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The incidence of Mycobacterium bovis, the causative agent of bovine tuberculosis, has been
increasing in UK cattle herds resulting in substantial economic losses. The European badger (Meles
meles) is implicated as a wildlife reservoir of infection. One likely route of transmission to cattle is
through exposure to infected badger urine and faeces. The relative importance of the environment
in transmission remains unknown, in part due to the lack of information on the distribution and
magnitude of environmental reservoirs. Here we identify potential infection hotspots in the badger
population and quantify the heterogeneity in bacterial load; with infected badgers shedding
between 1 X 103 — 4 X 105 M. bovis cells g—* of faeces, creating a substantial and seasonally
variable environmental reservoir. Our findings highlight the potential importance of monitoring
environmental reservoirs of M. bovis which may constitute a component of disease spread that is
currently overlooked and yet may be responsible for a proportion of transmission amongst badgers
and onwards to cattle.

The incidence of Mycobacterium bovis in cattle herds in Great Britain (GB) has increased from 0.01% in
1979! to 4.8% in 20122. Control and compensation has cost the taxpayer £500 million over the past dec-
ade and this is predicted to increase to £1 billion over the next 10 years if further geographical spread is
observed?; making bovine tuberculosis one of the most economically important animal health problems
in the UK farming industry*.

The European badger is a wildlife reservoir involved in the transmission of M. bovis to cattle in the
UK and RoI®®. Once infected, badgers may intermittently shed M. bovis cells in sputum, faeces and
urine’. One likely route of transmission to cattle is through exposure to infected badger urine and faeces.
Although the location and extent of environmental M. bovis has not been previously quantified, indirect
contact with infected faeces and urine may be an important exposure pathway®. M. bovis genomic DNA
can survive outside the host for up to 21 months’ and cells have been shown to be viable by culture from
mice fed soil in which M. bovis had been persisting for months'?. The survival of shed M. bovis cells
is likely to vary in space and time in relation to local environmental conditions and the distribution of
infectious badgers. Understanding patterns in environmental contamination (defined as the presence of
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Figure 1. Percentage positive badgers per social group determined by any culture positive (tracheal or
faecal) or faecal culture compared with positives by faecal QPCR. Data aggregated across the entire year.

Nettle 422 1.08 x 10° 60 100 100
West 16.9 1.48 x 10° 33.3 20 40
Honeywell 13.9 4.08 x 10° 50 50 66.7
Septic Tank 10.3 4.57 x 10° 40 20 60
Top 10.1 9.00 x 10° 20 90 90
Wych Elm 7.8 4.19 x 10* 0 0 0
Beech 6.9 4.98 x 10° 41.2 294 44.4
Woodrush 53 1.45 x 10° 0 333 333
Colliers Wood 43 8.83 x 10* 0 0 0
Yew 33 2.25x 10* 0 40 40
Kennel 3.2 2.76 x 10* 0 20 20
Old Oak 1.6 2.56 x 10° 0 31.3 31.3

Table 1. Summary of M. bovis genome equivalents counts by social group from faecal field sampling
and immunoassay testing results on trapped badgers.

M. bovis genome equivalents in the environment) could aid in the design of more effective interventions,
currently based on culling and vaccination strategies.

The availability of a method to quantify relative levels of environmental contamination with M. bovis
could open up possibilities for monitoring spatial and temporal variation in risk and may help direct
the implementation of disease control interventions. Currently the only means of measuring levels of
infection in badger populations is through trapping and testing with BrockTB Stat Pak® (Stat Pak)!!,
Interferon gamma (IFN~)'? and culture of clinical samples'. Cultivation, particularly from faecal mate-
rial, has low sensitivity and is qualitative (Fig. 1). A qPCR method for non-invasive environmental
monitoring of shedding was developed in our group'*'>. This qPCR assay quantifies faecal shedding, a
measure that correlates strongly with the level of infection within a social group as measured by immu-
noassay (Spearman’s rho = 0.92, p < 0.001)6. The only other non-invasive method for monitoring infec-
tion in badger populations is culture of faecal material, which is particularly insensitive (Fig. 1). Using
this optimised qPCR assay we are able to report on the spatio-temporal reservoir of M. bovis from badger
faecal shedding in a natural population over the course of a year. Badgers defecate in latrines within or
at the edges of their territories!” and hence they can be used to identify a defined population of animals.

Methods

Sampling and Trapping. Fresh faecal samples were obtained from latrines associated with 12 badger
social groups (Table 1) in Woodchester Park Gloucestershire through 2012 and 2013. Two intensive sam-
pling periods of two weeks each were undertaken during the period of peak badger latrine activity in the
spring and autumn of 2012 where up to 10 unique faecal samples were obtained from latrines associated
with each social group on alternate days. Faecal samples were taken from latrines in closest proximity to
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the main sett of each social group. A second sampling regime was undertaken over a year long period
where up to 10 unique fresh, faecal samples were taken from latrines associated with each social group
per day over two non-consecutive days in each season, starting two days after trapping operations took
place in that location. For the purpose of this study March—May was classified as spring, June—August
as summer, September—November as autumn and December—February as winter.

