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Few band selection methods are specially designed for small target detection. It is well known that the
information of small targets is most likely contained in non-Gaussian bands, where small targets are more
easily separated from the background. On the other hand, correlation of band set also plays an important
role in the small target detection. When the selected bands are highly correlated, it will be unbeneficial for
the subsequent detection. However, the existing non-Gaussianity-based band selection methods have not
taken the correlation of bands into account, which generally result in high correlation of obtained bands. In
this paper, combining the third-order (third-order tensor) and second-order (correlation) statistics of
bands, we define a new concept, named joint skewness, for multivariate data. Moreover, we also propose an
easy-to-implement approach to estimate this index based on high-order singular value decomposition
(HOSVD). Based on the definition of joint skewness, we present an unsupervised band selection for small
target detection for hyperspectral data, named joint skewness band selection (JSBS). The evaluation results
demonstrate that the bands selected by JSBS are very effective in terms of small target detection.

simultaneously obtain hundreds of bands of the ground objects. As a result, hyperspectral data sets provide

much more bands and therefore a much better discrimination among similar ground cover classes than
traditional multispectral imageries'”. However, the bands are usually high-correlated due to the high spectrum
resolution which results in great redundancy in hyperspectral data sets. Moreover, computational requirements
to deal with large hyperspectral data sets might be prohibitive. Therefore, dimensionality reduction has been
received considering attention which can resolve this problem well.

In general, two broad categories of dimensional reduction approaches are frequently used for hyperspectral
data, namely, feature extraction and feature selection (or band selection in hyperspectral field). Feature extraction
techniques generate a small set of features based on functional mappings of the original ones. Methods of type
include principal components analysis (PCA)®> maximum noise fraction (MNF)* independent components
analysis (ICA)® and some recently reported methods such as®®. But the features obtained by these methods
are generally lack of physical interpretation due to the transformation to the original features. Band selection (BS),
on the other hand, aims to select subset of features from the original larger/full band set. The features obtained by
BS techniques are of specific physical meaning since no transformation is involved.

Band selection can be performed in either supervised or unsupervised manners'. Supervised BS methods
require some priori knowledge such as training samples or target signatures, for instance,’'*. However, these
training samples are sometimes not available in practice since the acquisition of reliable samples is very expensive
in terms of both time and money'®. In this case, the unsupervised methods which can generally provide
acceptable performance regardless the types of ground cover classes, are necessary. Many unsupervised BS
techniques have been reported in literatures, most of which are based on information evaluation means. These
methods first defines some criterion functions (cost functions), for instance, variances'”'®, information entropy*?,
information divergence® and correlation'>*', followed by searching for the optimal (suboptimal) band subset.
Some other unsupervised BS methods can be seen in references® .

As for these BS methods, few of them are specially proposed for target detection despite target detection is one
of the most important applications of hyperspectral remote sensing. We therefore focus our attention on unsu-
pervised BS methods for target detection in this paper. As is well known, the artificial small targets generally drive

B enefiting from the significant development in last several decades, hyperspectral imaging sensors can now
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Figure 1| HOSVD approximation for hyperdeterminant of tensor.

data clouds deviating from Gaussian distribution. Consequently, the
bands with more non-Gaussianity possibly contain more informa-
tion on artificial small targets. Some methods have employed
non-Gaussianity as BS criterion function, for instance, information
divergence band selection (IDBS)* prioritizing the bands according
to how far they deviates from the corresponding Gaussian distri-
bution. The higher the ID value, the higher weight of a band. Du
et al.”’ have proposed an unsupervised BS methods based on
FastICA. This method, instead of transforming the original hyper-
spectral images, evaluates the weight matrix to observe how each
band contributes to the ICA unmixing procedure. It compares the
average absolute weight coefficients of individual spectral bands and
selects bands that contain more information. However, both the two
methods have not taken the correlation of bands into account which
may result in high correlation of the selected bands.

In this paper, we integrate the non-Gaussianity and correlation of
the bands by defining joint skewness (JS) for multivariate data, which
not only characterizes the non-Gaussianity of a band subset but also
depresses the correlation. More specifically, we known that, the
determinant of the covariance matrix of hyperspectral data can be
regarded as joint second-order statistics' (briefly reviewed in section
2.1). We extend this idea to third-order statistics of the bands and
employ the hyperdeterminant of the coskewness tensor to measure

()

the joint skewness. However, the calculation of the tensor hyperde-
terminant is quite difficult especially for the tensor with size larger
than 2 X 2 X 2%, Interestingly, by introducing the idea of high-order
of singular value decomposition (HOSVD), we can conveniently
obtain the approximate value of JS for band subset via transforming
the hyperdeterminant of tensor to the product of the singular value
derived from HOSVD. Furthermore, based on JS defined, we present
an unsupervised BS method for artificial small targets detection,
named joint skewness based band selection (JSBS). In order to save
subset search time, the subset selection method, sequential back-
ground selection (SBS) is employed.

