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The evolutionary history of the characters underlying the adaptation of microorganisms to food
and biotechnological uses is poorly understood. We undertook comparative genomics to investigate
evolutionary relationships of the dairy yeast Geotrichum candidum within Saccharomycotina.
Surprisingly, a remarkable proportion of genes showed discordant phylogenies, clustering

with the filamentous fungus subphylum (Pezizomycotina), rather than the yeast subphylum
(Saccharomycotina), of the Ascomycota. These genes appear not to be the result of Horizontal Gene
Transfer (HGT), but to have been specifically retained by G. candidum after the filamentous fungi-
yeasts split concomitant with the yeasts’ genome contraction. We refer to these genes as SRAGs
(Specifically Retained Ancestral Genes), having been lost by all or nearly all other yeasts, and thus
contributing to the phenotypic specificity of lineages. SRAG functions include lipases consistent
with a role in cheese making and novel endoglucanases associated with degradation of plant
material. Similar gene retention was observed in three other distantly related yeasts representative
of this ecologically diverse subphylum. The phenomenon thus appears to be widespread in the
Saccharomycotina and argues that, alongside neo-functionalization following gene duplication

and HGT, specific gene retention must be recognized as an important mechanism for generation of
biodiversity and adaptation in yeasts.
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Average Genome Gene

G+C Total coding density (no. Average Genes Total Total

No. of Genome content no. of coverage of CDS per CDS size with intron tRNA

Species Strain chromosomes size (Mb) (%) CDS (%) 10kb) (codons) introns number genes
S. cerevisiae 5288¢ 16 12.1 383 5769 70.0 4.8 488 287 296 274
Z. rouxii CBS 732 7 9.8 39.1 4992 76.1 5.1 497 158 162 272
K. lactis CLIB 210 6 10.7 38.8 5076 69.2 4.8 485 129 129 163
D. hansenii CBS 767 7 12.2 36.3 6395 74.2 52 479 420 467 200
H. polymorpha DL1 8 9.0 47.8 5325 84,4 5.8 469 452 457 80
Y. lipolytica CLIB 122 6 20.5 49.0 6580 46.0 3.1 489 984 1,119 510
G. candidum CLIB 918 8* 24.8 48.0 6804 44,9 2.7 516 2415 3,830 352

Table 1. Genome characteristics comparison. Data from S. cerevisiae were taken from SGD (http://
www.yeastgenome.org/); Z. rouxii, K.lactis, D. hansenii and Y. lipolytica from Genolevures (http://www.
genolevures.org and H. polymorpha from Ravin et al. (2013). Annotations for G. candidum are part of this
work and are available from the ORCAE online database (http://bioinformatics.psb.ugent.be/orcae/). nd, not
determined. *obtained from cytological analysis (Gente et al. 2002)

Comparative genomics is a powerful tool for the investigation of yeast evolution>. Genome sequences
are now available for a large number of Saccharomycetaceae and Debaryomycetaceae species within the
subphylum Saccharomycotina®-'2. Species associated with the Pichia/Ogatea clade such as Dekkera brux-
ellensis, Komagataella pastoris, Ogataea polymorpha and Kuraicha capitulata have also attracted a great
deal of attention'®>-!%, but the basal lineages of the Saccharomycotina remain poorly studied. To date the
sequences of only two genomes of basal species, Yarrowia lipolytica® and Blastobotrys adeninivorans",
have been reported.

The ubiquitous species, Geotrichum candidum (teleomorph = Galactomyces candidus), a member
of the basal family the Dipodascaceae, can be found in a wide range of habitats from plant tissue and
silage, to soil, air, water, milk and cheese!®*. G. candidum is well-known as an important component
of the surface microbiota of soft cheeses and has also been used as a starter in the cheese industry*..
It is also involved in beer making® and industrial enzyme production®. In addition, G. candidum pre-
sents unusual characteristics that have complicated its taxonomic classification. For instance, it displays
high morphological variability and wide phenotypic diversity, and has many features generally associated
with filamentous fungi. Although initially classified as yeast by the two major yeast taxonomic mono-
graphs®»?, it was later reclassified as a mould or filamentous yeast-like fungi'®%.

Saccharomycotina yeasts have greatly contributed to the understanding of major molecular evo-
lutionary mechanisms leading to functional diversity such as gene duplication followed by neo- or
sub-functionalization**”7-*. Recent developments have shown that horizontal gene transfers (HGT)
also contributes to the diversity between species*~*¢. However, these two gene-gain processes alone can-
not account for most of the major and rapid transitions during yeast evolution such as the split between
Pezizomycotina (filamentous fungi) and Saccharomycotina (yeasts) that was associated with genome
contraction in the Saccharomycotina subphylum. Based on our whole genome comparisons between G.
candidum and the other ascomycetes, we show that significant differential gene loss has occurred in lin-
eages associated to major evolutionary transitions in yeasts, underscoring this evolutionary mechanism
as an important force shaping genomic and functional diversity.

Results

Overall characteristics of the G. candidum CLIB 918 genome. A draft genomic sequence of
high-quality of Geotrichum candidum strain CLIB 918 (= ATCC 204307) was obtained by combining
454 pysosequencing of an 8 kb mate-pair library, Illumina/Solexa sequencing of genomic fragments, and
a single whole genome shotgun 454 pyrosequencing run. The final assembly yielded 134 scaffolds with
1416 sized gaps, as highly repeated sequences such as transposable elements are typically missing from
the assembly. We estimated the number of transposons and related elements to be of the order of 1000,
corresponding to the gaps in the sequence assembly (Supplementary Note). A preliminary analysis based
on scaffold size and presence of genes shortlisted the 27 largest scaffolds, totaling 24.2 Mb, i.e. 97.5%
of the assembly. The 107 remaining scaffolds were merged into the artificial scaffold 32 with a size of
620.6kb. The genome had a GC content of 48% and its size was estimated to be 24.8 Mb by the Newbler
assembler. As such, it constitutes the largest Saccharomycotina yeast genome described to date, 25%
larger than that of Y. lipolytica with 20.5Mb®. The overall number of protein-coding genes in CLIB 918
is 6804 (excluding transposons and pseudogenes). The data are summarized in Table 1, Supplementary
Table S1, and Supplementary Note. In addition to the nuclear genome, the mitochondrial genome was
also sequenced, assembled and annotated (Supplementary Fig. S1), producing a single, circular contig of
length 29kb and with 27.6% GC.
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Figure 1. Phylogenetic position of G. candidum. Maximum likelihood phylogenomic reconstruction of
29 fungal species based on 246 concatenated gene sequences. The analysis was based on 64,105 informative
positions remaining after curation of the 176,113 original aligned amino acids. Percentage bootstrap values
for 100 replicates were 100% at each node. The bar represents 5 amino acid changes per 100 amino acids.

