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We present a hybrid scheme for quantum computation that combines the modular structure of elementary
building blocks used in the circuit model with the advantages of a measurement-based approach to quantum
computation. We show how to construct optimal resource states of minimal size to implement elementary
building blocks for encoded quantum computation in a measurement-based way, including states for error
correction and encoded gates. The performance of the scheme is determined by the quality of the resource
states, where within the considered error model a threshold of the order of 10% local noise per particle for
fault-tolerant quantum computation and quantum communication.

Q
uantum computation holds the promise of solving certain problems much faster than any classical
computer could. Several models for quantum computation have been put forward1–4 that do not only
offer conceptual insights into the scope and power of quantum computation, but also put different

requirements and emphasis for an experimental realization. While the standard quantum gate-based approach
makes use of a modular structure where coherent operations are chosen from a finite set of elementary gates and
applied sequentially, measurement-based quantum computation is centered on the usage of a universal, highly
entangled resource state that is processed by single qubit measurements only3,5. For certain set-ups, the prepara-
tion of specific entangled states will be easier than the coherent manipulation of arbitrary states, in particular if
two-qubit gates requiring interactions between different systems are involved. However, large resource states
need to be prepared and stored for universal measurement-based quantum computation. It is hence natural to
consider hybrid schemes, in which elements of different computational schemes are combined into a computa-
tional architecture that unifies the advantage of the different approaches. Here we report on such a hybrid
architecture, where both elementary blocks and larger parts/entire subroutines of a quantum algorithm are
performed in a highly compressed and measurement-based way, i.e. by preparing algorithm-specific resource
states, which are then combined and measured in a sequential fashion as in the circuit model. This hybrid
architecture combines, thus, the one-way quantum computer3 with the gate-teleportation model4. We construct
resource states of minimal size and find that the error threshold for universal fault-tolerant quantum computation
is given by 13.6% local depolarizing noise per qubit.

Among the applications are e.g. a quantum memory and a quantum communication scheme6 based on sending
encoded states, which does not require the creation of entanglement across the channel like the (entanglement-
based) quantum repeater7.

The emphasis of our approach lies on (fault-tolerant) measurement-based realization of quantum error
correction and the manipulation of encoded quantum information. In any realistic scenario, quantum informa-
tion needs to be protected against noise and decoherence, which can be done by non local encoding and making
use of quantum error correction1,8–13. Here we demonstrate how the elementary building blocks of such encoded
quantum computation - including encoding, syndrome-read out, decoding, but also realization of encoded
quantum gates- can be done optimally in a measurement-based fashion. To this aim, we construct optimal
resource states of minimal size for all these tasks, for arbitrary Calderbank-Shor-Steane (CSS)12,13 and stabilizer
codes8. All these resource states are stabilizer states, which can in principle be prepared probabilistically or pre-
purified using known entanglement purification schemes25–28 to achieve a higher fidelity of the resource state and
consequently of the performed operations. Such a probabilistic state preparation does not jeopardize the deter-
ministic character of the overall computational scheme. What is more, we show how these basic elements can be
combined in a straightforward way to obtain optimal resource states for a combination of the different tasks,
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including, e.g., code switchers or encoded gates combined with error
syndrome readout, that is built-in error correction. These measure-
ment-based elements are then applied sequentially as in a gate-based
approach, providing a modular and flexible structure. The coupling
between the building blocks corresponds to simple Bell-measure-
ments. Conceptually, our scheme is similar to14 where teleporta-
tion-based implementation of sub-block error correction was used
to achieve high error thresholds within the circuit model. Here we
implement larger blocks together with logical gates directly in a
measurement-based way, and concentrate on a different error model,
which is better suited for a measurement-based implementation.

