animal
Care and Use Committee (IACUC). Both male and female mice were used for
radiation experiments. Radiation was administered between 8-10am.

Saliva collection and composition. Mice were injected intraperitoneally (i.p.) with
carbachol (0.25 mg/kg body weight) and whole saliva was then collected from each
mouse for 5 minutes immediately following the injection. Whole saliva was collected
into pre-weighed tubes and immediately placed on ice. Salivary flow rates were
normalized to the average of the untreated group for each treatment group, for each
collection day as previously described®. Total protein composition of saliva was
determined using the Bio-Rad Experion System. Samples were treated and analyzed
for amylase concentration according to the Experion Pro260 Analysis Kit protocol.

Both male and female mice were used for saliva collection experiments. Saliva
collections were always completed in the morning.

Histology. Salivary gland tissue was removed and immediately fixed in 10% formalin
(Fisher Scientific) for 24 hours and next placed into 70% ethanol. Tissues were
paraffin embedded, serial sectioned (4 pm) by the Histology Service Laboratory in the
Department of Cellular and Molecular Medicine at the University of Arizona. Both
male and female mice were used for histology experiments.

Amylase area staining. Serial sectioned slides, as described above, were baked for 45
minutes at 37°C. Slides were then rehydrated in Histoclear, 100% ethanol, 95%
ethanol, 70% ethanol, 50% ethanol and water for 10 minutes each. Slides were then
placed in citric acid (0.01 M) and microwaved for 10 minutes. The slides were left in
the 0.01 M citric acid for 20 minutes at room temperature. After this incubation,
slides were washed in PBS for 15 minutes and the tissues were then outlined using a
wax pen. 0.5% NEN was used to block slides at room temperature for 1 hour and they
were then incubated in a 1:500 dilution anti-amylase primary antibody (Sigma
Aldrich St. Loius, MO) overnight at 4°C. Slides were then washed with PBS and
incubated in anti-rabbit Cy2-conjugated secondary antibody (1:500) (Invitrogen
Grand Island, NY) at room temperature for 1 hour. Next the slides were
counterstained with DAPI and mounted with 50% glycerol in 10 mM Tris-HCL
Fluorescent images were visualized on a Leica DM5500 Microscope System and
digitally captured with a Pursuit 4 Megapixel CCD camera using Image Pro 7.0
software and morphometric analysis was performed with ImagePro 7.0 (Media
Cybernetics Rockville, MD). Twenty fields of view (FOV = 0.39 mm?) were used to
determine positive amylase area. Amylase area is expressed as the percentage of tissue
area stained positive for amylase to the total area of the parotid gland and the
threshold fluorescence range was equivalent for all slides imaged.

Western blotting. Parotid glands were dissected and homogenized in RIPA buffer
with 5 mM sodium orthovanadate (Fisher Scientific, Waltham, MA), protease
inhibitor cocktail (Sigma-Aldrich, St. Louis, MO) and 100 mM PMSF (Pierce/
Thermo Scientific, Rockford, IL). The samples were then boiled for 10 minutes and
sonicated until homogenous. 12% polyacrylamide gels were used and 100 mg of each
protein sample was added to the gel. The gels were then transferred to 0.45 pm
Immobilon-P membranes (Millipore, Billerica, MA). The membranes were blocked
using either non-fat dry milk or 5% BSA and then immunoblotted with one of the
following antibodies: anti-B-Tubulin (Thermo Scientific, Waltham, MA), anti-Atg5
(Novus Biologicals, Littleton, CO), anti-Atg7 (Cell Signaling, Boston, MA), anti-LC3
(Nanotools, Teningen, Germany), anti-Ambral (Cell Signaling), anti-Beclin-1 (Cell
Signaling), anti-Bcl-2 (Cell Signaling). For detection, ECL substrate (Pierce/Thermo
Scientific) was used as instructed by the manufacturer. Restore Western Blotting
Stripping buffer (Fisher Scientific) was used to strip membranes and then they were
blocked and re-probed as described above. All images are cropped for display to allow
for clarity in the manuscript. Allimportant bands are included in the cropped images.

Densitometry. Black and white images of Western membranes were imported into
Image ] software for quantification of bands as per the Image J Software Guide™.
Quantified bands from 2-3 animals per treatment group and time point were then
normalized to their loading control (Tubulin) and displayed as a ratio to the loading
control.