Automated annotation followed by manual curation identified 4713 genes presenting unambiguous
sequence similarity to Saccharomyces cerevisiae and 1245 genes coding for conserved hypothetical pro-
teins with similarity to fungal proteins but no clear ortholog in S. cerevisiae. The latter set of genes
included 371 ORFs to which functions could be tentatively assigned based on comparison against anno-
tated genomes and conserved domains, 34 genes encoding subunits of the NADH-ubiquinone oxidore-
ductase complex 1 (Supplementary Table S2), 27 genes with unique fungal homologs. Further, we found
846 genes with no similarity to any gene outside G. candidum. Finally, we identified three cases of bac-
terial HGT (Supplementary Data 1).

Phylogenomic analysis performed on the 246 genes previously identified by Aguileta and coworkers®,
unambiguously placed G. candidum within the Saccharomycotina subphylum, with B. adeninivorans and
Y. lipolytica as its closest neighbors. However, the branch lengths indicate that these species are not
closely related (Fig. 1). This observation was confirmed by the reduced synteny existing between G. can-
didum and the two other basal species (Supplementary Fig. S2). As little as 778 and 511 syntenic blocks
were identified between G. candidum and B. adeninivorans or Y. lipolytica, respectively (Supplementary
Table S3). The large majority of these blocks comprised only 2 genes (50% of the blocks of synteny with
B. adeninivorans and 64% of these with Y. lipolytica) or 3 genes (31% and 26%, respectively).

G. candidum genes are characterized by an average of 0.56 introns per protein-coding gene (3830
introns in 6804 ORFs). Thirty-five percent (2414) of the genes have at least one intron. This high intron
content and the short intron size (71 nt median) depart from the situation in other yeasts. (Supplementary
Fig. S3, Supplementary Table $4). Indeed, the number of introns in G. candidum is 12.9-fold higher than
in S. cerevisiae and 3.4-fold higher than in Y. lipolytica, the most intron-rich Saccharomycotina yeast
described to date (Table 1). Finally, a striking feature of the spliceosomal introns in G. candidum is
the poor conservation of the 5 splice site and the branch point when compared to other yeast within
Saccharomycotina® (Supplementary Fig. S4; Supplementary Note).

G. candidum has a sexual state®. A single gene (GECA02502545g) coding for a protein of 281 amino
acids that we have named MATA was identified on the basis of its sequence similarity with other fungal
MAT genes and its position in a chromosomal region sharing a conserved organization with that of

SCIENTIFIC REPORTS | 5:11571 | DOI: 10.1038/srep11571 3



www.nature.com/scientificreports/

mating type loci in other yeasts and fungal species (Supplementary Fig. S5). In a survey of G. candidum
strains we identified the MATB idiomorph, indicating that this species is heterothallic (Supplementary
Note).

Functional analysis and gene family expansion. To gain insight into the evolutionary dynamics
of G. candidum genes and compare this to other yeasts, we reconstructed the phylome (i.e. complete
set of individual gene phylogenies) for G. candidum as described in Materials and Methods. The result-
ing phylogenies, stored in phylomeDB*; (www.phylomedb.org), span the evolution of yeasts across the
main Dikarya groups (Ascomycota and Basidiomycota). The phylome was analyzed to bring to light G.
candidum-specific duplications, and infer orthology and paralogy relationships.

This analysis showed that G. candidum has 56 amplified gene families, that is, groups of paralogs con-
taining three or more genes (Supplementary Data 2). The most highly amplified gene family (unknown
function) with 21 copies has no counterpart in any other genome. The second largest expansion contains
16 members in a GRE2-like gene family, GRE2 being a pleiotropic gene involved in ergosterol biosynthe-
sis and control of filamentous growth in S. cerevisiae*"*2. This gene family is also amplified in most other
yeasts, but to a lesser extent. Finally, the category of transporters and permeases is also highly amplified
in G. candidum, both general permeases and, more specifically, allantoate permeases and transporters for
bile acid, nicotinic acid and monocarboxylate.

The number of genes involved in chitin metabolism is striking, as many of the genes of this pathway
are present in more than one copy. Interestingly, six copies of the ortholog encoding chitin synthase III
(CHS3-like), necessary for the majority of cell wall chitin synthesis, are found. This analysis also revealed
six co-orthologs (including a pseudogene) of the activator of chitin synthase III (SKT5). Indeed, the
closely-related Y. lipolytica, a dimorphic species with a strong tendency to form filaments, contains only
three chitin synthase-related genes and a single SKT5 regulator (Supplementary Table S5). The high num-
ber of genes involved in chitin metabolism compared with other yeasts correlates with the phenotype of
high production of hyphae and pseudo-hyphae in G. candidum.

G. candidum is a major component of the microbiota of soft cheeses. In agreement with its propen-
sity for growth in the dairy ecosystem, an expanded family with a total of four carboxylesterase/type B
lipase genes was identified, of which two have previously been cloned and sequenced®** (Supplementary
Table S6). Interestingly, none of these genes had an equivalent in the Saccharomycotina subphylum, but
had homologs in the Pezizomycotina (see later section on specific gene retention). These lipases were
predicted from their sequence to be secreted extracellular enzymes, in accordance with the first step of
triacylglycerol catabolism in the dairy matrix involving secreted lipases. Volatile sulfur compounds, key
to cheese aroma, are produced from the catabolism of methionine and cysteine by yeasts*. Seven of
the genes in this pathway are duplicated in G. candidum (Supplementary Fig. S6), in accordance with
its known preeminent role in the cheese ripening process®, and a putative domestication of this yeast.