Each of the 12 badger social groups in the study was trapped four times throughout the year, once
per season, with variable numbers of animals trapped between groups and seasons (Table S1). Badgers
were trapped using baited cage traps placed around the main setts of each social group and identified
using a unique tattoo applied at the first capture of that animal. Trapped badgers from each of the 12
social groups were tested by BrockTB Stat-Pak®, IFN~ and culture of clinical samples. All experimental
protocols were approved by the University of Warwick and the Food and Environment Research Agency
Ethical Review Committee and carried out in accordance with the approved guidelines and under the
license granted by the Home Office under the 1986 Animal (Scientific Procedures) Act.

DNA Extraction and qPCR. Total community DNA was extracted from 0.1g (+/—0.003g) of
faeces using the Fast DNA spin kit for soil (MP Biomedicals) following the manufacturer’s instruc-
tions. M. bovis was detected and quantified using a qPCR assay which targets the RD4 deletion
region unique to the M. bovis genome (Specificity data Table S2). An initial QPCR screen of each
sample was performed using an ABI 7500 Fast qQPCR machine (ABI) with two technical replicates
of each sample. Positive controls (8.5x 10° genome equivalents) and negative controls were also
present in duplicate on each plate. PCR reactions were set up using 900nM of each primer (RD4F
TGTGAATTCATACAAGCCGTAGTCG?, RD4R *CCCGTAGCGTTACTGAGAAATTGCY), 250nM
of Tagman probe (6FAM-AGCGCAACACTCTTGGAGTGGCCTAC—TMR), 1 mg ml~! bovine serum
albumen (BSA), 12.5pl of Environmental Mastermix 2.0 (ABI), 10pl of template and made up to 25ul
with molecular grade water (Sigma Aldrich). PCR cycling conditions were 50°C for 2 min followed by
95°C for 10min then 40 cycles of 95°C for 15sec and 58°C for 1 min. Samples exhibiting amplification
in one or more technical replicates were taken on to full quantification using three technical replicates
per sample under the same conditions. If one or more of the technical replicates of the quantification
assay exhibited amplification the sample was deemed positive for M. bovis. Serial dilutions of M. bovis
BCG Danish 1331 genomic DNA were used as standards for this quantification. An inhibition control
assay previously described! was used to detect the possibility of false negative results due to inhibition.
Where significant inhibition was detected DNA was re-extracted from frozen aliquots and qPCR assays
were repeated. The number of M. bovis genome equivalents was quantified independently by qPCR at
The University of Warwick and APHA Weybridge (Supplementary Figure 1).

Data Analysis. All data analysis was performed using the statistical program R. Logistic regression
with social group (Old Oak) as the baseline was used to determine whether the number of positive
samples varied amongst social groups throughout the year. Binomial generalised linear models (GLM)
were performed to determine differences in M. bovis cells numbers shed between groups and between
seasons. For spring two sampling days per social group were chosen to represent cross sectional sam-
pling. Variability within groups was determined by calculating the median, upper and lower quartiles
and range for each soil group.

The probability of detecting a false positive rate was 2%, calculated using known negative faecal sam-
ples obtained from captive badgers at APHA which were routinely tested for bTB using IFN~. Negative
samples were double blinded and randomly introduced into the experiment at both centres. The proba-
bility of detecting x false positive for a given number of samples was calculated using equation 1 where
p(x)=the probability of exactly x false positives, f=the false positive rate, n=the number of samples
and x=the number of false positives.

! n—x X
PO = _”x)!x! X (1= f)"" x f 0

The number of confirmatory re-extractions (e) needed to result in the probability (p) of exactly x false
positives was calculated using equation 2.

n! n—x X e
p(x) = mx(l—f) xfAlx (1 =f) @)

Results

Infection levels within social groups. During the study, 53.6% of trapped badgers were M. bovis
positive by Stat-Pak, IFN~ or culture. By qPCR faecal samples from every social group examined were
found to be positive (Fig. 2). Although the percentage of infected faecal samples varied considerably
(Table 1, Table S3), the numbers of M. bovis genome equivalents per faecal sample also varied widely
ranged from 1 x 10° to 4 X 10° per gram of faeces (Table 1).
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Figure 2. The percentage of badgers positive by any diagnostic tests compared to the percentage of
positive faecal samples by qQPCR per social group.
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Figure 3. Distribution of M. bovis genome equivalents in positive samples by social group.