Immunohistochemical staining for Atg5 and LC3. Serial sectioned slides as
described above were stained utilizing Atg5 or LC3 antibodies to determine levels of
autophagy. Slides were dehydrated and antigen retrieval was performed as described
for amylase area staining above. Slides were blocked using the ABC Rabbit Kit (Vector
Laboratories Burlingame, CA) for 20 minutes and then incubated in their respective
primary antibody at 4° C overnight. The next day slides were washed in PBS three
times for 10 minutes each and then washed in hydrogen peroxide (1%) for 5 minutes.
Slides were again washed in PBS two times for 5 minutes each and then incubated in
biotinylated secondary antibody (ABC Rabbit Kit, Vector Laboratories) for 50
minutes at room temperature. Following incubation, slides were washed in PBS three
times for 5 minutes each and incubated in ABC reaction kit (Vector Laboratories) for
30 minutes. Then, slides were washed in PBS three times for 5 minutes each and
incubated in 3, 3" Diaminobenzidine®” for 6 minutes. The slides were washed in water
to stop the DAB reaction and stained in hematoxylin for about 2 seconds. Next, slides
were rinsed with water for 10 minutes. Slides were dehydrated in 50% ethanol, 70%
ethanol, 95% ethanol, 100% ethanol, and Histoclear for 10 minutes each. Coverslips
were mounted over the tissue using Permount (Fisher Scientific). The stained tissue
sections were visualized using light microscopy and images were taken with a Leica
DM5500 (Leica Microsystems, Wetzlar, Germany) and a 4-megapixel Pursuit camera
(Diagnostic Instruments, Inc, Sterling Heights, MI).

Transmission electronic microscopy (TEM). Salivary glands were dissected and
prepared for imaging as previously described*®. Samples were viewed using a FEI
Tecnai 12 TEM equipped with a Gatan Ultrascan 2K CCD camera. The number of
autophagosomes and lysosomes (Ly) were counted from randomly selected regions
and normalized to tissue area (100 pm?).

IGF-1 injections. Following sedation as described above, mice received an
intravenous injection of recombinant human IGF-1 (5 pg GroPrep, Adelaide,
Australia) immediately prior to targeted head and neck radiation.
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Quantification of activated caspase-3 levels. Serial sectioned slides as described
above were stained for activated caspase-3 as a marker for apoptosis. Staining
procedures were performed as described above and visualized using light microscopy.
Images were taken with a Leica DM5500 and a 4-megapixel Pursuit camera. Activated
caspase-3 positive acinar cells were quantified by averaging the number of positive
cells/total number of cells from five fields of view/mouse.

Immunoprecipitation. Parotid glands were excised and protein was isolated as
described above. A Direct IP Kit (Thermo Fisher Scientific) was then used per the
manufacturer’s specifications. Briefly, 1 mg of protein lysate was added to a spin
column containing an Agarose Resin slurry (provided in IP Kit) and incubated at 4°C
for one hour. Anti-Ambral (Cell Signaling) was then added and incubated at 4°C
overnight. On the second day, the antibody/lysate solution was added to a spin
column containing Protein A/G agarose (provided in IP Kit). The spin column and
antibody/lysate were then washed with a Lysis Wash Buffer and Conditioning Buffer
(provided in IP Kit). Next, a sample buffer elution was prepared using 5X Lane
Reducing Buffer (provided in IP Kit), dithiothreitol (DTT), and deionized water. This
sample buffer elution was added to the antibody/lysate solution and then loaded into a
12% SDS-PAGE gel and run overnight as described above. The membranes were
blocked using 5% BSA and then immunoblotted with Ambral, Beclin-1, and Bcl-2.

Statistical analysis. All statistical analyses were conducted using a one-way analysis
of variance (ANOVA) followed by a Bonferroni post-hoc test. To perform the
statistical analyses the InStat GraphPad 3 (San Diego, CA) software was used. Salivary
flow rates were standardized to untreated groups before the statistical analysis was
performed. Groups with the same letter are not statistically different from one
another.