The most surprising gene amplification concerned gene families involved in the degradation of plant
polysaccharides which are typically associated with filamentous fungi. G. candidum has undergone
amplification of three distinct families of cellulolytic enzymes (Supplementary Data 2). These, included
four copies of an endogluconase GH45, five copies of a lytic polysaccharide monooxygenase and five
copies of an endo-polygalacturonase. Such functions have not been described in yeasts, except for a sin-
gle gene encoding an endo-gluconase GH45 in K. pastoris*® and one distantly related polygalacturonase
in S. cerevisiae*’*8. These enzymes, whose presence greatly varies among fungi, are responsible for plant
cell wall polysaccharide degradation, leading to cell-wall decomposition in a saprophytic or pathogenic
context®. The gene complement of carbohydrate degrading enzymes is unique in G. candidum among
yeasts (Supplementary Note. Supplementary Data 3). Further experimental investigations will be neces-
sary to validate the hypothesis that this permits the use of a broad range of carbon and energy sources.
The overall distribution of the annotated gene functions is shown in Supplementary Fig. S7a,b,c,d.

Specifically retained ancestral genes in G. candidum. Functional annotation of the G. can-
didum genome was performed using the proteome of S. cerevisiae as well as those of other taxa of
Saccharomycotina, Pezizomycotina and Basidiomycota. An initial analysis by BlastP, showed that there
exist a set of few hundred G. candidum genes which do not have any orthologs in any sequenced
Saccharomycotina species, but which display a good level of sequence conservation with predicted pro-
teins from filamentous fungi (Pezizomycotina and Basidiomycota).

A detailed analysis of the topology of the phylogenies for each of the predicted proteins (phylome
analysis) showed that 280 genes (4.1% of the 6804 G. candidum genes) presented discordant phylogenies.
The simplest explanation, and that most often put forward, for the presence of such genes is that they are
the result of horizontal gene transfer (HGT), which has been shown to occur, albeit infrequently, between
eukaryotes®>%*!. In this respect, we identified a total of 17 clear cases of HGT from filamentous fungi,
where the G. candidum gene grouped outside the Saccharomycotina, either within the sister subphylum
Pezizomycotina (16 genes; Table 2 and Supplementary Fig. 8) or outside the Ascomycota (1 gene). In
this latter case, the G. candidum gene (GECA13s02485g, putatively involved in polyamine metabolism)
grouped within the Basidiomycota (Fig. 2). To the best of our knowledge, this is the first report of a gene
horizontally transferred from the Basidiomycota to a Saccharomycotina species (Supplementary Note).
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Phylome Id Gene Id Putative function Closest relative species (blastp)
Phy0064BLX_

GEOCN GECA03505631¢g unknown Arthroderma otae
E}EYSOC%BQT_ GECA05503486g cyclin Yarrowia lipolytica**
E}EYS%%BVF— GECAO01504828g hydrolase, carbon-nitrogen family member Pyrenophora teres f. teres
2}115)8%6N4BWG— GECA04500318g MES sugar transporter Penicillium marneffei
Phy0064C2U_ GECA20s00758g adipose-regulatory protein Penicillium chrysogenum
GEOCN

glﬁyg%sécw_ GECA13500252g Plasma membrane metalloid/H+ antiporter Aspergillus fumigatus
gl}iyg(gé(:”— GECAO01500538g succinyl-CoA:3-ketoacid-coenzyme A transferase Talaromyces stipitatus
E}EYOO%GSCDO— GECA04s06742g golgi matrix protein Yarrowia lipolytica**
Phy0064CEU_ .

GEOCN GECA12503497g unknown Aspergillus clavatus
g‘ggocGIjCGG— GECA03501220g unknown Serpula lacrymans
Phy0064D19_ GECA24s00301g* translation elongation factor Komagataella pastoris**
GEOCN

(P}IEYS%%EQK— GECA07s00274g COPI-coated vesicle protein Chaetomium thermophilum
Phy0064FET_ GECA05500197g MFS multidrug transporter Penicillium marneffei
GEOCN

EIEYS%GIGFFL GECA08504762g Beta-isopropylmalate dehydrogenase (LEU2)*** Ogataea parapolymorpha**
Phy0064FX3_ GECA20s00043g Glutamine amidotransferase Fusarium oxysporum
GEOCN

EIEYS%GIGG6V_ GECA20s00065g pyridoxine biosynthesis protein Gibberella zeae

Table 2. List of putative HGTs from Pezizomycotina species to G. candidum. "partial gene sequence
"Saccharomycotina “'in addition to a Saccharomycotina ortholog (GECA07s02881g)

However, the remaining 263 of the 280 discordant genes did not appear to be due de HGT, grouping
phylogenetically neither within the Saccharomycotina, nor within the Pezizomycotina. Further analysis
revealed that 141 of these 263 genes had no orthologs within the Saccharomycotina, but counterparts in
Ascomycota or in Ascomycota and in Basidiomycota (131 in Pezizomycotina subphylum, of which 45
were also present in the basidiomycetes). We call this group of genes set A (Supplementary Data 4). The
other 122 genes were associated with a homolog in S. cerevisiae, presenting in contrast a phylogeny which
followed that of the species tree. We denote this second group of genes as set B (Supplementary Data 4).

In order to elucidate the origins and history of these genes of discordant phylogeny, we compared
their characteristics with those that would be expected of horizontally-transferred genes. In most cases
of HGT described in yeasts, the genes involved were exclusively clustered and had resulted from intro-
gressions'**>*. In filamentous fungi, HGT affects few single genes, but mostly larger regions of DNA,
typically containing functionally related groups of genes®. In contrast, the set A and B G. candidum
genes were found to be scattered through the genome sequence and did not cluster together as part
of larger regions of transferred DNA (Fig. 3). In addition, these genes were distributed in the scaffolds
independently of functional class.