The performance of the scheme is determined by the quality of the
resource states. We first show that for all computations that only
consist of Clifford operations, more than 13.6% of local depolarizing
noise per particle is tolerable. In this sense our architecture provides a
fault-tolerant Clifford quantum computer with a very high error
threshold. In particular, we obtain a fault-tolerant quantum memory
and code switcher, and a scheme for long-distance quantum com-
munication. Using magic state distillation15 at the logical level, we
find that the threshold of 13.6% local noise per particle also applies to
universal fault-tolerant quantum computation. Notice, however, that
these numbers can not be directly compared to other fault-tolerance
thresholds (e.g.9,14,16), as they are based on a different error model. We
are considering a consistent error model within the measurement-
based framework, where the main source of noise is due to imperfect
preparation of resource states and imperfect measurements, which
we model by single-qubit depolarizing noise.

Methods
Background. Quantum error correction. We start by reviewing quantum error
correction and measurement-based quantum computation. In quantum error
correction, quantum information is encoded in a non local way into several physical
systems such that arbitrary errors acting on one or several of the physical qubits can be
corrected. In the standard (gate-based) approach, a quantum circuit C transforms an
(unknown) single qubit state aj0æ 1 bj1æ to an encoded M-qubit state aj0Læ 1 bj1Læ.
The code is designed in such a way that each possible error operator –which is
typically described by (tensor products) of Pauli operators corresponding to bit-flip,
phase flip or both errors on one or several qubits respectively– maps the logical
subspace spanned by {j0Læ, j1Læ to a different orthogonal two-dimensional subspace.
Clearly, the number of correctable errors is limited by the available dimension of the
Hilbert space. Error syndrome read-out takes place by projecting the system onto one
of these two-dimensional error-subspaces. This is typically done with help of m
additional ancilla systems and a circuit S acting on the total M 1 m qubits. The state
of the ancillas is subsequently measured, thereby reading out the error syndrome and
projecting the remaining system onto one of the two-dimensional error-subspaces.
The measurement outcome also determines the correction operation needed to undo
the error and return the system to the initial logical subspace. Notice that by this
measurement, a discretization of errors is enforced, i.e. a superposition of different
error-states is projected (probabilistically) onto one of the possibilities, and can then
be subsequently corrected. This is also the reason why it is sufficient to consider only
elementary Pauli errors, as these operators form a basis for all Hermitian operators
and hence any error can be written as a superposition of elementary Pauli errors.
Decoding works in a similar way as encoding, where the inverse unitary C{ is applied.

A special class of error correction codes of particular importance are so-called CSS
codes12. They are stabilizer codes, that is, the codewords are stabilizer states, and their
error-correction properties can be understood using the stabilizer formalism8. For
CSS error correction codes, encoding, decoding- and syndrome readout circuits are
Clifford circuits, i.e., they can be implemented using only Clifford gates and Pauli
measurements8. This property will be important for us later, when we show how to
realize the corresponding circuits in a measurement-based way.

Measurement-based quantum computation. In measurement-based quantum com-
putation one starts with an entangled resource state. A quantum circuit is translated
to a single-qubit measurement pattern on the resource state. There are several
resource states which allow for universal quantum computation, e.g. the 2D cluster
states17. It is important to note that Clifford gates are implemented by Pauli mea-
surements and can be done in the very first step of the measurement-based com-
putation. Alternatively they can be taken into account even beforehand, entering into
the design of smaller, task dependent resource state. A circuit which contains only
Clifford gates and Pauli measurements, and has n input and m output qubits can be
implemented on a n 1 m qubit graph state18. Clifford circuits are crucial in entan-
glement purification and quantum error correction.

Elementary building blocks. Construction of resource states. We will now show how to
efficiently construct resource states of minimal size to perform certain gates or circuits

in a measurement-based fashion. There are two different ways to construct the
required resource states. The first one starts with a sufficiently large 2D cluster state17

and the measurement pattern for the desired map. One can then apply the rules for
Pauli measurements on graph states19 and obtains the resource state of minimal size.

Alternatively one can construct the resource state via the Jamiolkowski iso-
morphism, which relates a completely positive map and a state20. It is simply the state
which results from applying the map to (the second qubits of) N maximally entangled
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map acts. Notice that the implementation is deterministic as long as the map involves
only Clifford gates and Pauli measurements, but becomes probabilistic otherwise.

In both cases the calculations can be done efficiently using the stabilizer form-
alism8. There exist programs to do so21,22.