Results

Targeted head and neck radiation significantly decreases stimu-
lated salivary flow rates in conditional autophagy-deficient
Atg5"5Aqp5-Cre mice when compared to Atg5*'*;Aqp5-Cre mice.
Our lab uses a single 5 Gy dose of radiation as this dose allows for
physiologically, molecular, and histological changes. Importantly, the
clinical fraction of radiation used on patients is 2 Gy/day. Clinically
salivary glands display a loss of function acutely following radiation
(within the 1st week), therefore it is critically imperative to under-
stand the mechanisms behind lower doses of radiation®. There are
very few studies on the role of autophagy in the function of non-
cancerous tissues following radiation®**>. We determined if loss of
autophagy was able to alter radiosensitivity of salivary glands
following targeted head and neck radiation by utilizing the Atg5”;
Aqp5-Cre mouse model which harbors a conditional knockout of
Atg5 in salivary acinar cells. At day 3 following a single 5 Gy dose
of targeted head and neck radiation, male Atg5**;Aqp5-Cre mice
have a 12% reduction in salivary flow rates from unirradiated
(UT), while salivary acinar autophagy-deficient Atg5”;Aqp5-Cre
mice exhibited ~45% reduction in flow rates from UT, which was
significantly lower than irradiated Atg5*"*;Agp5-Cre mice (Figure 1A;
p < 0.05). Female mice showed similar results at day 3 following
radiotherapy: there was a 17% reduction in salivary output in
Atg5*"*;Agp5-Cre mice, while Atg5”;Aqp5-Cre autophagy-deficient
mice displayed a 42% reduction in salivary flow rates, again signifi-
cantly decreased from irradiated Atg5™*;Aqp5-Cre mice (Figure 1B).
At day 14 following radiation, male Atg5""*;Agp5-Cre mice showed a
17% reduction in salivary flow rates and Atg5”;Agp5-Cre autophagy-
deficient mice exhibited a 40% reduction in salivary flow rates, which
was significantly reduced from irradiated Atg5""*;Aqp5-Cre mice
(Figure 1C). At day 14, a 19% reduction in salivary flow rates was
detected in female Atg5**;Agp5-Cre mice, and Atg5”;Aqp5-Cre
salivary acinar-specific autophagy-deficient mice presented a 38%
reduction (Figure 1D). At thirty days following radiation, while
male Atg5"*;Aqp5-Cre mice regained part of salivary secretion, a
persistent 41% reduction in salivary output was noted in Atg5”;
Agp5-Cre autophagy-deficient mice (Figure 1E). On day 30
following treatment female Atg5*/*;Agp5-Cre mice have a 20%
decrease and Atg5”;Aqp5-Cre autophagy-deficient mice have a 38%
decrease in salivary flow rates, significantly lowered from irradiated
Atg5""*;Agp5-Cre mice (Figure 1F; p < 0.05). We also determined
whether radiation damage impacted the production and secretion of
a key salivary protein, amylase. At day 30 following radiation

Atg5;Aqp5-Cre autophagy-deficient mice display significantly
decreased amylase area (~25% decrease from UT) within the
acinar cells (Figure 1G) when compared to irradiated Afg5™*;
Agp5-Cre mice (~5% decrease from UT). These results were
further confirmed through analysis of amylase secretion in saliva
samples (Figure 1I). These results clearly demonstrate that both
salivary flow rates and amylase protein production decreased
significantly in male and female Atg5”;Agp5-Cre autophagy-
deficient mice at chronic time points following radiation when
compared to those in irradiated Atg5™"";Aqp5-Cre mice.