HGT can usually be detected because the phylogenetic position of the transferred genes with respect
to homologs in related species differs from that of the other genes within the genome. Patristic distances
(i.e. sum of branch lengths separating two tree nodes) between each G. candidum gene and their counter-
parts in the Pezizomycotina species were calculated from the phylome. Figure 4 presents the normalized
patristic distances of the G. candidum genes, including the set A genes, the set B genes, all the G. can-
didum genes and the hypothetical HGT genes, from their closest Pezizomycotina orthologs. This analysis
shows that the genes showing discordant phylogenies, both set A and set B, are not distinguishable from
the entire gene complement of G. candidum in terms of their distances to Pezizomycotina orthologs.
On the other hand, the normalized patristic distance between the HGT genes and their Pezizomycotina
orthologs is clearly reduced. Genes originating from lateral transfers would be expected to display a
reduced distance from their Pezizomycotina orthologs, since they are more or less recently diverged. The
fact that distances between Pezizomycotina and set A and set B genes are not different from distances
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Basidiomycota

Pezizomycotina

GECA13s502485g

Figure 2. Phylogenetic position of the G. candidum gene GECA13502485g potentially encoding a
spermine synthase among Pezizomycota and Basidiomycota orthologs. Sequences of the fungal genes
most closely related to GECA13s02485g were retrieved from NCBI after Blast comparison to Pezizomycotina
and to Basidiomycota. Sequences were aligned using MUSCLE, the alignment was curated using Gblocks
and the phylogenetic reconstruction was performed using Phyml with default settings as implemented in
phylogeny.fr (http://www.phylogeny.fr/). The list of species can be found in Supplementary Data 6.

Scaffold number
w

Figure 3. Distribution of the phylogenetically discordant sets A and B genes on the five largest scaffolds
of the G. candidum genome. Scaffolds are represented as horizontal bars, numbered at the left, and red lines
show the position of SRAGs. The scale indicates gene number.
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Figure 4. Phylogenetic distance of HGT and sets A and B genes from G. candidum to Pezizomycotina.
Normalized distances between each G. candidum gene and its closest ortholog in the Pezizomycotina are
represented as box plots. The graphs show the maximum, minimum and median values and the first and
third quartiles. The points at the bottom of the “All gene trees” box plot are outliers, whose phylogenetic
distance from the traced box is greater than 1.5 times the interquartile distance.

between Pezizomycotina and the G. candidum genes rules out the possibility that the set A and B genes
were the result of HGT.

For all these reasons, it seems highly unlikely that the genes of sets A and B result from HGT events.
Rather, a more plausible explanation considering the above observations would be that they had been spe-
cifically retained during the radiation after the separation of the Pezizomycotina and Saccharomycotina.
We therefore propose to designate this type of gene as a Specifically Retained Ancestral Gene (SRAG).
Figure 5 presents the proposed scheme leading to the occurrence of SRAGs in a present day yeast species
such as G. candidum (Fig. 5).

The expression of genes with a discordant phylogeny was compared to the rest of the genes using
data from high throughput RNA sequencing. We observed that the overall expression level of the set
A was reduced compared to the rest of the genes in the genome (Reduction of 1.4-fold, P < 1077). The
overall gene expression of set B genes was not significantly different to that of the other genes (P=0.84)
(Table 3; Fig. 6). This reduced expression may be due to a higher specificity of the genes in the set,
including lignocellulolytic enzymes and a number of transcription factors, which might not be expressed
under the chosen laboratory growth conditions.

SRAGs are a common feature in yeasts. We examined other well-characterized yeast genomes to
investigate whether such genes could also be found. To this end, we reconstructed the phylomes of three
other species: S. cerevisiae, Debaryomyces hansenii and Y. lipolytica. A search in PhylomeDB for genes
with discordant phylogeny permitted the identification of putative SRAGS in these species. Again we
detected genes with orthologs in Pezizomycotina only as well as genes with discordant phylogeny which
were present in the Pezizomycotina and absent from a majority of Saccharomycotina (Supplementary
Data 5).

S. cerevisiae was found to have 15 genes presenting discordant phylogenies (Table 4, see www.phy-
lomedb.org/phylome_236). These S. cerevisiae genes are involved in a variety of pathways (respiration, cell
wall, post-transcriptional quality control, protein translation, sterol uptake); two of them are of unknown
function. Interestingly, none of these 15 genes are essential for growth under normal conditions (PDRI11,
a sterol uptake protein, is however required for anaerobic growth, where sterol biosynthesis is compro-
mised®; they are all expressed in either unusual or stressful conditions for S. cerevisiae (http://www.
yeastgenome.org). The IRC7 gene, encoding a putative cystathionine beta-lyase, was proposed to be the
result of HGT, originating in bacteria®®; however, this gene proved unambiguously closer to Pezizomycota
than to bacterial counterparts (data not shown).

Functional analysis of the genes in the G. candidum, D. hansenii and Y. lipolytica revealed that SRAGs
are associated with diverse functional classes and that they are responsible for at least part of the spec-
ificity, but functional classes are shared between these yeasts. A functional classification of the SRAGS
highlighted differences between D. hansenii and the two other basal yeasts G. candidum and Y. lipolytica
(Fig. 7).

The halophilic and psychrophilic yeast D. hansenii is found in environments such as seawater, brine
and salted foods and is a major component of cheese surface microbiota®. The functional classes over-
represented in the SRAG gene set are those of Amino acid metabolism (13 genes), Carbon metabolism
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Figure 5. Schematic representation of the origin of SRAGs. (a) The hypothetical fate of a gene transmitted
vertically to the Pezizomycotina and the Saccharomycotina lineages from the Ascomycota ancestor is
represented by a continuous green line. The dotted line indicates the lineages in which the gene is lost,

(b), resulting in a situation where the gene is found in the Pezizomycotina lineage and only in G. candidum
where it has been retained (set A genes). (¢) Transmission of members of a duplicated gene family in the
Ascomycota ancestor to the Pezizomycotina and the Saccharomycotina lineages (set B genes). The green line
indicates that one paralog has been lost in the entire Saccharomycotina lineage, except in G. candidum where
it has been retained (similarly to (a) and (b)). The black line indicates that the second paralog has been
transmitted to the Saccharomycotina lineage. Whereas only one paralog is present in the Saccharomycotina,
both paralogs are present in G. candidum.

A+B 263 776 286 898 671 9.4.107°
C 6 571 22 578 908 22 453 107
141 346 497 473 196 <1077

6 571 22182330 | 22052276

122 412 587 408 273 8.4.107!