Significant variability in genome equivalents was identified both within and between social groups
(Fig. 3) with social groups Nettle, Top, Septic Tank and West shedding more cells over the year than the
other social groups (Table 1). Social groups with a high percentage of positive samples consistently shed
amongst the highest cumulative numbers of M. bovis cells during the year (Table 1). Social group Old
Oak was exceptional as it has one of the highest cumulative M. bovis genome equivalent values yet had
the lowest percentage of positive samples in the study (Table 1). This distribution is consistent with the
presence of a relatively small number of animals shedding large amounts of bacteria in some groups.
However, as we could not assign faecal samples to individuals we cannot discount within-individual
variation in shedding from being responsible for this observation. Hence the need for further research
into heterogeneity in transmission risks amongst individual badgers.

Seasonal variability in M. bovis shedding. Overall a significantly greater number of M. bovis
genome equivalents were shed in summer than in any other season. There were substantial seasonal
differences in the cumulative number of M. bovis equivalents detected per social group (Fig. 4) with
different groups identified as the largest contributors to the environmental pool of M. bovis throughout
the year. Although summer had the highest number of genome equivalents overall, Septic Tank shed
fewer cells in summer compared to other seasons and Top and shed more cells in spring. Nettle also
shed fewer M. bovis genome equivalents in spring compared with the rest of the year. However, five
social groups (Nettle, West, Honeywell, Septic Tank, and Top) were identified as having consistently
high proportions of positive faeces and relatively large quantities of M. bovis bacilli shed (Table 1). This
corresponds to immunoassay tests carried out on trapped badgers, which also identified these five groups
as the most heavily infected (Table 1). Although there is strong correspondence between immunoassay
and qPCR results there are some discrepancies, in particular Nettle and Top are 100% and 90% positive
by immunoassay yet there was a large difference in the percentage of positive faecal samples with 42.2%
and 10.0% respectively.
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Figure 4. The cumulative M. bovis genome equivalents shed by each social group per season. Created in
R version 3.0.2 using the packages ggplots 2°! and ggmaps®. The scales for all graphs are identical.
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Discussion

Detection of M. bovis by qPCR allows the presence of faecal shedding and hence infectious badgers to be
established non invasively and raises the possibility of identifying infectious social groups. Unlike stand-
ard diagnostic tests the qPCR approach also quantifies levels of M. bovis shedding, providing oppor-
tunities to assess spatio-temporal variations in the environmental distribution of this potential source
of infection for cattle, badgers and other wild mammals. Environmental transmission is likely to be a
complex mixture of a number of factors including the infectious load of M. bovis in faeces and urine
and changes in these reservoirs over time, proximity to cattle pasture, the frequency and type of contact
cattle have with badger excrement and the age of faecal samples. The application of qPCR to further
understand the epidemiology and transmission dynamics of bovine tuberculosis may be an important
component in managing the advancing frontier between endemic and non-endemic cattle infection, and
to inform transmission models (e.g. Brooks-Pollock et al. (2014)).

The heterogeneities observed in this study between social groups and the consistency with which
five groups were identified as highly infected and shedding, suggesting that interventions targeted at
particular high risk populations could have a larger impact than random and blanket control strategies’®.
However, we are mindful that any perturbation of badger populations could result in increased rather
than decreased transmission'®?. The observed discrepancies in the percentage of positive faecal samples
for social groups with similar prevalences of infection by immunoassay highlights the need for further
work to establish the causes of these differences. Whilst heterogeneity in transmission is a well-known
phenomenon, this study is one of the few empirical studies which have attempted to demonstrate the
extent of this variability?'. Although this study does not assess the viability of M. bovis in faeces, previ-
ous work has identified the presence of M. bovis 16S rRNA in soil’ and badger setts and latrines®>. In
addition, studies have had a culture success rate of 2.5% from badger faecal samples® and M. bovis has
been cultured from cattle faeces several months after excretion?’. This indicates that at least a proportion
of M. bovis cells shed in badger faeces can remain viable in the environment; however, further research
is required to determine potential survival and transmissibility of M. bovis in environmental samples.

Whilst the focus in the UK and Rol is on badgers, other wildlife hosts are present?>25; however, little
is currently known of their contribution to environmental reservoirs and their relative importance for
transmission to cattle”. Issues controlling M. bovis are not confined to the UK and Rol. Worldwide
there are problems with M. bovis in buffalo and lions in South Africa?, possums in New Zealand?®,
white tailed deer in America? and wild boar in Spain®. This non-invasive qPCR assay can be employed
to detect shedding in other systems and samples types including milk, water and clinical tissues, is pos-
sible using this method. Whilst controlling and monitoring M. bovis in wildlife populations remains a
challenge, non-invasive monitoring of environmental contamination may open up opportunities to iden-
tify spatio-temporal heterogeneity in disease risks and hence contribute to the development of suitable
approaches fro disease control in livestock.
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