Results

To evaluate the performance of JSBS, we conduct some tests based on
both simulated data and real hyperspectral data in this section. Three
unsupervised band selection methods, namely, maximum ellipsoid
volume (MEV)", information divergence band selection (IDBS)*,
ICA based band selection (ICABS)* and supervised band selection
method, variable-number variable-band selection (VNVBS)* are
also compared with JSBS.

Evaluation with simulated data. Testl: the relationship between
HOSVD and the hyperdeterminant. In this section, we investigate
the relationship between the hyperdeterminant of third-order

cumulant and its approximation det(R(,,)R(Tn)) derived from

HOSVD using simulated data. Since only the hyperdeterminant of
tensor with size of 2 X 2 X 2 can be computed based on equation (2),
we randomly generate 1000 images. Each image contains 2 bands
with 1000 pixels in each band. The pixels satisfy uniform
distributions between [0, 1], generated by function rand in Matlab
software. Then the corresponding third-order cumulant and its
hyperdeterminant Det(R) are computed. Meanwhile, the

approximation values det (R(n) R(Tn)) are also calculated. The
results are plotted in Figure 1.
From Figure 1 we can see that, det (R(,,)R(Tn)) has an obviously

positive correlation with Det(R) although they do not close to each
other in absolute value. The correlation coefficient between the two
groups of values is 0.9675 which indicates that our proposed approxi-
mation is very effective.

Test2: The superiority of the JSBS. In this section, we designed a
simulated experiment to compare the performances of some

(b) () (d)

Figure 2 | Simulated data: (a) band 1, (b) band 2, (c) band 3 and (d) band 4.

Table 1 | The specifications of the simulated data
Band 1 Band 2 Band 3 Band 4
Variance 9.1649 9.0257 1.0473 0.6983
Skewness 0.0993 0.0832 0.6078 1.0887
Correlation coefficient 0.0262 0.9914
| 5:9915 | DOI: 10.1038/srep09915 2



Table 2 | Band selection results from different methods

Method MEV

IDBS ICABS JSBS

Selected bands 1,2

3,4 3,4 2,4

unsupervised band selection methods, namely, MEV, IDBS, ICABS
and JSBS.

The use of joint skewness enables JSBS to take all the different
small targets into account simultaneously. In order to verify the
superiority of JSBS, we generate the following simulated data. The
simulated data consists of 4 bands with size of 200*200 pixels.
Two artificial small targets (see Figure 2) are added to the data
set. One of the targets shows large difference with the background
in the first two bands (Figure 2 a, b) while the other target is
different from the background mainly in the last two bands
(Figure 2 ¢, d).

All the backgrounds follow Gaussian distributions, but we also
make some purposeful modifications. Specifically, band 1 and
band 2 are of large variances, low skewness and low correlations,
while band 3 and band 4 are of low variances, large skewness and
high correlations. The specifications of the data are listed in
Table 1.

Figure 3 | The subscene used in this test, containing Nontronite and
Buddingtonite.

In order to compare the performance of MEV, IDBS, ICABS and
JSBS, we selected two bands from the simulated data using these
methods. The band selection results are shown in Table 2.

From the results, we can see that only the subset selected by JSBS
contains the information of both targets. More specifically, MEV
prefers to the subset with large variance and low correlation, there-
fore, it selected band 1 and band 2 which only contain the informa-
tion of the first target. This result indicates that the subset with the
maximum 2nd-order statistics may be not suitable for small target
detection. On the other hand, although IDBS and ICABS try to select
non-Gaussian subset, they do not take the correlation of the bands
into account. Therefore, although band 3 and band 4 are of high
correlation, they are still selected by IDBS and ICABS. As a result,
both IDBS and ICABS ignored the first target. As for JSBS, it takes
both non-Gaussianity and correlation into account and tries to select
the subset with maximum joint skewness. Consequently, it selected
band 2 and band 4 which contains both targets of interest. This test
verifies that JSBS can take the multiple small targets into account
while MEV, IDBS and ICABS may ignore partial targets.