Resource states for elementary gates and encoding & decoding. A deterministic single
qubit rotation around the X-axis can be implemented with the three qubit graph state
shown in figure 1a), yellow (middle) box. Here the qubit at the left hand side serves as
input and the one on the right hand side as output. Also a two-qubit gate can be
implemented deterministically using a 4-qubit resource state (see Supplementary
material). The CZ gate and the arbitrary single qubit gates form an universal set of
gates, allowing to perform any quantum computation.

For all CSS codes, encoding and decoding require only Clifford gates and Pauli
measurements. Particles that are measured in the Pauli basis can be removed from the
resource state in a measurement-based implementation23. Consequently, such a cir-
cuit (independent of its length) can be done with a M 1 1 qubit resource state, where
M is the size of the code. Resource states corresponding to a 3-qubit repetition code
(capable of correcting a single-qubit bit-flip error) and a 5-qubit graph code (capable
of correcting an arbitrary single qubit error) for encoding/decoding are shown in
figure 1b) (see Supplementary material).

The Bell measurements at the read-in of a logical qubit to a decoding resource state
reveal the error syndrome, since the measurement results are correlated14.
Alternatively the syndrome could be obtained by constructing the resource state
which implements the syndrome read-out (or syndrome read-out and decoding). In
the construction of this resource state it is assumed that the measurements of the
ancilla qubits, which determine the syndrome, have a particular outcome. The
byproducts from the Bell measurements, which occur whenever one does not project
on jw1æ have to be commuted through the circuit and will then lead to effective
projections of the ancilla qubits and reveal the error syndrome. This is similar to what
has been used in measurement-based entanglement purification in order to deter-
mine whether a purification step was successful in23, where one can find an explicit
example.

Fusion of resource states. The resource states described above can be combined to
accomplish gates on the logical qubits. This is done in the following way: the output
qubit of one resource state and the input qubit of the other resource state are mea-
sured in the Bell basis. This is illustrated for a single qubit rotation on a logical qubit
and for code switching in figure 1a, 1b. In addition, the Bell measurements at the read-
in reveal the error syndrome, so that error correction is combined with logical gates in
a single step. The same technique can be used to design resource states for concate-
nated error correction or for combining logical gates, error correction and code
switching. In all cases, one obtains resource states of minimal size. We would like to
stress that these resource states are significantly smaller than a 2D cluster which could
accomplish the same task. This can be illustrated as follows. Consider a single error
correction step on a logical qubit encoded into N physical qubits. The optimized
resource state will contain 2N qubits. The circuit for the error correction requires N
stabilizer measurements, each of which itself requires an ancilla qubit and a number
of phase gates (upper bounded by some constant). A 2D cluster state capable of

Figure 1 | (a) Illustration of fusion of resource states for a single qubit gate

on a logical qubit. The resource states for decoding/encoding (left/right)

are combined with the resource state for the rotation (middle) via Bell

measurements. (b) Illustration of fusion of resource states for code

switching. The resource states for decoding (left) and encoding (right) for

two different codes are combined via a Bell measurement. (c) Resource

states for encoding, repetitive error correction and decoding. (d) Two steps

of the computation. Noise on input particles (blue) is moved to input

particles (red). Noise on output particles is considered in the next step.
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performing the procedure in a measurement-based way will contain order of N2

qubits. A similar scaling can be found for resource states which implement error
correction and logical gates.

Hybrid Computational Model
Using the techniques explained in the methods section, we describe
the hybrid architecture for encoded quantum computation.
Processing of (encoded) quantum information takes place in a
sequential way, where elementary building blocks are realized in a
measurement-based fashion as described above. These elementary
building blocks can correspond to rather complicated and lengthy
quantum circuits, and error correction can always be included. The
measurement-based realization allows one to implement them in a
compact way using resource states of minimal size that only consist
of input and output particles, independent of the length of the circuit.
In addition, no ancilla particles are required, thereby reducing the
number of involved particles. The complexity of the circuit is
encoded in the specific structure of the resource state. The reduced
size and complexity of this measurement-based implementation
makes it less susceptible to noise, similar as encountered in measure-
ment-based entanglement purification24.