Targeted head and neck radiation does not robustly induce
autophagy at early time points following treatment of wild-type
mice. In order to understand the significant decrease in salivary gland
function in autophagy-deficient mice, we evaluated the induction of
autophagy in irradiated salivary glands from wild-type mice. Based
on the understanding that there are no absolute markers for
autophagy induction and some assays do not work in all tissues®, a
number of different analyses were conducted. Immunoblotting was
performed with protein lysates collected from parotid glands of mice
treated with a single 5 Gy dose of targeted head and neck radiation at
respective time points. It has been previously demonstrated that
apoptosis peaks at 24 hours post-radiation treatment, therefore we
focused our analysis of autophagy induction from 4-8 hours
following radiotherapy. A modest conversion of LC3-I to LC3-II
was observed 8 hours post-radiation (Figure 2A, 2B); however
there was no corresponding decrease in p62 levels (Figure 2A, 2E).
Protein levels of Atg7 and Atg5 also remain unchanged 4 through
8 hours following radiation (Figure 2A-D). Structural evaluation of
parotid glands from unirradiated and irradiated (8 hour) mice
showed little evidence of autophagosome formation (Figure 2F).
Quantification of the number of autophagosomes and lysosomes
from irradiated tissues revealed 1.3/100 pm* and 1.7/100 pm?
respectively which was very similar to unirradiated tissues. Localiza-
tion of Atg5 and LC3 (Figure 2G-H) were also evaluated in tissue
sections by immunohistochemistry. Atg5 appears to be ubiquitously
expressed in acinar and ductal cells of the salivary gland and remains
unchanged following radiation (Figure 2G). In addition, no
differences in LC3 immunohistochemistry between untreated and
irradiated tissues were observed (Figure 2H). Collectively, these
data suggest there may only be a modest autophagy induction at
early time points following radiation.

Pre-administration of IGF-1 to FVB mice induces autophagy at
acute time points following targeted head and neck radiation. The
salivary gland function of the autophagy-deficient mice was clearly
decreased when compared to irradiated controls (Figure 1), yet
surprisingly there was little evidence of robust autophagy
induction in irradiated wild-type mice (Figure 2). Since both of
these models have some level of radiation-induced loss of function,
this led to the hypothesis that autophagy is induced in radiation
models where there is a complete preservation of function. Previ-
ous studies have demonstrated that IGF-1 pretreatment decreased
radiation-induced apoptosis and preserved salivary gland function®.
In the current study, we examined if autophagy was a mechanism
utilized by IGF-1 to allow for preservation of salivary gland function.
In mice receiving IGF-1 prior to radiation, there is an increased
conversion of LC3-I to LC3-II, elevated Atg7 and Atg5 and
decreased p62 protein levels 6-8 hours following radiotherapy
when compared to unirradiated tissues (Figure 3A-E; p < 0.05).
The radiation-induced autophagy in parotid glands of IGF-1-pre-
administrated mice was confirmed by increased autophagosome and
lysosome detection through electron microscopy examination
(Figure 3F). Quantification of the number of autophagosomes and
lysosomes from tissues receiving IGF-1 prior to radiation revealed
2.4/100 um? and 5.1/100 pm? respectively which was elevated over
irradiated controls (Figure 3F). Similar to irradiated tissues, Atg5
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Figure 1 | Conditional knockout of Atg5 in the salivary glands results in significantly decreased salivary flow rates and amylase production following
targeted head and neck radiation. The head and neck region of male and female Atg5""*;Agp5-Cre mice (black bar) and Atg5”;Aqp5-Cre autophagy-
deficient mice (gray bar) were exposed to a single 5 Gy radiation dose. UT: untreated/unirradiated. Data displayed as the mean * SEM. Treatment groups
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Methods on days 3 (A.-B.), 14 (C.—D.) and 30 (E.-F.) following treatment. p < 0.05; n = 15 per genotype. UT: untreated. (G.) Serial sections were stained
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following targeted head and neck radiation. The head and neck region of
female FVB wild-type mice were irradiated. Parotid tissue was collected at
4, 6, and 8, hours after treatment and representative duplicate samples are
shown in each immunoblot. UT: untreated. Data displayed as the mean =
SEM. Treatment groups with the same letters are not significantly different
from each other. (A.-E.) Protein lysates were prepared from parotid glands
and Western blotting was performed as described in Materials and
Methods. Tubulin was used to confirm equal loading. All gel images are
cropped to display only the important bands for clarity. (A.) Parotid tissues
were treated as stated above and collected at 4-8 hours following radiation
for immunoblotting and prepared as described in the materials and
methods, and membranes were probed for Atg7 (top panel), Atg5 (second
panel), short LC3 exposure (third panel), long LC3 exposure (fourth
panel) and p62 (fifth panel) with Tubulin (bottom panel) as a loading
control. (B.) The graph represents the ratio of LC3-II to the loading control
Tubulin, which was quantified using densitometry. n = 2 per time point/
treatment. (C.) The graph represents the ratio of Atg7 to the loading
control Tubulin, which was quantified using densitometry. p < 0.05,n =3
per time point/treatment. (D.) The graph represents the ratio of Atg5 to the
loading control Tubulin, which was quantified using densitometry. p <
0.05, n = 3 per time point/treatment. (E.) The graph represents the ratio of
p62 to the loading control Tubulin, which was quantified using
densitometry. n = 2 per time point/treatment. (F.) Representative electron
microscopy images of parotid glands of untreated mice (top panels), mice
at 8 hours post-radiation (middle panels). AL: autolysosome; AP:
autophagosome; M: mitochondria; N: nucleus. (G.) Representative images
of immunohistochemistry performed using an antibody against Atg5. (H.)
Representative images of immunohistochemistry performed using an
antibody against LC3.