Cuprite data. In this section, the algorithms were applied to real
hyperspectral image acquired by Airborne Visible Infrared
Imaging Spectrometer (AVIRIS) on June 19 in 1997 over Cuprite
mining site, Nevada. The data is widely used in remote sensing
experiments because of the detailed corresponding ground truth
and the free access. The data used in this experiment is attached in
ENVI software, consisting of a total of 50 bands ranging from
1991 nm to 2479 nm. We cropped a subscene (shown in Figure 3)
which contains two types of mineral with low probability
distribution, namely Nontronite and Buddingtonite for this test.
We use this test to investigate if these methods can simultaneously
take different targets into account.

We selected 5, 10, 15, 20, 25 and 30 bands from the image by
these methods, then the selected subset are used for CEM target
detection. The representative signatures of the two targets can be
selected directly from the image by endmember extraction meth-
ods, such as fast gram determinant algorithm (FGDA)* and gaus-
sian elimination method (GEM)*. In this paper, we use the
efficient technique, GEM, to select the spectrums. In addition,
the mean vector of the image is employed as the reference signature
required in VNVBS. To quantitatively evaluate the performance of
these methods, we adopt the objective function of CEM, output
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Figure 4 | CEM output energy using different subsets (a) Nontronite and (b) Buddingtonite.
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Figure 5| Manually-made ground truth for (a) Nontronite and (b)
Buddingtonite.

energy as the comparison index, which is expected to be as low as
possible. The output energy derived from these methods is shown
in Figure 4.

As can be seen from Figure 4, the output energies of all the meth-
ods are monotonously decreasing with the increasing number of
selected bands, which is consistent with the conclusion in*’. The
subset selected by the proposed JSBS is the most discriminative in
terms of both targets, verifying the conclusion in Test 2. Although
IDBS and ICABS also prefer the bands with high non-gaussianity,
they do not suppress the correlation of bands. Therefore, the
obtained subsets have poor performance in target detection. MEV
considered the mainly the background of the image and paid little
attention to the small targets. VN'VBS is a supervised method, which
concentrates on the separation between target and reference signa-
tures and neglects the structure of the background.

In order to further compare the performances of these methods, we
use receiver operating characteristic (ROC) as the measurement. We
manually made the ground truth maps (shown in Figure 5) for the
two minerals according to the fully constrained unmixing® results
and the ground investigation® since there is no pixel-level ground
truth. Then we used these methods to select 10 bands which were
involved in the subsequent CEM detection. The ROC curves for the
CEM detection results using different subsets are shown in Figure 6.

The ROC curves in Figure 6 demonstrate that, the subset selected
by JSBS has the best detection performance in terms both Nontronite
and Buddingtonite since it has the highest detection probability at the
same false alarm ratio. As an unsupervised band selection method,
JSBS can pay attention to different targets simultaneously. The other
methods did not have robust performances since they have not taken
the correlation into account (IDBS and ICABS), mainly consider the
background information (MEV) or neglected the background
information (VNVBS).

Wouxi data. This data was obtained by Operational Modular Imaging
Spectrometer I (OMIS-I) in Wuxi, China. It contains a total of 128
bands, among which 8 are in thermal infrared region. The spectral
resolution in visible region is about 10nm and the space resolution is
about 3.5 meters. There is an artificial small target in the middle and
top of image which occupies about 8 pixels (circled in Figure 7a). The
CEM detection result for the target is shown in Figure 7b.

We first selected 5, 10, 15, 20, 30 and 40 bands from the original
128 bands by these 5 methods respectively. Then the selected bands
are used for CEM target detection, the corresponding results are
shown in Figure 8.

From Figure 8 it can be seen that, only the bands selected by JSBS
can be used to discriminant the target from background when the
number of selected bands is small (< 15). When the number of
selected bands is large (for instance, 30 or 40), the band subsets
selected by all the methods contains enough information to tell the
targets from background. The CEM results are visually close to each
other except for the deficient suppression to the background of IDBS
selected bands. In addition, scanning from top to bottom, we can see
that, all the methods show increasing detection performance if more
bands are involved.