Elementary building blocks are combined sequentially by per-
forming Bell measurements between output particles of the previous
block and input particles of the next block (see Fig. 1c). The results of
these measurements determine the error syndrome and the neces-
sary correction operations. This modular structure limits the number
of particles to be stored and operated on as compared to a purely
measurement-based approach, as resource states can be prepared on
the fly re-using the involved particles. In addition, no coherent
manipulation by means of (entangling) gates is required, in contrast
to the gate-based approach. Processing of (encoded) information is
solely realized by preparation of small-scale resource states, together
with Bell measurements. Notice that resource states may be prepared
probabilistically and pre-purified using (multipartite) entanglement
purification. As all resource states are graph states (up to local unitary
operations), entanglement purification protocols are available25–28.
Such an approach may have significant advantages in certain set-
ups such as for photons, especially since (probabilistic) creation of
states is often a much easier task than coherent manipulation by
means of gates.

Influence of Noise and Thresholds
Error model. Imperfections in the resource state preparation,
together with possibly imperfect Bell state measurements are the
main sources of noise in this set-up. As we are dealing with
processing encoded information, we have to make sure that despite
these effects and external decoherence, the noise at the logical level
can be fully suppressed.

As a noise model, we consider local depolarizing noise (LDN)

acting on each of the qubits individually, Dj pð Þr~prz
1{p

2
Ij
6

trjr. Noisy resource states are thus given by rR~D pð Þr~

Pn
j~1Dj pð Þ

� �
r, where n is the size of the resource state and p spe-

cifies the amount of noise per particle. The effect of imperfect Bell
measurements can be incorporated into local depolarizing noise for
each particle, i.e. into the parameter p. In addition, we describe the
effect of decoherence and other imperfections by depolarizing noise
with parameter q acting on each of the particles of the encoded
system.

This noise model reflects the increasing difficulty of preparing
larger resource states, as the fidelity drops exponentially with the
system size for fixed p. In addition, it is not associated with a par-
ticular preparation scheme. In16 it is also argued that this noise model
is appropriate if one uses entanglement purification to increase the
fidelity of the resource states, since the purification process acts
locally on the states.

Thresholds. As shown in24, LDN can be effectively moved to other
qubits when performing Bell measurements (see also the
supplementary material). Resource states for (encoded) Clifford
gates and circuits (even with built-in error correction) only contain
input and output particles. The key observation is that noise coming
from imperfect preparation of resource states can be moved in part to
the input state, and to the output state (after processing, i.e. it is
considered in the next step of the computation). The total effect is
that each particle of an encoded system is influenced by LDN twice
coming from imperfect state preparation, plus noise coming from
depolarization, i.e. Dj p2q

� �
, before it is processed perfectly in the

desired way, i.e. by an encoded Clifford gate with built-in error
correction (see Fig. 1d). Since each of the encoded gates includes
an error correction step, the noise at the logical level is reduced –
corresponding to a larger value qL- as long as p2q is above the
threshold pCode of the chosen error correcting code (w.r.t.
depolarizing noise)29,30,32,33. Using the code in a concatenated
fashion in fact ensures that qL R 1 in this regime, i.e. noise at the
logical level can be fully suppressed29,30. A sequential application of
several of such logical operations is hence also possible. Given that
the distance of such a noisy logical operation to the perfect unitary is
sufficiently small, say , it follows that the sequential application of M
such operations has a distance smaller than M 31. Notice that can be
made exponentially small with only a polynomial overhead, e.g. by
using a concatenated error correction code. As error correction can
in principle be done very frequently, one can assume that q < 1. This
is also justified by the fact that no active feed forward is required as
long as only Clifford operations are involved. In fact, all correction
operations can be postponed until the end of the logical circuit that
may involve multiple blocks. It follows that the threshold p 5 pcrit for
depolarizing noise per particle is simply given by pcrit~

ffiffiffiffiffiffiffiffiffiffi
pCode
p

. In a
situation where q 5 p, one finds ~pcrit~qcrit~

ffiffiffiffiffiffiffiffiffiffi
pCode

3
p

. Thresholds for
a concatenated 5-qubit code29,30 and Shor-type codes32,33 are given by
pCode 5 0.8250 [pCode 5 0.7449] respectively. This leads to pcrit 5

0.8631 and ~pcrit~qcrit~0:9065 for the Shor-type codes.