C 6 571 21988 884 | 21989 851

Table 3. Gene expression of SRAGs in G. candidum.

(with seven SRAGs involved glycosidic bond hydrolysis) and Transport (with nine SRAGs involved in
sugar transport). There are also five extracellular lipases that hydrolyze triacylglycerols in this lipid-rich
environment to fatty acids and to glycerol, which is the main compatible osmolyte accumulated by D.
hansenii as osmoprotectant on the highly saline cheese-surface®. Thus, D. hansenii SRAGs are represent-
ative of functions needed to grow under these conditions.

Y. lipolytica has long been a focus of research for its lipid metabolisms and its capacities for pro-
tein secretion®®. It is encountered on the surface of ripened cheese®%2. The functions that are
over-represented in Y. lipolytica SRAGs are Lipid metabolism (10 genes) and Proteolysis (20 genes, of
which 10 encode extracellular proteases). Y. lipolytica and G. candidum are both dimorphic yeasts, whose
transition from budding to hyphal growth involves complex subcellular processes. We built an inventory
of the Y. lipolytica and G. candidum genes homologous to N. crassa genes necessary for filamentous
growth® (Supplementary Table S8). Among the 55 Y. lipolytica genes and 70 G. candidum genes in the
inventory, respectively 29 and 37 SRAGs were found. Thus, over 50% of the Y. lipolytica and G. candidum
genes necessary for filamentous growth are SRAGs, contrasting with the proportion of SRAGs in the
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Figure 6. Expression of genes with discordant phylogenies. The distribution of the RNA sequence reads
was plotted against the genes of setA, setB and against the whole genome. The number of genes in sets A
and B are shown multiplied by a factor of 10 to facilitate comparison.

Zinc knuckle protein; involved in nuclear RNA
processing and degradation as a component of
the TRAMP complex

Arginine methyltransferase-Interacting

P40507 AIRI YIL079C RING finger protein 1

External NADH dehydrogenase required for
External NADH-ubiquinone oxidoreductase | optimum cellular growth with a number of
2, mitochondrial nonfermentable carbon sources, including
ethanol

Q07500 NDE2 YDLO85W

Auxiliary transcriptional regulator of sulfur

Q03081 MET31 | YPLO38W Transcriptional regulator amino acid metabolism

Catalyzes the attachment of glycine to

Q06817 GRS2 YPRO81C Glycine--tRNA ligase 2 {RNA(Gly)

Mannosyltransferase involved in adding the 4th

P53059 MNT2 YGL257C Alpha-1,3-mannosyltransferase and 5th mannose residues of O-linked glycans

Cadmium transporting P-type ATPase which
P38360 PCAI YBR295W P-type cation-transporting ATPase plays a critical role in cadmium resistance by
extruding intracellular cadmium

P43623 IRC7 YFRO55W Putative cystathionine beta-lyase Beta-lyase involved in the production of thiols

P38143 GPX2 YBR244W Glutathione peroxidase 2 May constitute a glut:.athlone‘ pel_'oxldase—llke
protective system against oxidative stresses

Q12177 na YLL056C Uncharacterized protein

P38150 na YBR284W Inactive deaminase

Transcriptional repressor involved in regulation

Q03125 NRGI YDRO043C Transcriptional regulator :
of glucose repression

Probable transcription activator linked to cell
cycle that induces transcription activation of
Q08182 YAP7 YOL028C AP-1-like transcription factor genes in the environmental stress response and
metabolism control pathways, like the closely
related YAP5

P53745 MNTH4 YNRO59W | Probable alpha-1,3-mannosyltransferase

P39941 DSF1 YELO70W Uncharacterized protein Putative mannitol dehydrogenase

Q12390 GTT2 YLL060C Glutathione S-transferase 2 GlutathlloneAS-t‘ransferase capable of
homodimerization

P40550 PDRI1 | YILO13C ATP-dependent permease Transporter involved in the uptake of sterol

Cyclin partner of the cyclin-dependent kinase

P40186 PCL7 YILO50W PHOSS5 cyclin-7 (CDK) PHOS5

Table 4. List of SRAGs in S. cerevisiae.
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Figure 7. Functional distribution of SRAGs in three yeasts species. The SRAGs of D. hansenii, Y. lipolytica
and G. candidum, as listed in Supplementary Data 6, were assigned to functional categories. For each
species, the distribution of SRAGs by category is expressed as a percentage of the total number of SRAGs.
Orange, G. candidum; blue, D. hansenii; green, Y. lipolytica.

whole genomes, (3.7% and 3.9% in Y. lipolytica and G. candidum, respectively), and highlights the strong
association of SRAGs with filamentous growth.

In the case of G. candidum, with the exception of functions related to filamentous growth, the pres-
ence of SRAGs in the various functional categories is generally low, varying from 1 to 4%. The excep-
tion of the large number of G. candidum SRAGs in the Transcription regulation (11%) category is an
indication that the reactivity and adaptability of this yeast to environmental changes may be carried by
SRAGs. Our analysis of the functional classification of these SRAGs highlighted the specific properties
of these yeasts according to their natural morphology and ecological niche. SRAGs contribute to phe-
notypic specificity of these yeasts. An over-representation of the Transcription regulation and Transport
categories is expected in wild yeasts as they have to adapt to various environments by being able to use
a wide variety of nutrients and to reorganize gene expression in response to environmental changes. We
also noted that each of the three yeasts examined, D. hansenii, Y. lipolytica and G. candidum, possess
SRAGs associated with lipid metabolism, which may be linked to their presence in dairy products. It is
important to note that the genes in the “Lipid metabolism” category in all three species are phylogeneti-
cally unrelated, suggesting a parallel evolution. Indeed the same is true for most of the SRAGs, suggesting
that these genes are interesting candidates for the analysis of species-specific technological properties.