In order to give further quantitatively evaluation, we use two indi-
ces, namely output energy and ROC. We can see that bands selected
by JSBS always have the best performance in terms of artificial target
detection since it always has the lowest output energy. JSBS shows
much more superiority to the other methods, especially when the
number of selected bands is small (for instance, 5 and 10). For
instance, when 10 bands are selected, the ROC curves (Figure 9 b)
indicate that JSBS outperforms the other methods in terms of target
detection performance.

Discussion
In this paper, we have proposed an unsupervised band selection
method for small targets detection named joint skewness based band
selection (JSBS). JSBS exploits the fact that, the non-Gaussian bands
contains much information about small targets. In order to obtain
the non- Gaussian as well as low correlated bands, we define joint
skewness for band set based on the hyperdeterminant of third-order
cumulant tensor. Then the hyperdeterminant has been approxi-
mately transformed into the matrix determinant by introducing
the idea of HOSVD. The evaluation experiments demonstrate that,
bands selected by JSBS are very effective in terms of artificial small
target detection and always superior to those selected by the other BS
methods.

It is noteworthy that, the singular values derived from HOSVD
can only approximately correspond to the skewness. Therefore, the
product of the singular values is the approximation of the joint

False alarm probability

Figure 6 | ROC curves for (a) Nontronite and (b) Buddingtonite.

10 10°” 107 10” 10°

10 10° 107 10 10’
False alarm probability
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(b)

Figure 7 | (a) True color of the image (b) CEM results of the target from
full bands.

skewness (hyperdeterminant of tensor). It needs to be further
studied how to compute the joint skewness efficiently and
accurately.

Method

The presented JSBS is based on the third-order statistics of data and stimulated from
the idea of MEV. Therefore, we briefly introduce the MEV method and basic concept
of tensor at first.

Covariance matrix determinant. Charles'” proposed an unsupervised band selection
method (MEV) based on the second-order statistics of data. The criterion function
used in MEV is the product of the variances (see Figure 10) in different principal
directions. There MEV can be understood to select the subset with maximum joint
second-order statistics (the product of variances in orthogonal directions). From
geometric perspective, the product of the variances equals to the volume of the
ellipsoid spanned in image space. On the other hand, from mathematical point of
view, the criterion function can be transformed into the determinant of covariance
matrix of bands. It has been demonstrated that this criterion discourages the selection
of correlation band pairs.

Tensor. In this section, we give a brief introduction of tensor. A tensor is a multi-way
array or multi-dimensional matrix. The order of a tensor is the number of
dimensions, which is also known as ways or modes. The formal definition of tensor is
as following: let I, I,....Iy, € N, a tensor YeR! * 2 *I¥ of order N is an N-way array
where elements y;,;,..;, are indexed by i, € {1,2,...1,} for 1 = n = N*. A tensor is
called super-symmetric if its entries are invariant with any permutation of their

10 bands selected

15 bands selected

20 bands selected

30 bands selected

40 bands selected

Figure 8 | CEM results from bands selected by (from left to right) MEV, VNVBS, IDBS, ICABS and JSBS with different number.
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Figure 9 | Quantitative measures: (a) output energy and (b) ROC curves (10 bands selected) for different methods.
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Figure 10 \ Different measure criterion for information, (a) the sum of
square root of variances (information), with 4; + 4,> 43 + /4 (b) the
product of square root of variances, with 4; X 4, <43 X 4.

mode3
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Figure 11 | A sketch map of third-order tensor.

indices. Tensors are obviously generalizations of vectors and matrixes, for instance, as
shown in Figure 11, a third-order tensor (or three-way array) has three modes (or
indices or dimensions). The white element is denoted as as5;.

Unfolding is an important operation for tensors which is also known as matrici-
zation or flattening. It is a process that reorders the elements of N-th order tensor into
a matrix (see Figure 12). In general, there are N ways to reorder the elements of a N-th
order tensor, called mode-i (i = 1,2,...,n) unfolding. But for third-order super-sym-
metric tensors AR %!, all the mode-i unfolding are the same, resulting in a same
I'X PP matrix A;. More specifically, the mode-1 unfolding A ;) of A can be obtained as
following:

Aypg =Aijk (1)

where p =i, g = (k—1)*i +j.
The determinant of a tensor is called hyperdeterminant®®. The hyperdeterminant
of a third-order tensor A= (a;x) (i,j.k=1,2) with size of 2 X 2 X 2 is given by*

(2 2 2 2 2 2 2 2
Det(A) = (“111“222 t a9y a1 %1, +“122“211)

*2(11111!111211221“222+ﬂ111(l121‘1212‘1222 2)

+a111812282110222 + 1120121 02120221 + 311201220221 4211

+ain ﬂlzz(lzuﬂzn) +4(a111012202120221 +A11201210211322)

However, the hyperdeterminant of larger size third-order tensor is very hard to
compute. In this paper, we introduce the idea of HOSVD for the calculation of
hyperdeterminant.