appeared ubiquitously expressed across acinar and ductal cells of the
salivary glands receiving IGF-1 prior to radiation (Figure 3G). In
addition, salivary glands of mice treated with IGF-1 prior to
radiation contained increased punctate LC3 staining (Figure 3H)
when compared to unirradiated or irradiated mice. (Figure 3H
compared to 2H). Taken together, these data suggest autophagy is
induced when IGF-1 is administered prior to radiation.

Autophagy is required for preservation of salivary gland function
in mice receiving IGF-1 prior to radiation. It has been previously
shown that administration of IGF-1 prior to radiation completely
prevents radiation-induced salivary gland dysfunction*¢. Based on
the increase in autophagy markers (Figure 3), it was important to
determine if autophagy was required for IGF-1-mediated preserva-
tion of salivary gland function. Administration of IGF-1 to autophagy-
deficient mice (Atg5”;Aqp5-Cre) failed to preserve salivary flow rates
when compared to IGF-1 administration in Atg5*"*;Aqp5-Cre mice
at acute and chronic time points post-irradiation (Figures 4A-C).
The loss of salivary gland function in irradiated Atg5”;Aqp5-Cre
autophagy-deficient mice receiving IGF-1 was similar to these same
mice treated with radiation alone (Figure 1). Taken together, these
data suggest autophagy is required for IGF1-mediated preservation of
salivary gland function.

Salivary acinar autophagy-deficient Atg5%;Aqp5-Cre mice exhibit
significantly increased levels of apoptosis at 24 and 48 hours
following targeted head and neck radiation. Apoptosis regulation
has been shown to play a central role in the preservation of salivary
gland function following radiation'>". In addition, previous studies
have shown that the conditional knockout of autophagy increases
apoptotic cell death in both untreated and stressed conditions'*"%.
We aimed to determine if the observed changes in salivary secretion
in Atg5;Aqp5-Cre autophagy-deficient mice (Figure 1) is
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accompanied with elevated apoptosis. Atg5”;Agp5-Cre autophagy-
deficient mice exhibited a 16% increase in apoptosis of salivary acinar
cells, measured via cleaved caspase-3 immunohistochemistry, from
unirradiated mice at 24 hours following targeted head and neck
radiation (Figure 5A-B). In contrast, radiation caused a 3.5%
increase in apoptosis in Atg5**;Aqp5-Cre mice. Atg5”;Aqp5-Cre
autophagy-deficient mice maintained elevated levels of apoptosis
(~5%) at 48 hours following irradiation compared to a 2.5%
increase detected in Atg5**;Aqp5-Cre irradiated mice (Figure 5B).
However, there was no significant change in apoptosis levels at
72 hours following radiation in both Atg5”;Aqp5-Cre autophagy-
deficient mice and Atg5"*;Agp5-Cre mice (Figure 5B). Altogether,
we conclude that the inactivation of autophagy in salivary acinar cells
significantly increased the levels of apoptosis following irradiation.