Discussion

The genome sequence of G. candidum permits new insights into the genome structure of yeasts and
their evolution. In particular, its relative basal position among Saccharomycotina and its unusually large
genome for a yeast, makes it ideal to investigate the ancestral genomic repertoire of this subphylum.
Comparative genomics between G. candidum and other Saccharomycotina yeasts demonstrated the exist-
ence of groups of genes specific to G. candidum and greatly-amplified gene families which appear to
contribute to the known phenotypic specificity of this yeast, while the significance of others, such as
the large repertoire of carbohydrate hydrolases otherwise only found in filamentous fungi, can only be
hypothesized. We were interested to study whether the origins of these genes specifically present in G.
candidum could be explained by HGT or another mechanism, and therefore undertook further analyses
based on individual gene phylogenies. This brought to light a larger group of genes with discordant
phylogenies, of which some had no homologs within the Saccharomycotina. When such analysis was
extended to other species representative of different lineages of the yeast phylogenetic tree it was seen
that the presence of such genes is common to all the yeasts examined. We propose that such genes
have been specifically retained after the split between Pezizomycotina and Saccharomycotina and dur-
ing the subsequent genome reduction of the latter clade; we would therefore denote them Specifically
Retained Ancestral Genes (SRAG). Several lines of evidence argue for this explanation, and against the
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simplest hypothesis, acquisition through HGT, for the presence of these genes in G. candidum: (i) The
large evolutionary distance, similar to that of clear vertically-inherited genes, of the putative participants
makes HGT unlikely. HGT between eukaryotes usually result from interspecific or intergeneric hybrid-
ization®%, but, to the best of our knowledge (and excepting the case of HGT that we describe here
with GECA135024858g), inter-subphylum transfers between filamentous fungi and yeasts have not been
documented. (ii) The phylogenetic distances separating the SRAGs from their orthologs were similar to
those separating the other genes from their respective orthologs, whereas a hallmark of HGT is the phy-
logenetic closeness of the orthologs thus transferred. This is illustrated by the position of SRAGs being
outside the Pezizomycotina clade in the phylogenetic trees. (iii) The number, and relative frequencies of
SRAGs, present in the different species argues for specific retention rather than HGT. Indeed numerous
SRAGs were found in each of the four yeasts examined (almost 4% of gene content in the case of G.
candidum). It is unlikely that HGT events would occur at such a frequency. Furthermore the distribution
of the numbers of SRAGs in the different yeasts is intriguing: of the species studied here, G. candidum, Y.
lipolytica and D. hansenii possess a higher number of SRAGs than does S. cerevisiae (263, 230 and 111,
respectively, compared to 15). Whereas we might expect a fairly constant frequency of genes with dis-
cordant phylogenies if their presence were due to HGT, there is a clear difference in their number, which
may be due to their different evolutionary histories. This variability is also seen by the recent detection,
in B. adeninivorans'’, of 121 genes with orthologs only in Pezizomycotina, and in Zygosaccharomyces
bailii% , of 27 genes with similarity to filamentous fungal genes or highly divergent from yeasts, though
the latter group attributed these to HGT.

Lineage-specific gene retention described following mitochondrial endosymbiosis in crown
group eukaryotes®®, and the co-occurrence of genes could be used to predict their functional links.
Lineage-specific losses of genes associated with gain or loss of function have been reported in widely
separated lineages®®~72 In addition, a number of metabolic pathways present in the Pezizomycotina are
not found in Saccharomycotina’-">. The latter authors observed a differential presence or absence of
peroxysomal and non-peroxysomal pathways of 3-oxidation in some yeasts and fungi, and proposed that
the pathway has been duplicated in the ancestor and differentially lost or retained in the studied species.
We expand this observation by a global comparison of four yeast genomes within the same subphylum.
We define two categories of G. candidum-specific genes, based on their distributions:

1) One group of genes have orthologs within the Saccharomycotina, but are derived from the paralog in
the common ancestor of Saccharomycotina and Pezizomycotina lost by the other yeasts. Lineage-specific
gene retention following Whole Genome Duplication is well-known in organisms including Saccharomyces
species®, filamentous fungi’®, alveolates””, seed plants’® and vertebrates”. However, no such WGD has
been described in the ascomycete ancestor, so the above-mentioned paralogs have probably resulted
from gene duplications in the ancestor. This situation corresponds to that of the beta-oxidation genes
described”; G. candidum has retained one of the paralogs, while the other Saccharomycotina species
kept the other (Fig. 5). In some cases G. candidum had retained both genes of the ancestral duplication,
for instance some snRNPs.

2) In G. candidum, in addition to the cases of gene retention after ancestral gene duplications, we dis-
covered a second set of 141 genes in single copy in the Ascomycota ancestor, which was lost in the other
Saccharomycotina species. Cases of specifically retained genes not derived from genomic duplication
are rarely documented, although some have been proposed to play an important role in species differ-
entiation®-%2. Our analysis suggests however that this may be an important mechanism of generation of
biodiversity, at least in the yeast subphylum studied.

The above discussion is limited to genes that were unique in each studied yeast species, but we also
noted the existence of SRAGs present in two or more species. Further work on this class of SRAGs to
determine their distribution within the subphylum, will certainly greatly increase our understanding of
the evolution and biodiversity of the yeasts.

Thus, evolution by differential gene retention is widespread in a broad but well-defined clade, the
Saccharomycotina. The distribution of SRAGs in distantly-related yeast species argues for a mechanism
of a sustained loss throughout the yeast tree permitting adaptation of yeast species to various ecological
niches and resulting in the genome reduction characteristic of yeasts, rather than a massive genome
contraction in one branch of the Ascomycota.

Saccharomycotina yeasts use a combination of various mechanisms such as WGD*%%1783, gene dupli-
cation®®® and HGT®*%684-%7 which contribute to generating biodiversity to a variable extent. To date, the
major genetic mechanisms proposed to affect adaptation of fungi are duplication or gene amplification
followed by neospecialization®®*** and HGT, the bacterial nitrate assimilation cluster is suggested to have
contributed to the success of the Dikarya on land® and the acquisition of genes to increase efficiency
of alcoholic fermentation by S. cerevisiae®>®. Here we highlight the importance of another mechanism;
yeasts that we have analyzed and probably others'”*” contain different proportions of SRAGs, which are
associated with biochemical or growth characteristics of the species concerned, thus contributing to the
great biodiversity shown by this group of organisms.