Assume the hyperspectral image we obtained is of L-band and M pixels and is
denoted as X = [r},1y,..., £pr]”, where r; = [r;1,1in,...,ri] " is the i-th pixel vector. For the
sake of convenience, we first remove the mean value of each band in X. For band
selection, we need to select a group of bands with maximum overall skewness.
Therefore, we have to investigate the joint skewness for the band set rather than the
skewness for single band. According to the authors’ knowledge, there is no definition
for JS. In the following section, we give a definition for JS based on third-order tensors.

Joint skewness for multivariate data. Charles'” uses the determinant of covariance
matrix of the data to characterize the joint second-order statistics (variance) and
claims that this determinant discourages the selection of highly correlated band pairs.
Meanwhile, it is further proved that this determinant corresponds to the joint entropy
of the bands under the assumption of Gaussian distribution.

Coskewness tensor is the natural generalization of covariance matrix to third-order
statistics’*®. In order to calculate the coskewness tensor, the image needs to be
centralized and whitened firstly by

X=[t1., - otw]" = [F (1 —m)F (,—m), - F(ry—m)] (3)

mode 3 mode mode mode mode
~ N ~ Y
” r . -~
mode-1
unfoldin
ﬁ

[ apow

mode

Figure 12 | Sketch map of tensor unfolding.
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Figure 13 | sketch map of the calculation of S (coefficient 1/M is ignored).

where X is the whitened data set, F = ED "2, is the whitening matrix (E and D are the
eigenvector matrix and the corresponding eigenvalue matrix for covariance matrix
of X) and m is the mean vector of the image. The corresponding coskewness tensor of
an image, denoted as S, is defined as

M

A |
E =—
— M
i=1

where the 3-way outer product f? =T,of;of; is a rank-1 third-order tensor with L
dimensions. In fact, each element of S can be calculated by

s= ook,

4)

1=

N

()

where x; is the vector reshaped by the i-th band and E{e} is the expectation operator.
Figure 13 shows a sketch map of the calculation of S.

Since the determinant of covariance matrix corresponds to the overall second-
order statistics, would the hyperdeterminant of coskewness tensor characterize the
overall third-order statistics? If this speculation holds, it may implicate great
applicable value for hyperspectral band selection. Based on this assumption, we define
the joint skewness for multivariate data as

JS=[Det(3)]

Sijk = E{xixjxk },

(6)

where Det(e) is the hyperdeterminant operator and |e| is absolute operator.
However, since data whitening is needed in advance to compute coskewness ten-
sor, S needs to be frequently calculated for different band combinations if we use
equation (6) as BS criterion. Therefore, we decide to adopt another expression for JS
which does not require data whitening. The skewness of an arbitrary random vector v,
skew(v) is defined as the third-order standard moment, which is also the ratio of
third-order cumulant to 1.5 power of the second-order cumulant as following:

~ V=3 _ E{(V*Hf} _ ks
skew(v)fE{( p ) } [E{(v—#)3}}3/2 (k)*?

where ¢ and yt are the standard deviation and mean value of v, and k; is the i-th-order
cumulant of v.

Combining equation (6) and (7), we redefine the joint skewness for multivariate
data as

7)

_ VIDet(R)|

5= det(K)*?

©)

M
where R= i Z rior;or; is the third-order cumulant tensor and K= iXTX is the
M & M
covariance matrix for hyperspectral image X. Compared to the repetitious calculation
of sub-coskewness tensor S in band selection, R only needs to be computed once since
it does not involve whitening of data.

Based on (8), we expect to obtain the bands with not only large overall skewness but
also low correlation. Unfortunately, the computation of hyperdeterminant of third-
order tensor (i.e. Det(R)) with large size (large than 2X2X2) is quite difficult®®.

Interestingly, we can transform the hyperdeterminant of tensor into the deter-
minant of matrix by introducing the idea of HOSVD in the following, which makes it
much easier to compute. This is the key point of our method.

Geng et al.*® proposed a novel artificial small targets detection method by per-
forming HOSVD to coskewness tensor. Interestingly, it is found that the singular
values derived from HOSVD highly correspond to the skewness in singular vector
directions. This conclusion plays a quite crucial role for JSBS.