Applications
Clifford circuits. As imperfections in resource states and Bell
measurement are taken into account, we have that all Clifford
circuits, including error correction circuits, codes switchers (see
also the Supplementary material) and logical Clifford gates for CSS
codes can be implemented fault tolerantly in this way. The tolerable
noise per particle for imperfect resource states is more than 13.6%,
which follows from pcrit~

ffiffiffiffiffiffiffiffiffiffi
pCode
p

. An important application of
Clifford circuits is e.g. a quantum memory.

Quantum communication. The standard approach to scalable
quantum communication is the (entanglement-based) quantum
repeater7. A different scheme for long distance quantum commu-
nication was proposed in6. There, quantum information is encoded
into quantum error correction codewords and send through noisy
quantum channels and errors are corrected repetitively. The draw-
back of this scheme compared to (entanglement-based) quantum
repeaters was that it has much tighter constraints on the tolerable
noise, which are essentially given by the thresholds for fault-tolerant
Clifford circuits. We can apply the results from above to determine
the error thresholds of a measurement-based implementation of this
scheme. As channel segments should not be too short, i.e. the noise
1 2 q coming from the channel is not negligible, one has q , 1. For
p 5 q this leads to ~pcrit~qcrit~0:9065, i.e. more than 9% noise per
particle for imperfect resource states and for channel noise is
acceptable in this case. This could provide a viable alternative for
long distance quantum communication, with thresholds comparable
to those of measurement-based quantum repeaters23.
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Universal quantum computation. Universal quantum computation
also requires the implementation of non-Clifford gates. For single-
qubit encoded non-Clifford gates, the yellow (upper) qubit in
figure 1a) has however to be treated differently, since it is not
coupled to a logical qubit. Noise acting on it translates directly to
an error on the logical qubit, and hence above arguments do not
apply. In the following we describe two ways how to avoid that:
the first is based on a code switch and transversal single qubit
gates, and the second uses magic states15.

Fault-tolerance threshold using a code switch and transversal single-
qubit gates. Here we describe how error thresholds for universal
fault-tolerant computation can be obtained using code switchers
and transversal single-qubit gates. A single qubit non-Clifford gate
is realized by switching to an error correction code such as the 15-
qubit CSS code related to classical Reed-Muller codes15. In this code,
an encoded logical p/8-gate can be implemented transversally, i.e. by
single qubit rotations on physical qubits. However, the code suffers
from a relatively low error threshold of pCode 5 0.98116. Together
with logical Clifford gates, this constitutes a universal gate set. The
code switch can be done fault-tolerantly as described above. The
procedure is then the following: whenever a non-Clifford gate is
required one switches to the 15 qubit CSS code and applies the single
qubit rotations to the physical qubits. Afterwards one switches back
to a code with a higher threshold. The single qubit rotation is
assumed to be noisy, EU r~Dj qUð ÞUrU{, where noise can however
be moved to the next error correction step, simply further decreasing
the quality of the input particles, i.e.Dj p2q|qU

� �
(the implementa-

tion of such single qubit unitary operations could also be done in a
measurement-based way, however this is overly complicated).

The fault tolerance threshold of the computation is again given by
the condition p2q 3 qU . pCode, i.e. the threshold of the code against
depolarizing noise. In many physical systems, such as e.g. trapped
ions or superconducting qubits, single qubit rotations can be done
with extraordinary accuracy34,35, i.e. qU < 1. Even when assuming p 5

qU, we have pcrit~
ffiffiffiffiffiffiffiffiffiffi
pCode

3
p

. For the 15 qubit CSS code, we have pCode

5 0.98116, i.e. universal fault tolerant quantum computation is pos-
sible with errors up to 0.64% error probability per particle and single-
qubit gate, and almost 1% per particle when assuming high-fidelity
single-qubit rotations.