An inverse correlation between autophagy and apoptosis in the
parotid glands following targeted head and neck radiation. The
exact interplay between apoptosis and autophagy remains elusive and
it appears to be both tissue and stress context-dependent!”'%2%-30394,
Based on the differences in autophagy (comparing Figures 2 and 3)
and apoptosis induction'>*"* in irradiated mice * IGF-1, we sought
to define the interplay between autophagy and apoptosis in parotid
glands. Previous studies have shown that increased apoptosis in
salivary acinar cells begins at 8 hours following radiation, and
peaks at 24 hours post-treatment; therefore we selected 4, 6 and
8 hour time points for early analysis of the interaction between
these processes. At four hours post-radiation, there was a signifi-
cant decrease in Beclin-1 protein levels, a known autophagy regula-
tor, when compared to glands of unirradiated mice (Figure 6A, 6C).
However, there was no change in Beclin-1 protein levels between
unirradiated and irradiated mice at six and eight hours
(Figures 6A, 6C). In contrast, there was a significant increase in
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Beclin-1 protein levels in glands of irradiated, IGF-1-pretreated mice
at four, six, and eight hours (Figures 6B-C). Bcl-2, an anti-apoptotic
protein, increased exclusively in the glands of irradiated mice at eight
hours following treatment (Figures 6A, 6D). Interestingly, Bcl-2 was
not significantly changed in the glands of irradiated mice treated
receiving IGF-1 pretreatment (Figures 6B, 6D).

We then explored the relationship between Beclin-1 and Bcl-2
bound to Ambral by co-immunoprecipitation assays (Figure 6E—~
F). Previous studies have established that apoptotic cell death occurs
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and autophagy is inhibited when Ambral is bound to Bcl-2, and the
autophagic process proceeds and apoptosis is inhibited when
Ambral is bound to Beclin-1'7*°. Consistently, we observed
increased levels of Bcl-2 bound to Ambral in parotid glands of irra-
diated mice when compared to parotid glands from untreated or
irradiated mice receiving IGF-1 pretreatment (Figures 6E-F).
Conversely, increased Beclin-1 bound to Ambral was detected in
glands of irradiated mice that were pre-administrated with IGF-1
(Figures 6E-F). Taken together, we postulate that IGF-1 pretreat-
ment facilitated a switch of Ambra-1 association with Bcl-2 to an
association with Beclin-1 in parotid glands of irradiated mice.

Discussion

It is well-established that radiotherapy for head and neck cancer
diminishes salivary gland function and greatly decreases the quality
of life for these patients. The purpose of this study was to evaluate the
role of autophagy in the salivary gland response to targeted head and
neck radiation. We found that 1) autophagy-deficient Atg5”;Aqp5-
Cre mice have increased radiosensitivity; 2) IGF-1 treatment prior to
radiation increases autophagosome formation at 4-8 hours follow-
ing radiotherapy; 3) IGF-1 pretreatment does not preserve salivary
gland function in autophagy-deficient Atg5”;Agp5-Cre mice; and 4)
there is an inverse correlation between autophagy and apoptosis in
the salivary glands following radiation.

The conditional knockout model of Atg5, Atg5”;Aqp5-Cre, in the
acinar cells of salivary glands exhibited a significant decrease in
stimulated salivary flow rates following a single 5 Gy dose of targeted
head and neck radiation in both males and females when compared
to those in irradiated Atg5*/*;Aqp5-Cre mice at days 3, 14, and 30
(Figures 1A-F). Our results are similar to other studies using knock-
down models of autophagy which have reported that loss of autop-
hagy capacity leads to increased DNA damage, cell death and
dysregulation of the cell cycle following treatment with cytotoxic
agents or radiation®>*’.

Atg5"; Agp5-Cre autophagy-deficient mice also display increased
rates of apoptosis at 24 and 48 hours following targeted head and
neck radiation when compared to irradiated Atg5*/*;Agp5-Cre mice
(Figure 5). The loss of salivary secretory function is most likely due to
significantly increased rates of apoptosis, analogous to other models
of radiation-induced salivary gland dysfunction'>**. However, these
results could also be due to an alteration of the GPCRs or ion chan-
nels following radiation. A recent study by Liu et al found that radi-
ation leads to activation of the calcium-permeable channel, transient
potential melastatin-like 2 (TRPM2), in the salivary glands and loss
of TRPM2 is protective against radiation-induced salivary gland
dysfunction*’. Unfortunately, no other studies have been conducted
into the role of either GPCRs or ion channels in autophagy and
salivary gland tissue following radiation, suggesting that consid-
erably more work in this area is needed and is an interesting future
direction.