We speculate that the hyperdeterminant of coskewness tensor should correspond
to the product of the skewness in all the singular directions since we know the
determinant of covariance matrix equals to the product of the square root of the
variance of all the principal directions. Combing this speculation with the conclusion
about the relationship between singular values and skewness drawn in*, we consider
that, could we approximate the hyperdeterminant of tensor by the product of the
singular vales derived from HOSVD? If this assumption holds, then the calculation of
hyperdeterminant of third-order tensor can be transformed into the computation of

oY}

determinant of matrices. Fortunately, after conducting related experiments on
simulated data (section 4.1), we find that the product of the singular values derived
from HOSVD has a strong positive relation (correlation coefficient is about 0.97) with
the hyperdeterminant of coskewness tensor. As a result, we have transformed the
hyperdeterminant problem of tensor to the determinant problem of matrix by
exploiting the property of HOSVD.

Specifically, the HOSVD to the third-order tenor R can be performed as
follows: first, we unfold tensor R into matrix R, in mode-n way (the size of R,
is L X L?). Then, perform SVD of matrix to R(,. The n mode-n unfoldings of R
are totally the same since it is a super-symmetric tensor, i.e. Rgy = Rp) = .. =
R(p). It can be easily verified that the singular values (4;, 4,...,4;) derived from
SVD to Ry, satisfy

M XA X e X A= det(R(,,)Rz;)) (9)
Consequently, equation (8) can be approximately transformed into the following
matrix operation,

det (R(,,)RZ;I))

JS(X)= W

(10)

By now we have defined the joint skewness for multivariate data as the hyper-
determinant of coskewness tensor and approximately transformed it into simple
matrix operations as shown in equation (10). The evaluation experiments based
on real hyperspectral data (section 4.2 and 4.3) verify the equation (10) works

well. The following problem is how to find the band subset that has maximum
value of (10) which is known as band subset selection.

Search Strategy. It is a NP hard problem for band subset search. Although Narendra
et al.*” have proposed an efficient subset search method, branch and bound (BB), it is
only suitable for monotonous criterion functions. As to the common criterion
functions, the search of optimal subset is computationally prohibitive when the
number of bands is over a few tens (which obviously includes hyperspectral data)*.
Therefore, some methods that are fast to implement and can provide acceptable band
subset (not necessarily the best one) are required. Many subset search methods that
trade off efficiency against accuracy have been reported in literatures, for
instance,""**. Among these methods, SBS* is one of the most widely used ones due to
its simplicity and effectiveness.

SBS is “top-down” method which starts with full band set and followed by
removing the redundant bands one-by-one. In each iteration, the subset (constructed
by removing one band from original band set) with maximum (or minimum,
depending on the selection criterion) value of criterion function is reserved. It is
continued until the number the left bands meets the requirement. We employ SBS as
the subset search method for JSBS. The pseudo code in Matlab style is listed in the
following:

Algorithm: JSBS. Input: Observations X = [X},Xy,...X1], where X; = [x1,X25m
xpmi)" is the column vector reshaped by the i-th band and the number of selected

bands p.
1. Initialization

A.  remove the mean value of each band;

B. Compute the second-order and third-order cumulant matrix (tensor)
which are denoted as K and R respectively.

C.  set the selected band index set @ = {1,2,...,L}and indicating variable k = L.

%% Main loop
While (k > p)

2. Remove each band in ® tentatively and calculate the joint skewness (denoted
as JS), for the corresponding left band. More specifically,

Fori=1tok

| 5:9915 | DOI: 10.1038/srep09915
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17.

18.

19.

20.

A.  Construct K® by removing the i-th row and the i-th column of K,
construct R¥) by removing the i-th horizontal slice, i-th lateral slice
and the i-th frontal slice of R.

B.  Unfold B(i) into matrix BE?) (since Rj) = Rz) = ... = R(py).

C.  Calculate the joint skewness for corresponding left bands by (7),

O g
det(RR())

JS(i) = ———7—
det (K2
Endfor

Determine the band to be removed, index= arg max(JS(i)).

=1k
Remove the corresponding index from selected band index set, the new index
setis @ = {1,2, ...,index—1,index + 1,...,L}.
Update K and R, respectively by K = K(index), R = Rindex)
kek—1

Endwhile

Output: ® = {al,a2,...,a,} are the final selection band indices.
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