Fault-tolerance threshold using magic state distillation and state injec-
tion. An alternative to the method described above, however with
significant overheads, is given by using magic states and state injec-
tion15 for implementing a single qubit, non-Clifford rotation (see
also14). It is based on the observation that Clifford gates and an ancilla
qubit prepared in a magic state suffice to implement a p/8 gate. The
motivation is that fault-tolerant Clifford gates can be implemented
with fairly high thresholds and that noisy magic states can be purified
with Clifford gates and Pauli measurements only. It has been found36

that magic states can be purified probabilistically as long as their

fidelity exceeds 1z1
. ffiffiffi

2
p� �.

2<0:854 (assuming that the Cliff-

ord operations themselves are perfect), which translates to p .
0.8047 for local depolarizing noise.

Here we use a magic state distillation procedure at the logical level,
i.e. we prepare several copies of encoded magic states, by using the
graph state which implements the encoding circuit into the desired
quantum error correction code. If we encode a noisy physical qubit
using a measurement-based encoding circuit, noise at the physical
qubit and the state for read in will directly translate to noise at the
logical level, i.e. pcrit . 0.8047. Notice that a direct read-in via a single
qubit measurement on the resource state is preferable to coupling an
additional (noisy) particle via a Bell measurement. As long as noise at
the logical level is below pcrit, a (asymptotically) perfect magic state
can then be prepared at the logical level with help of magic state
distillation.

The implementation of the magic state distillation as well as the
logical single-qubit gate realized by state injection requires only
Clifford circuits15. In the latter case, the Clifford operations act on
the (logical) magic state and the encoded quantum information. The
threshold for noisy resource states to implement (logical) Clifford
circuits fault-tolerantly are given above for different codes, and can
be as high as 13.6% per particle. Hence the threshold for universal
fault-tolerant quantum computation is determined by the applicabil-
ity of fault-tolerant Clifford computation rather than the threshold
for magic state distillation, since this gives the tighter constraint on
the noise. We thus find that the error threshold for universal fault-
tolerant quantum computation is given by 13.6% local noise per
particle.

As the resource states implement concatenated quantum error
correction codes any improvements on the overheads, e.g. via better
codes, or improved magic state distillation with higher yield37,38, will
carry over to this approach.

Conclusions and Outlook
We have proposed a hybrid architecture for quantum computation,
where elementary building blocks corresponding to error correction
or encoded gates are implemented in a measurement-based fashion.
This can be done with resource states of minimal size, thereby redu-
cing the number of involved systems and the operational complexity.
At the same time, we obtain very high error thresholds, where local
depolarizing noise of the order of 10% per particle is tolerable for the
involved resource states. The crucial assumption in the derivation is
that all noisy resource states can be described by local, uncorrelated
noise acting on the individual qubits. Whether this can be justified
for gate-based or other generation procedures remains an open issue.

Notice that these numbers can not directly be compared to other
threshold results for universal fault tolerant quantum computation,
as they are based on a different error model. The error model we use
is consistent within a measurement-based set-up, and is not assoc-
iated with a particular preparation procedure. The preparation of
resource states can in principle be done in various ways, not neces-
sarily involving (deterministic) gates. For instance, a cooling process
to prepare the ground state of a (properly controlled) Hamiltonian is
conceivable, or a probabilistic generation of states as e.g. done for
photons, where parametric down conversion serves as a very suc-
cessful tool to prepare highly entangled states without the need to
apply gates. A reduction to usually considered error models, where
thresholds are based on error probabilities of elementary single- and
two qubit gates, may hence not be meaningful. That is, it may not lead
to relevant insight for a given experimental situation. This also
applies to situations where additional gates are available. For
instance, in a trapped ion set-up, a many-qubit gate is available that
allows for the direct preparation of large-scale GHZ states39,40, a task
that otherwise requires N 2 1 two qubit gates.

Our scheme is perfectly suited for several set-ups, and following
our proposal, elementary building blocks corresponding to measure-
ment-based quantum error correction have already been experi-
mentally demonstrated with photons41 and ions39.
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