Material and methods
Strains. The sequenced G. candidum strain was isolated by Micheline Gueguen (University of Caen)
from Pont-LEvéque cheese in Normandy (France) in 1975. It has been shown to produce compounds
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that inhibit the growth of Listeria and has been extensively studied®-°. The strains used in this study,
CLIB 918 (=ATCC 204307), CLIB 1368NT (=CBS 615.84"") and 61 G. candidum isolates are preserved
at the CIRM-Levures (http://wwwé.inra.fr/cirm/Levures). They were routinely propagated on complete
medium (YPD: yeast extract 10g/L, peptone 20g/L, glucose 20g/L) at 28°C.

Preparation of DNA and RNA. DNA was extracted as previously described (Jacques et al., 2009)
from strain CLIB 918 grown in YNBysg (1.7 g/L Yeast Nitrogen Base, 20g/L glucose, 5g/L ammonium
sulfate) at 28 °C to increase the yeast-like form and promote cell lysis. For RNA preparation, strain CLIB
918 was grown at 28 °C with agitation on three different media, i.e. complete medium (YPD), minimal
medium (YNBysg0) @and Synthetic Cheese Medium, SCM, described in®®) to maximize the diversity of
gene expression. Total RNAs were extracted using the method described by Mansour et al.?’ from cul-
tures grown in the three different conditions, and then pooled.

454 libraries preparation and sequencing. The single 454 library was constructed on genomic
DNA (500 ng) according to the Roche standard procedure using RL adaptators (GS FLX Titanium Rapid
Library Preparation Kit, Roche Diagnostic, USA). The 8kb mate pair library was constructed follow-
ing Roche 454 protocol. Briefly, 15pg of genomic DNA was sheared to about 8kb using HydroShear
Instrument. Fragments were end-repaired and extremities were ligated with 454 circularization adaptors.
After gel size selection of 8kb bands and fill in, DNA fragments were circularized by Cre recombinase
and remaining linear DNA digested by Plasmid Safe ATP dependent DNAse (Epicentre) and exonuclease
I. Circular DNA was refragmented by nebulization. Fragments were end-repaired and ligated with library
adaptors used for downstream processes. Mate pair library was amplified and purified. Both single and
mate pair libraries were isolated, then bound to capture beads and amplified in an oil emulsion (emPCR).
They were then sequenced using 1/2 Pico Titer Plate on 454 GSFlx instrument with Titanium chemistry
(Roche Diagnostic, USA) according to the manufacturer protocol.

lllumina GA library preparation and sequencing. The genomic DNA and ¢cDNA were sonicated
separately to a 150- to 1000-bp size-range using the Covaris E210 (Covaris Inc., MA). Fragments were
end-repaired then 3‘-adenylated, and Illumina adapters were added using NEBNext Sample Reagent
Set (New England Biolabs). Ligation products were purified and DNA fragments (>200bp) were
PCR-amplified using Illumina adapter-specific primers. After library profile analysis on an Agilent 2100
Bioanalyzer (Agilent Technologies, USA) for genomic DNA and Qubit quantification for cDNA, the
respective libraries were sequenced using 76 base-length read chemistry in a single or paired-end flow
cell on the Illumina GAIIx (Illumina, USA).

Genome assembly and automatic error corrections with Solexa/lllumina reads. All 454 reads
were assembled with Newbler version 2.3. From the initial 3,322,644 reads, 92.2% were assembled, yield-
ing 1688 contigs that were linked into 134 scaffolds. The contig N50 (the contig size cut-off above which
50% of the total length of the draft sequence assembly is included) was 26.7kb, and the scaffold N50
was 1.159 Mb. Cumulative scaffold size was 24.865Mb. Sequence quality of scaffolds from the Newbler
assembly was improved as described in Aury et al.*® by automatic error correction with Solexa/Illumina
reads which have a different bias in error type compared to 454 reads. Following the correction process,
we fixed 3415 mismatches and 6559 indels.

Genome annotation. Gene models were predicted using Eugene pipeline®® on the URGI platform
(http://urgi.versailles.inra.fr/). Eugene relies on combination of ab initio gene predictions (Eugene_IMM,
SpliceMachine!® and Fgenesh http://www.softberry.com/berry.phtml) and similarity (BlastX against
Swissprot and Trembl) evidences. All the gene models were then manually curated with the help of
RNAseq data previously assembled with SOAP on the ORCAE platform (http://bioinformatics.psb.
ugent.be/orcae/'*!) and visualized on GenomeView (http://genomeview.org'®?) and Artemis (http://www.
sanger.ac.uk/resources/software/artemis/). All regions potentially coding for peptides of over 100 amino
acids (aa) were annotated. CDS of less than 100 aa were only annotated when they presented sequence
similarity with known proteins and/or associated with spliceosomal introns and were represented in the
RNAseq library. The genes encoding tRNA were predicted using tRNAscan-SE (http://lowelab.ucsc.edu/
tRNAscan-SE/) using default parameters. The protein coding genes were first functionally annotated by
comparison with the S. cerevisiae genome. Genes that failed to show sufficient sequence similarity with
S. cerevisiae genes were annotated by comparison against other available yeast genomes, filamentous
fungal genomes and Swissprot; they received the annotation “conserved hypothetical protein” when their
sequence showed similarity with that of proteins from several species. When a functional annotation
was available in the databanks, it was associated to the “conserved hypothetical protein” annotation.
Nomenclature for naming genes is the following: species name GECA, scaffold number from 1 to 27 and
32, s for scaffold, gene number with an incrementing step of 11, g for protein coding gene (for example,
GECAO01s00065g encodes a protein similar to Saccharomyces cerevisiae YNRO18W), r for RNA coding
gene (for example, GECA01s00238r encodes tRNA-Asp).
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Assembly and annotation of the mitochondrial genome. A total of four mtDNA contigs were
identified. Ordering of contigs and junction was performed using PCR. Protein coding genes and ribo-
somal genes were detected using blastX against the available Saccharomycotina mtDNAs. tRNA genes
were detected using tRNAscan-SE with default parameters and the mitochondrial search model (http://
lowelab.ucsc.edu/tRNAscan-SE/).