We demonstrated here that mice treated with radiation plus IGF-1
pretreatment result in accelerated autophagosome formation, pre-
sumably leading to autophagy induction at earlier time points (6—
8 hours) post-irradiation (Figures 3A-H). We have previously
shown that mice treated with radiation plus IGF-1 pretreatment have
preserved salivary gland function via decreased apoptosis and cell
cycle arrest'>*; therefore we speculate that the increase in autophagy
could be a beneficial mechanism involved in this model. Indeed, IGF-
1 pretreatment could not preserve salivary gland function in
Atg5";Agp5-Cre autophagy-deficient mice when compared to
Atg5"";Aqp5-Cre mice under the same treatment (Figure 4).
Initially, these results seem counterintuitive as IGF-1 activates the
PI3K/Akt/mTOR pathway in unstressed conditions, which would
inhibit autophagy and increase proliferation. However, a previous
study by Mitchell et al found that following damage (radiation) of
normal tissues, IGF-1 pretreatment induces cell cycle arrest and

allows for cellular repair to occur®. In addition, Lee et al have prev-
iously described a link between cell cycle regulation and autophagy
under conditions of nutrient starvation*. In this model, autophagy
deficient MEFs (Atg7—/—) were unable to induce p21 expression
and exit the cell cycle three hours into the starvation treatment.
Conceivably, induction of autophagy and cell cycle arrest may be
linked and both of these processes could equally contribute to the
preservation of salivary secretory function in irradiated mice receiv-
ing IGF-1 pretreatment. Furthermore, one study found that
increased IGF-1 expression in the skeletal muscle, through resistance
exercise training, led to decreased phosphorylation of both Akt and
mTOR while increasing autophagy regulatory proteins*’. We hypo-
thesize that IGF-1 may activate different signaling pathways under
stressed conditions, such as that following radiotherapy or exercise,
than in a normal tissue environment.

It is well established that there is signaling crosstalk between apop-
tosis and autophagy; however, the exact interplay between these two
cellular mechanisms remains elusive'>***. It has been previously
shown that autophagy can inhibit apoptosis during cellular star-
vation via the breakdown of cellular components to provide meta-
bolites and maintain ATP levels®. Paradoxically, studies also
reported that autophagy can contribute to apoptosis. For example,
Martin et al found that autophagy precedes apoptosis during devel-
opmental degradation of salivary glands of D. melanogaster®>'. The
interplay between apoptosis and autophagy in irradiated salivary
glands was determined through the evaluation of Beclin-1 or Bcl-2
binding to Ambral. The inverse correlation between binding of Bcl-2
or Beclin-1 to Ambral has been utilized in previous studies to reflect
the antagonistic roles of these cellular mechanisms'’~*°. It has been
suggested that increased binding of Beclin-1 to Ambra-1 signals
autophagy and elevated binding of Bcl-2 and Ambral sequesters
both these proteins leading to an induction of apoptosis. In irradiated
parotid glands, there was decreased binding of Beclin-1 to Ambral
(Figure 6F), consistent with the lack of autophagy induction in this
treatment group (Figures 2A-H). Moreover, there was an increase in
Bcl-2 bound to Ambral in these tissues (Figure 6F), presumably
promoting the sequestration of Bcl-2****” and thereby leading to
an induction of apoptosis which has been reported in salivary acinar
cells'>2023:3649:50.5253 T contrast, mice treated with radiation plus IGF-
1 pretreatment have increased levels of Beclin-1 bound to Ambral
(Figure 6F) leading to preserved salivary function through autophagy
induction (Figures 3A-H).

In conclusion, we show here that autophagy may be playing a
beneficial role in the salivary glands following targeted head and neck
radiation through both the increased radiosensitivity of Atg5”;Agp5-
Cre autophagy-deficient mice and increased levels of autophagy in a
radiation protection model (pretreatment with IGF-1). Our results
suggest that autophagy and apoptosis have an inverse relationship in
parotid glands following targeted head and neck radiation and imply
that autophagy and apoptosis may have an inhibitory effect on one
another. These findings are significant as autophagy inducers could
be utilized in the clinical setting to preserve salivary gland function in
head and neck cancer patients. Importantly, the use of pharmaco-
logical interventions to induce autophagy to preserve normal tissue
function would need to be balanced against the therapeutic response
of the primary tumor as autophagy has been shown to be a tumor
resistance mechanism®'. The preservation of salivary gland function
would ameliorate the multitude of maladies associated with radi-
ation-induced salivary gland dysfunction and greatly improve qual-
ity of life.
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