Phylogenomic analysis. Orthologs were first selected using blast with a P-value of 10~° against pro-
teomes of strains listed in Supplementary Table S9. Single-copy G. candidum genes were verified using
ORCAE and homology was verified using Fungipath!®. Sequences were concatenated and were aligned
using MUSCLE v3.8!% with default settings. Alignments were curated using GBlocks v0.91b'%. Species
trees were reconstructed using PhyML v2.4.41% with the WAG model. Bootstrap analysis was used to
obtain branch support. Trees were visualized with njplot'?’.

Synteny analysis. Conserved synteny blocks were defined using Synchro with default settings'®.
First, reciprocal blast hits were computed with a similarity threshold of 40% and length ratio between the
two protein sequences smaller than 1.3. Second, syntenic homologs, which were not involved reciprocal
blast hits, were added to the synteny blocks when they shared at least 30% of similarity over at least 50%
of their length.

Phylome reconstruction. A phylome comprises the collection of phylogenetic trees for each gene
encoded in a genome. We reconstructed the G. candidum phylome in the context of 21 additional fun-
gal species ranging across the main dikarya groups, i.e. 10 Saccharomycotina, 8 Pezizomycotina, one
Taphrinomycotina and two Basidiomycota (Supplementary Table S9). An automatic pipeline described
previously was used to reconstruct the phylome!®. This pipeline includes the standard tree reconstruction
steps: homology search, multiple sequence alignment and finally reconstructing the maximum likelihood
tree. The homology search was performed using a Smith-Waterman search for each gene (seed gene) in
the G. candidum genome (seed genome) against the protein database that contained the proteomes of
interest. Results were filtered to select only sequences with an e-value below 10~° and a continuous overlap
of 0.5. A maximum of 150 sequences for each protein were considered. Homologous sequences were then
aligned using three different alignment algorithms: MUSCLE v3.8!%, MAFFT v6.712b'!°, and kalign''™.
Alignments were performed in forward and reverse direction using the head-or-tail approach!!? and the
6 resulting alignments were combined with M-COFFEE!"®. TrimAl v1.3!!* was used to clean the align-
ment (consistency-score cut-off 0.1667, gap-score cut-off 0.9). To reconstruct maximum likelihood trees,
an evolutionary model needed to be selected. This was done by reconstructing a neighbor joining tree for
each alignment using BioNJ''>. The likelihood of the resulting topology according to one of 7 different
models (JTT, LG, WAG, Blosum62, MtREV, VT and Dayhoft) was computed. The model best fitting the
data, as determined by the AIC criterion''®, was used to derive ML trees using phyML v 3.0 with four
rate categories and inferring invariant positions from the data'’”. Branch support was computed using
an aLRT (approximate likelihood ratio test) based on a chi? distribution. Three additional phylomes were
reconstructed using the same proteome set but with different species as seeds: Saccharomyces cerevisiae,
Y. lipolytica and Debaryomyces hansenii. The resulting trees and alignments are stored in phylomeDB
(http://phylomedb.org) with phylome IDs 233 (G. candidum phylome), 234 (Y. lipolytica phylome), 235
(D. hansenii phylome) and 236 (S. cerevisiae phylome).

Species tree reconstruction. Proteins with a one-to-one orthology relationship to all the considered
species were selected from the G. candidum phylome. The 302 protein alignments were concatenated into
a multiple sequence alignment. The alignment was trimmed using trimAl v1.3'"* to discard columns with
more than 50% gaps (-gt 0.5 -cons 50). RAXML v8.0 was used to reconstruct the species tree''® using
the PROTGAMMLG model (Supplementary Fig. S9). Additionally, a super-tree based species tree was
derived from the G. candidum phylome using DupTree!".

Phylome analysis. Trees in the phylome were scanned using ETE v2'® Trees were scanned to detect
duplications that had occurred specifically in G. candidum by searching for clades that contained exclu-
sively G. candidum sequences. Orthology and paralogy relations were inferred from the phylome trees
using a species overlap algorithm'?. Briefly, for each node in the tree, the algorithm tries to detect over-
lapping species at either side of the node. If there are overlapping species, the node is considered a dupli-
cation node and therefore the sequences are paralogs. If there are no overlapping species, then the node is
considered a speciation node and sequences are orthologs. Finally, we used the phylome to assess phyletic
distribution of genes, based on homology or orthology, and selected genes that had only homologs in
each of the following six clades: i) the family Saccharomycetaceae (S. cerevisiae, Zygosaccharomyces rouxii,
Candida glabrata, Kluyveromyces lactis and Lachancea thermotolerans), ii) the Saccharomycetales incer-
tae sedis clade (K. pastoris and O. angusta), iii) the CTG clade (D. hansenii and Clavispora lusitaniae),
iv) other fungi (Ajellomyces capsulata, Aspergillus oryzae, Penicillium chrysogenum, Neurospora crassa,
Cryptococcus neoformans, Ustilago maydis, Schizosaccharomyces pombe, Botrytis fuckeliana, Trichoderma
reesei, Magnaporthe grisea, and Mycosphaerella graminicola), v) Y. lipolytica, or vi) G. candidum. The
same analysis was performed using the orthology predictions obtained from the phylomes (see above).
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In order to calculate the patristic distances, trees that contained at least one ortholog in Pezizomycotina
and at least one in any of the outgroup species (S. pombe, U. maydis and C. neoformans) were selected.
For each of those trees the patristic distance was calculated between the G. candidum protein and its clos-
est Pezizomycotina ortholog. This distance was then normalized by dividing it by the patristic distance
between the same G. candidum sequence and its farthest orthologous outgroup.

Gene expression analysis. Available RNAseq reads were mapped against the produced reference
genome using the GSNAP software!?! with default parameters. The resulting alignment files were trans-
formed into raw read counts for each gene making use of htseq-count'?? and the predicted G. candidum
gene-models. To obtain the final expression values the raw read counts were normalized for CDS length.
Afterwards subset of genes (and expression values) were created based on whether the gene has an ort-
holog in other Saccharomycotina (141 genes) or not (122 genes). The expression of the genes in these two
subsets was then compared to the expression of all other genes in the genome. To investigate the potential
difference in expression between the gene sets a Wilcoxon rank-sum test was applied.
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